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Abstract

Due to the complex characteristics of bottle-brush polymers, it became a challenge to develop an efficient algo-

rithm for studying such macromolecules under various solvent conditions or some constraints in the space by using

computer simulations. In the limit of a bottle-brush polymer with a rather stiff backbone (straight rigid backbone), we

generalize the variant of the biased chain growth algorithm, the pruned-enriched Rosenbluth method, for simulating

polymers with complex architecture, from star polymers to bottle-brush polymers, on the simple cubic lattice. With

the high statistics of our Monte Carlo results, we check the theoretical predictions of side chain behavior and radial

monomer density profile. For the comparison of the experimental data for bottle-brush polymers with a flexible back-

bone and flexible side chains, based on the bond fluctuation model we propose another fast Monte Carlo algorithm

combining the local moves, the pivot move, and an adjustable simulation lattice box. By monitoring the autocorrela-

tion functions of gyration radii for the side chains and for the backbone, we see that for fixed side chain length there

is no change in the behavior of these two functions as the backbone length increases. Our extensive results cover the

range which is accessible for the comparison to experimental data and for the checking of the theoretically predicted

scaling laws.
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1. Introduction

The so-called “Bottle-Brush” polymers consist of a long molecule serving as a “backbone” on which many side

chains are densely grafted. The conformational change of bottle-brush polymers is mainly caused by the following

factors: backbone length, side chain length, grafting density, type of monomers (chemical compound), and solvent

quality which can be adjusted by changing the temperature, pH value, etc. In the previous Monte Carlo studies of

bottle-brush polymers, both coarse-grained models on lattice [1, 2, 3] and on off-lattice [4, 5, 6], show that it is difficult

to obtain high accuracy results for simulating large bottle-brush polymers with high grafting densities.

On a coarse-grained scale, the bottle-brush polymer with densely grafted side chains may resemble a flexible long

sphero-cylinder [7, 8]. The complicated structure of bottle-brush polymers is therefore described in terms of multi-

length scales such as the contour length Lcc, the end-to-end distance of the backbone, Reb, and of the side chain, Re, the

cross sectional radius Rcs, and also the persistence length �p which describes the intrinsic stiffness of the backbone, i.e.,

within the distance �p, the cylinder is approximately straight. With computer simulations, one can estimate not only

all these length scales but also those physical quantities measured by experiments such as the structure factors S (q)

which describe the scattering function from any part of the bottle-brush polymers, and the radial monomer density
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profile ρ(r). Therefore, it is necessary to develop an efficient algorithm for a deeper understanding of the complicated

structures of bottle-brush polymers with larger size and higher grafting densities in order to control their functions for

the applications in industry.

In this article, we first explain the models and the algorithms for simulating bottle-brush polymers with a straight

rigid backbone, and with a flexible backbone in Sec. 2. For simplicity, here we only focus on the case that the

bottle-brush polymers are under good solvent conditions. In Sec. 3 we present our results and explain the connections

between these estimates obtained by computer simulations, the theoretical predictions, and the experimental data,

respectively. Finally we give some conclusions in Sec. 4.

2. Models and algorithms

For studying bottle-brush polymers under a good solvent condition, we first consider that bottle-brush polymers

consist of a rigid backbone and flexible side chains. A simple coarse-grained model on a simple cubic lattice is used,

where the backbone is simply a rigid rod and flexible side chains are described by self-avoiding walks (SAWs) so

that no multi-occupation of monomers on the same site is allowed. We apply a biased chain growth algorithm with

resampling which is a variant of the pruned-enriched Rosenbluth method (PERM) [9, 10, 11] for the simulations. For

the comparison between experimental data and Monte Carlo simulations of bottle-brush polymers, we need to consider

a more complicated case that the backbone is also flexible. The bond fluctuation model [12, 13, 14, 15] is used, where

the backbone and all side chains are described by SAWs on a simple cubic lattice but with some constraints (see

sec. 2.2). We propose an algorithm which combines the local 26 moves, the pivot moves and an adjustable simulation

lattice box (LPB) for the simulations [7, 8, 16]

2.1. Simple coarse-grained lattice model with PERM

In the simple coarse-grained model, the backbone is fixed on the simple cubic lattice in the direction along the

z-axis. Nb monomers of the backbone are located on the lattice sites as shown in Fig. 1. nc side chains consisting of N
monomers each are grafted to the backbone monomers with equal distance 1/σ between two successive grafting sites

on the backbone, where σ is the grafting density defined by σ = nc/Nb. Since mainly we want to check the scaling

laws for very long side chains, the periodic boundary condition is introduced in the direction along the backbone to

avoid the end-effects associated with a finite backbone length. Differently from the conventional MC method where

an initial configuration is set up as a starter for the simulation, the conformation of a bottle-brush polymer is built by

growing all side chains simultaneously with PERM. The partition sum of bottle-brush polymers of nc side chains of

length N each,

ZNnc =
∑
walks

1 , (1)

is therefore the total number of all possible configurations of nc interactive self-avoiding random walks of steps N.

Only the excluded volume effect is considered here.

It is straight forward to apply the similar method for growing a star polymer [10] to the simulations for growing a

bottle-brush polymer [11]. Only in the latter case, side chains can either be attached to the same site or the different

sites on the backbone depending on the grafting densities. In the process of growing a bottle-brush polymer, one

has to be aware that both the interactions between monomers in the same side chain, and the interactions between

monomers on different side chains have to be taken into account. If one side chain is grown entirely before the next

side chain is started, it will lead to a completely “wrong” direction of generating the configurations of a bottle-brush.

Therefore, one has to use the strategy that all side chains are grown simultaneously. Namely, a monomer is added

to each side chain step by step until all side chains having the same length, then that the next round of monomers

is added. After we labelled all monomers by numbers, it goes back to the problem of growing a linear chains from

the first monomer to the (ncN)th monomer [9]. Using PERM, the configurations of bottle-brush polymers are built

by adding one monomer at each step, and each configuration carries its own weight. A wide range of probability

distributions can be used for selecting one of the nearest neighbor free sites of each side chain end at the next step, but

the efficiency of the algorithm depends on the choice of the distribution. For the current problem, the bias of growing

side chains is used by giving higher probabilities in the direction where there are more free next neighbor sites and in

the outward directions perpendicular to the backbone, where the second part of bias decreases with the length of side
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Figure 1: (a) Schematic drawing of the geometric arrangement for the simple coarse-grained model. (b) A snapshot of a bottle-brush polymer with

Nb = 128, N = 2000, and σ = 1/4 on the simple cubic lattice. Note that different colors are used in order to distinguish between different side

chains, and the periodic boundary condition is undone for the sake of better visualization.

chains and increases with the grafting density. The total weight Wm (m = nnc) for a bottle-brush polymer of all side

chains having the length n with an unbiased sampling is determined recursively by Wm =
∏m

k=1 wk = Wm−1wm. As the

weight Wm is gained at the mth-step with a probability pm, one has to use wm/pm instead of wm. By taking the average

of all possible configurations, the partition sum

Ẑm =
1

Mm

Mm∑
α=1

Wm(α) (2)

can be estimated directly, where Mm is the total number of configurations {α}. This is the main advantage of using

PERM. For any observable Am, the mean value is therefore,

Ām =
1

Mm

∑Mm
α=1

Am(α)Wm(α)

Ẑm
(3)

.

In order to suppress the huge fluctuation of the probability distribution and enrich those configurations with high

weight the population control is made in the way of pruning low weight configurations and cloning those configura-

tions with high weight. Two thresholds W+m and W−
m are introduced,

W+m = C+Ẑm , W−
m = C−Ẑm (4)

where Ẑm is the current estimate of the partition sum {Eq. (2)}, and C+ and C− are constants of order unity. The optimal

ratio between C+ and C− is found to be C+/C− ∼ 10 in general. For our simulations, we use W+m = ∞ and W−
m = 0 for

the first configuration hitting all side chains of length n. For the following configurations, we use W+m = CẐm(cm/c0)

and W−
m = 0.15W+m, here C = 3.0, and cm is the total number of configurations of all side chains having length n. If the

current weight Wm(α) > W+m for the configuration α, one produces two identical copies of this configuration, replaces

their weight Wm(α) by Wm(α)/2. If Wm(α) < W−
m, one calls a random number r where r ∈ [0, 1]. If r ≥ 1/2, the

configuration is kept but the weight is replaced by 2Wm(α), while the configuration is killed if r < 1/2. Otherwise, the

configuration is kept with the weight Wm(α).

A typical configuration of bottle-brush polymers under a good solvent condition generated by PERM is shown

in Fig. 1(b). It consists of Nb = 128 backbone monomers, N = 2000 side chain monomers in each side chain, and

the grafting density is 1/4. The total number of monomers is Ntot = Nb + NσNb = 64128. So far, it is the largest

bottle-brush polymers in the equilibrium state, generated by MC simulations [11].
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Figure 2: (a) Schematic drawing of applying local 6 (L6) moves and local 26 (L26) moves to a monomer on the site of a simple cubic lattice. In

the “L6” moves, a monomer is tried to move to the nearest neighbor sites in the six directions, while in the “L26” moves, a monomer is not only

tried to move to the nearest neighbor sites but also to the next nearest neighbor sites and the sites at the 8 corners which are in
√

3 lattice spacings

away from the chosen monomer. (b) Two types of pivot moves applied to a randomly chosen monomer on the backbone, and to a randomly chosen

monomer on a randomly chosen side chain.

2.2. Bond fluctuation model with LPB
For studying bottle-brush polymers with a flexible backbone and flexible side chains, we generalize the bond

fluctuation model for a linear polymer chain to that for a bottle-brush polymer. In the standard bond fluctuation

model [12, 13, 14, 15], a flexible polymer chain is described by a SAW on a simple cubic lattice with bond con-

straints. Each effective monomer blocks all 8 corners of an elementary cube of the lattice from further occupation.

Two successive monomers along a chain are connected by a bond vector chosen from the set {(±2, 0, 0), (±2,±1, 0),

(±2,±1,±1), (±2,±2,±1), (±3, 0, 0), (±3,±1, 0)}, including also all permutations. The geometry of a bottle-brush

polymer with Nb backbone monomers, and with nc side chains of length N is arranged in the way that side chains are

added to the backbone chain at regular spacing 1/σ = Nb/nc, and two additional monomers are added to each chain

end of the backbone. Thus, the total number of monomers is Ntot = [(nc − 1)/σ + 1] + 2. For our simulations, one of

the simplest ways to set up the initial configuration is to assume that the backbone and side chains all have rod-like

structures. Placing the backbone along the z-direction and fixing the bond length between two successive backbone

monomers to be 3, and randomly choosing the bond vector of each side chain from one of the allowed bond vectors

including all permutation in the xy-plane but keeping the bond vectors within each side chain fixed, the required con-

dition of bond constraints is satisfied and no further check is needed. In our algorithm, instead of trying to move a

chosen monomer to the nearest neighbor sites named by the local 6 (“L6”) moves for the standard bond fluctuation

model, we use the local 26 (“L26”) moves [17] where it is tried to move to the 26 neighbor sites as shown in Fig. 2(a).

The local move is only accepted if the selected site is empty and the bond length constraints are satisfied. In addition,

two types of pivot moves are attempted. One is that a monomer is chosen randomly on the backbone and the short

part of the bottle-brush polymer is transformed by randomly applying one of the 48 symmetry operations (no change;

rotations by 90o and 180o; reflections and inversions). The other is that a monomer is chosen randomly from all side

chain monomers, and the part of side chain from the selected monomer to the free end of the side chain is transformed

by one of the 48 symmetry operations.

We first make some test runs for a small bottle-brush polymers with Nb = 32, N = 6, 12, 24, and 48, and σ = 1

in order to compare the efficiency between the “L26” moves and the “L26” moves + pivot moves. For any observable

A, the performance of the algorithm is determined by the autocorrelation function c(A, t),

c(A, t) =
〈A(t0)A(t0 + t)〉 − 〈A(t0)〉〈A(t0 + t)〉

〈A(t0)2〉 − 〈A(t0)〉2 . (5)

Results of c(A, t) for the mean square gyration radius of the backbone, A = R2
gb, and of the side chains, A = R2

gc (taking

the average of all side chains at the same MC step t) plotted against the number of MC steps t show that the “L26” +

pivot algorithm is two orders of magnitude faster than the “L26” algorithm for fixed side chain length N (figures are

not shown here). In the “L26” algorithm, one MC step consists of Ntot “L26” moves, i.e., each monomer is selected

once for the local move. In the “L26” + pivot algorithm, one MC step consists of Ntot “L26” moves, kb times pivot

moves of the backbone and kc times pivot moves of side chains. kb is chosen such that the acceptance ratio is about

40% or even larger, while kc is nc/4.
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Figure 3: The two observables, the radius of gyration of backbone monomers, Rgb, and the space occupation of bottle-brush polymers, (Δx,Δy,Δz),

are indicated in the schematic drawing by taking a snapshot of a bottle-brush polymer with Nb = 131, N = 6, and σ = 1.
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Figure 4: Time series of the rescaled square gyration radii for the backbone monomers, R2
gb(t)/N2ν

b (a) and of the spacing occupation of the whole

bottle-brush polymers in the Cartesian coordinates, (Δx(t),Δy(t),Δz(t)) (b). Results shown here are for bottle-brush polymers with Nb = 515

backbone monomers, N = 12 side chain monomers, and the grafting density σ = 1.

Two observables chosen for monitoring the equilibrating process as shown in Fig. 3 are the radius of gyration of

the backbone monomers, Rgb(t), and the space occupation of the bottle-brush polymer in the Cartesian coordinates,

(Δx(t),Δy(t),Δz(t)), since the average conformations of bottle-brush polymers in equilibrium must be isotropic. For

simulating small bottle-brush polymers, we can simply set the three orthogonal length scales in the Cartesian coordi-

nates having equal length, e.g. Lx = Ly = Lz = 3Nb in the equilibrating process. As the size of bottle-brush polymer

increases, we will meet the problem of setting the simulation lattice box in our simulations due to the limitation of

the computer memory. The maximum volume of the box is V = LxLyLz = 228 for those computers we can access.

The solution for it is to adjust the simulation lattice box during the equilibrating process and separate the process into

several stages. Let’s take a bottle-brush polymer with Nb = 515, N = 12, and σ = 1 as an example. The equilibrating

process is separated into four stages as follows,

stage 1: 1 ≤ N p
b ≤ 128, L(1)

z = 1545, L(1)
y = L(1)

x = 415, t(1)
f = 262144 MC steps

stage 2: 1 ≤ N p
b ≤ 256, L(2)

z = 1201, L(2)
y = L(2)

x = 473, t(2)
f = 262144 MC steps

stage 3: 1 ≤ N p
b ≤ 513, L(3)

z = 851, L(3)
y = L(3)

x = 561, t(3)
f = 262144 MC steps

stage 4: 1 ≤ N p
b ≤ 513, L(4)

z = L(4)
y = L(4)

x = 645, t(4)
f = 1310720 MC steps
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Figure 5: Snapshots of bottle-brush polymers with Nb = 515, N = 12, and σ = 1 in the equilibrating process including four stages.

Here N p
b is the pivot point selected from the backbone monomers. One has to be away that the pivot points which

can be selected for applying the pivot moves are also limited due to the current set up of the simulation lattice box.

However, once the system is in equilibrium one has to allow all possible moves, i.e. (1 ≤ N p
b ≤ (Nb−2)). At every new

stage k, the initial configuration is taken from the last stage, and the size of the simulation lattice box is decided by the

final space occupation of the bottle-brush polymers at the last stage, i.e. L(k)
z ≥ Δz(t), L(k)

y = L(k)
x ≈ max(Δy(t),Δx(t)),

with t =
∑k

i=1 t(i−1)
f , and L(k)

z L(k)
y L(k)

x ≤ 228. Time series of Rgb(t) and (Δx(t),Δy(t),Δz(t)) are shown in Fig. 4. The four

stages are separated by the vertical green curves. Taking some snapshots of the conformations of the bottle-brush

polymers at the Monte Carlo steps indicated by the arrows in Fig. 4(b) one can see how the conformations of bottle-

brush polymers change during the equilibrating process as shown in Fig. 5. At the beginning, backbone and side

chains are in rod-like structures. At the end of the first stage, only a small part of the backbone is flexible. As more

backbone monomers are relaxed, we see that the backbone and the side chains become more and more flexible step

by step. Finally an equilibrium state is reached. It takes about 1.25 hours CPU time on an Intel 2.8 GHZ PC for such

a bottle-brush polymer to reach the equilibrium state by choosing kb = 40 and kc = 128.

It is more time consuming when pivot moves are applied to the simulations for larger bottle-brush polymers. In

order to know how much the efficiency is slowing down as the backbone length increases, we compare the autocor-

relation functions c(R2
gc, t) and c(R2

gb, t) for bottle-brush polymers with Nb = 35 and Nb = 515 for three different side

chain lengths N = 6, 12, and 24. For both cases in Fig. 6(a), we see that the decay of the autocorrelation function for

the side chain structure occurs on the same time scale. It is also true for the backbone as shown in Fig. 6(b) that the

autocorrelation functions are plotted against the number of pivot moves tkb. Clearly, the structural relaxation time is

longer as the side chain length N increases [18].

3. Results

According to the cylindrical geometry of bottle-brush polymers with a rigid backbone, we extend the Daoud-

Cotton blob picture for a star polymer to that for a bottle-brush polymer. The space is partitioned into blobs of

non-uniform size and shape. The blobs are not spheres but rather ellipsoids. Based on this theory, the scaling law for

side chains in the radial direction (height of the bottle-brush) is given by,

Rh(N, σ) ∝ σ(1−ν)/(1+ν)N2ν/(1+ν) , forσ→ ∞ (6)
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Figure 6: Autocorrelation functions of the mean square gyration radii for the side chains c(R2
gc, t) (taking the average of all side chains at each

t) plotted against the number of Monte Carlo steps t (a), and for the backbone c(R2
gb, t) plotted against the number of pivot moves applied to the

backbone, tkb (b). Data obtained by the algorithm LPB for bottle-brush polymers with Nb = 515, and Nb = 35 are shown by dashed and dotted

curves, respectively.

where ν is the Flory exponent for 3D SAWs (ν ≈ 0.588). With the first part of simulations by using PERM, results

of the mean square height of bottle-brush polymers for three choices of backbone length Nb = 32, 64, and 128, and

several choices of the grafting density σ from 1/128 to 1 are shown in Fig. 7(a). We see that those curves of the same

grafting density σ coincide with each other. Increasing the grafting density σ enhances the stretching of side chains.

Considering that in the mushroom regime (σ→ 0), the height of bottle-brush polymers should behavior as 3D SAWs,

i.e. Rh(N, σ→ 0) ∼ Nν, one can write down the scaling ansatz in the thermodynamic limit as N → ∞ [11],

R2
h(N, σ) = N2νR̃2(η) , η = σNν (7)

with

R̃2(η) =

{
1 , η→ 0

η2(1−ν)/(1+ν) , η→ ∞ (8)

For checking this cross-over scaling ansatz, we plot the same data as shown in Fig. 7(a), but rescale the x-axis from N
to η. We see the nice data collapse. As η increases, a cross-over from a 3D SAWs to a stretched side chain regime is

indeed seen, but only rather weak stretching of side chains is realized, which is different from the scaling prediction

{Eq. (6)}. In this log-log plot, the straight line gives the asymptotic behavior of the scaling prediction for very large

η. However, this is the first time we can see the cross-over behavior by computer simulations. This cross-over regime

is far from reachable by experiments. On the other hand, it requires a lot of effort to reach the regime where the

theoretical prediction would apply, either the grafting density σ has to be much higher or the side chain length N has

to be much longer.

The same situation is also observed as we check the scaling prediction for the radial distribution function [11]

ρ(r) ∝ (r/σ)δ , δ =
1 − 3ν

2ν
≈ −0.65 (9)

Results are shown in Fig. 8 for bottle-brush polymers with side chain length N = 500 and N = 1500. As we keep

all the grafting densities σ fixed but increase the side chain length N, one can see only in a rather tiny regime, the

data seem to follow the same slope as predicted by the theory. Therefore, one might expect that finally the radial

distribution function would follow the predicted scaling law as both σ and N are very large.

For the second part of the simulations, let’s first look at the snapshots of bottle-brush polymers under a good

solvent condition, which contain Nb = 515 backbone monomers, N = 0 (linear polymer), 6, 12, and 24 monomers

on each side chain, and the grafting density σ = 1. As N increases, one sees that the corresponding conformations of

bottle-brush polymers are rather different. The backbone becomes stiffer as the side chain length increases. This local
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Figure 8: Radial distribution function ρ(r) plotted against r, for N = 500 (a) and N = 1500 (b).

intrinsic stiffness of the backbone is quantitatively described by the persistence length �p. According to the scaling

law of the mean square end-to-end distance of the backbone [7, 8],

〈R2
eb〉 = 2�b�pN2ν

b , as Nb → ∞ (10)

where �b ≈ 2.7 is the average bond lengths for the bond fluctuation model. Results of the rescaled mean square

end-to-end distance of the backbone for N = 0, 6, 12, 18, and 24 and for various numbers of backbone monomers Nb

are shown in Fig. 10(a). The persistence length �p for fixed side chain length N is determined by the plateau for large

Nb since finally those curves of 〈R2
eb〉/(2�bN2ν

b ) all show a smooth cross-over from a rod-like chain to a 3D SAW. �p

increases as N increases.

The most common quantity to describe the structure of macromolecules is the structure factor S (q) for the whole

bottle-brush polymer, which is estimated by taking the average of all independent configurations obtained from MC

simulations, i.e.

S (q) =
1

Ntot

Ntot∑
i=1

Ntot∑
j=1

< c(	ri)c(	r j) >
sin(q | 	ri − 	r j |)

q | 	ri − 	r j | (11)

where c(	ri) = 1 if 	ri is occupied, otherwise c(	ri) = 0. In experiments, S (q) can be measured by using static light

scattering, small angle neutron scattering, and x-ray scattering, e.g. Ref. [19]. By choosing the accessible size of
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Figure 9: Snapshots of bottle-brush polymers with Nb = 515 backbone monomers, N side chain monomers, and with the grafting density σ = 1.

As N increases from 0 (linear polymer chain) to 24, the backbone becomes stiffer. Quantitatively, the local intrinsic stiffness of the backbone is

described by the persistence length �p as shown in Fig. 10(a).
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Figure 10: (a) Rescaled mean square end-to-end distance of the bottle-brush polymers, 〈R2
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b ), plotted against the number of monomers

on the backbone, Nb, for the grafting density σ = 1, and several choices of side chain length N. The corresponding persistence length �p for fixed

side chain lengths N are given by the horizontal curves. (b) Structure factors S (q) plotted against the wave factor q. Simulation results are obtained

for the bottle-brush polymer with Nb = 259, N = 48, and σ = 1 by LPB. Experimental data for the sample B2 with N(exp)

b = 400 and N(exp) = 62

are quoted from Ref. [19]. A snapshot of the bottle-brush polymer generated by LPB is also shown in (b).

bottle-brush polymers for experiments, we have found the connections between our MC simulation results and the

experimental data [7]. One example is shown in Fig. 10(b). As we normalize the structure factor S (q) → 1 as q → 0,

and rescale the wave factor q to qRg where Rg is the radius of gyration of the whole bottle-brush polymer, we see that

the backbone length N(exp)

b = 400 in the experiment corresponds to the backbone length Nb = 259 in the simulation,

and side chain length N(exp) = 62 in the experiment corresponds to the side chain length N = 48 in the simulation.

The grafting density σ ≈ 1 for both cases. Immediately, we can translate that 1nm ≈ 3.79 lattice spacings.

4. Conclusions

In this paper, we study the bottle-brush polymers under good solvent conditions by using two kinds of lattice mod-

els, a simple coarse-grained model on the simple cubic lattice and the bond fluctuation model. Due to the complex

characteristics of bottle-brush polymers, we have proposed two algorithms, a variant of PERM and LPB depending on

the interesting regime of length scales. With our extensive MC simulations, we show that the stretching of side chains

in the interior of the bottle-brush polymer is weaker than the theoretical prediction. A convincing estimate of the per-

sistence length �p which describes the intrinsic stiffness of bottle-brush polymers depending on the side chain length

is given. We also give a direct comparison of the structure factors between our simulation results and the experimental

data. The newly developed algorithm LPB has also been employed successfully to study the conformational change

of bottle-brush polymers as they are adsorbed on a flat solid surface by varying the attractive interaction between the

monomers and the surface [20].
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