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1 INTRODUCTION

Flexibility of chain molecules (or lack of flexibility,
respectively) is one of their most basic general proper�
ties [1–5]. It affects the use of macromolecules as
building entities of soft materials, and controls some
aspects of the functions of biopolymers in a biological
context. Thus, it is important to understand its origin in
terms of the macromolecular chemical architecture,
and the extent to which it depends on external condi�
tions (temperature, solvent quality if the polymer is in
solution, as well as polymer concentration), and one
therefore needs to be able to characterize macromolec�
ular flexibility or stiffness precisely. The quantity that is
supposed to describe the local intrinsic stiffness of a
polymer is termed “persistence length” and often it is
introduced (e.g. [4, 5]) as a length describing the expo�
nential decay of orientational correlations of segments
with the length of the piece of the chain separating
them. Thus, let us consider a linear macromolecule
composed of segments vectors { , }, all

having the same bond length  = , if we wish
to allow for thermal fluctuations of the length of these
segments). Then it is assumed that the correlation of
two segments i, j, that are  steps along the
chain apart, varies as

(1)

where  is the persistence length.

1 The article is published in the original.
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In fact, Eq. (1) holds for models of linear polymer
chains that strictly follow Gaussian statistics (for large
distances between monomeric units), however, Eq. (1)
is not true for real polymers, irrespective of the consid�
ered conditions: for dilute solutions and good solvent
conditions one rather finds a power law behavior [6]

(2)

Here  is the well�known Flory exponent, describing

the scaling of the end�to�end distance 

with the number N of segments, , with

 (more precisely [7], ) in d =3 dimen�
sions [1–5]. Polymer chains in dense melts do show a
scaling of the end�to�end distance as predicted bv

Gaussian statistics,  (i.e.,  takes the mean�

field value ), and hence it was widely
believed, that Eq. (1) is useful for polymer chains
under melt conditions. However, recent analytical and
numerical work [8, 9] has shown that this assertion is
completely wrong, and there also holds a power law
decay, though with a different exponent,

(3)

More recently, it was also found by approximate ana�
lytical arguments [10], and verified in extensive simu�
lations [11] that Eq. (3) also holds for chains in dilute
solutions at the Theta point. In practice, since asymp�
totic power laws such as Eqs. (2), (3) hold only in the
intermediate regime  and hence one must
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consider the limit , one easily could be misled
if data for  are considered for insufficiently
long chains. As an example Fig. 1 presents simulation
results for the simple self�avoiding walk (SAW) model
on the simple cubic (sc) lattice, where an attractive
energy  between neighboring occupied sites (repre�
senting the effective monomers of the chain) occurs
and the temperature is chosen as 
which is known to reproduce Theta point conditions
for this model [12]. One can see clearly that the data
for  and  do approach Eq. (3), but for
finite N systematic deviations from Eq. (3) clearly are
visible already for . On the semi�log plot, for
rather short chains one might be tempted to apply a fit
of an exponential decay proportional to exp(–s�b/�p)
to the data for rather large s, but resulting estimates for
�p/�b are not meaningful at all: for the considered
model, the chain is fully flexible, any reasonable esti�
mate for �p/�b that describes the local intrinsic stiff�
ness of the chain should be (i) of order unity (see
Fig. 1a, �p/�b ), and (ii) independent of N. Both
conditions are dramatically violated, of course, if esti�
mates for �p/�b were extracted from fits to an exponen�
tial decay in this way.

Since the intrinsic stiffness of a chain is a local
property of a macromolecule, one might alternatively
try the recipe to either fit Eq. (1) in the regime of small
s to the data, or assume that Eq. (1) holds for s = 1
already and hence

(4)

This recipe works in simple cases, such as the SAW
model where an energy  associated with bond bend�
ing is added (every kink of the walk by 90° on the sc
lattice costs ), see Fig. 2, but it fails for molecules
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with more complex chemical architecture, such as
bottle�brush molecules [13–16]. The dramatic failure
of Eq. (4) for bottle�brush polymers is understood in
terms of their multiscale structure (Fig. 3): The side
chains lead to a stiffness of the backbone on a mesos�
copic scale, even if on the local scale of nearest�neigh�
bor bonds the backbone is still rather flexible. The
question of understanding this stiffening of bottle�
brush polymers because of their grafted linear side
chains [11, 13–38] or grafted branched objects [39–
42] is an issue of longstanding debate in the literature.

Complex polymer architecture is only one out of
many reasons which make the analysis of bond orien�
tational correlations based on Eqs. (1) or (4) problem�
atic. In dilute solutions we expect that a nontrivial
crossover occurs when the solvent quality is marginal,
i.e. close to the Theta point a large size  of “thermal
blobs” [43] exists, such that for values of s along the
backbone of the chain corresponding to distances

 one expects that excluded volume effects are
visible and hence Eq. (2) should hold. For semidilute
solutions [43], on the other hand, in the good solvent
regime the inverse effect occurs: there exists a screen�
ing length  depending on the polymer concentra�
tion c (also called size of “concentration blobs” [43]),
such that excluded volume effects are pronounced for

 but are absent for . Then Eq. (3)
holds for the latter case and Eq. (2) for the former, for
rather flexible chains. If the chains are semiflexible, in
favorable cases (e.g., for simple chemical architecture
of the polymers) we might observe Eq. (1) for

 where  depends on the local intrinsic stiff�
ness of the chain, which we wish to characterize by �p.

Then the question arises whether  is smaller than
any of the other crossover chemical distances (due to
marginal solvent quality, described by a Flory�Huggins
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Fig. 1. (a) Semi�log plot and (b) Log–log plot of  versus s as obtained from Monte Carlo simulations (as described in
[11]) using the pruned�enriched Rosenbluth method (PERM algorithm [12]) for a self�avoiding walk with nearest�neighbor
attraction , under Theta point conditions. N = (1) 6400, (2) 3200, (3) 1600, (4) 800 and (5) 400. The full curve in (a) and straight
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parameter  with  [43, 44], or due to non�
zero c) or not. The conclusion of this discussion is that
the behavior of bond orientational correlations 
is subtle, and not always suitable to obtain straightfor�
wardly information on the intrinsic stiffness of macro�
molecules; as a further caveat we mention that in gen�
eral it is also not true that this correlation depends on
the relative distance  only: it matters also, if
one of the sites is close to a chain end.

Another popular definition is the local persistence
length  defined as [1, 2]

(5)

However, it has been shown by renormalization group
methods that in good solvents one has, for ,

, , so the behavior of  in
the chain interior clearly is unsuitable to conclude
anything about the local stiffness of a chain under
good solvent conditions, and this conclusion has been
corroborated by simulations [11, 17]. Sometimes it has
been argued that a better choice is to take the correla�
tion between the first bond vector and the end�to�end
distance,  [46]. However, since in a macromole�
cule the chemical nature of the end monomer always
differs from inner monomers, one can never expect
that  precisely characterizes the local stiffness of a
linear macromolecule in the inner parts of a chain.

Moreover, since  reflects all the crossovers (due to
“thermal blobs” etc.), [43], as discussed above, it is
premature to expect that  stays unaffected from
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them. We also note that for d = 2 dimensions under
good solvent conditions it has been shown [47] that

 as , so in this case 
clearly is not a useful measure of the intrinsic stiffness
of a chain at all. Since formula (5) is difficult to extract
from any experiments, and inconvenient for simula�
tion studies due to high sampling effort, we shall not
discuss Eq. (5) further in the present paper.

Experimental studies try to extract the persistence
length either from scattering analyses of the single
chain structure factor (e.g. [28, 32, 34–38, 48]) or
from analyses of extension versus force measurements
of stretched chains (e.g. [49–57]). However, the inter�
pretation of the latter experiments must rely on a the�
oretical model of the extension versus force curve.
While this task is simple for ideal random walk models
of polymers [4, 5, 58] and also for semiflexible poly�
mers when excluded volume is neglected [59], so that
the Kratky–Porod (K–P) model [60] of worm�like
chains can be used, it is very difficult (due to multiple
crossovers [61, 62]) if excluded volume effects are
included. These excluded volume effects cause an
intermediate nonlinear variation of the extension ver�
sus force curve (the chain is then a string of “Pincus
blobs” [63]), making the estimation of the persistence
length difficult [62], and this behavior has also been
verified in recent experiments [56, 57]. Since we have
given a recent extensive discussion of this problem
elsewhere [62], we shall not dwell on this problem here
further, and focus on the problem how the persistence
length shows up in the single chain structure factor

. Here the key idea is that the scattering intensity
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Fig. 2. Semi�log plot of  vs. s for a semiflexible version of (a) a SAW model on the sc lattice, cf. text, and (b) the bond�
fluctuation model of bottle�brush polymers under very good solvent conditions [11, 17]. Part (a) refers to the chains of length N =
50000, and several choices of the parameter  =  controlling the chain stiffness, namely  = (1) 0.02, (2) 0.05,

(3) 0.1, (4) 0.2 and (5) 0.4. Using Eq. (4), the straight lines indicate the exponential decay  for the choices of .
Part (b) refers to the case of bottle�brush polymers where every effective monomer of the backbone has one side chain of length

 = 24 grafted to it, and several choices of backbone chain length Nb = (1) 259, (2) 131 and (3) 67. Here  =

 has been extracted from the chain backbone only.
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 at scattering wavenumber q yields information on
the structure of the macromolecule at a length scale

. This problem also is subtle, even in the
framework of simple models (see Fig. 4a, 4b, 4c, 4d)
used for simulations. If  is of the scale of the cross
sectional radius  for the models (a, b, d) or the lat�
tice spacing in (c), local structure on the scale of effec�
tive subunits is revealed: soft (a) versus hard (b) effec�
tive cylinders, hard spheres in (d), but one could also
conceive a chain where soft spheres are jointed, etc.
When one considers semiflexible chains with no
excluded volume, the persistence length  would be

just one half of the step length  in cases (b), (d),
where one then requires a strong bond angle potential
to make these chains semiflexible rather than flexible;

( )S q

λ = π/2 q

λ

csR

p�

K�

however, as emphasized above, such models neglecting
excluded volume completely will inevitably imply
Eq. (1), which is inappropriate for real polymers under
all physically possible conditions. So the information
on chain stiffness, as described by the persistence
length, is hidden in some intermediate range of wave�
numbers. E.g., for the model (c), which will be used
extensively in the rest of the paper (but in d = 3 dimen�
sions, since the case of d = 2 is rather special [62] as
will be discussed below), we need wavenumbers in the

range , where a is the lattice
spacing. The aim of the present paper is to present a
discussion of how one can obtain detailed information
on intrinsic chain stiffness from the gyration radius of
the macromolecules and from the structure factor 
in the suitable intermediate range of wavenumbers q.

The outline of our paper is as follows: in the next
section, we summarize some pertinent theoretical
results on . In the third section, our Monte Carlo
simulation methods are briefly described. In the fourth
section, a comparative discussion of simulation results
for two models is given, the bond fluctuation model of
bottle�brushes (c.f. Fig. 4a), and the self�avoiding walk
model on the simple cubic lattice with variable bend�
ing energy (cf. Fig. 4c). The final section contains our
conclusions.

SOME THEORETICAL RESULTS
ON THE STRUCTURE FACTOR OF ISOLATED 

MACROMOLECULES IN SOLUTION

We consider here a single macromolecule with lin�
ear chain architecture, assuming a sequence of N + 1
(effective) monomeric units at positions , j = 1, 2, …,
N + 1, with effective bond vectors , j =
1, …, N. We have in mind application to standard poly�
mers like polystyrene (disregarding here the scattering
from the side groups that are attached to the backbone
of the chain, see e.g. Rawiso et al. [48] for a discussion
of this problem in an experimental context). We also
have in mind application to the scattering from the
backbone of bottle�brush polymers (this is experimen�
tally directly accessible from neutron scattering [28] if
selective deuteration only of the backbone is used,
while in the case of deuteration of the whole macro�
molecules [32, 34] this information can be inferred
only indirectly). Due to the restriction to “effective
monomeric units” rather than talking about the scat�
tering from individual atoms with the appropriate
scattering lengths, we clearly disregard information on
the scale of the length of an effective bond, but we then
need not discuss experimental problems such as con�
trast factors between the scattering from the macro mol�
ecule and the solvent [48]. The effect of the cross�sec�
tional structure of the chain (finite chain thickness D) is
not explicitly considered as well (experimentally this
problem often is approximated in terms of the Guinier
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In the bond�fluctuation model of Fig. 2, for simplicity no
chemical difference between backbone and monomer was
considered, so  =  was chosen. The “microscopic”

contour length of the backbone then is  = , if the

backbone has  bonds. On a coarse�grained level the bot�
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sectional radius)  and contour length  < , which is

locally straight on the scale of the persistence length p.
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[73] approximation, writing the observed scattering

intensity , with  some
“effective” cross�sectional radius of the chain [48]).
Thus only wavenumbers  are physically mean�
ingful: in the case of the lattice model, Fig. 4c, D = a, of
course. The structure factor then is defined as

(6)

and does not depend on the direction of the scattering
wavevector q. In d = 3 dimensions, it has the small q
expansion

(7)

where the mean square gyration radius  enters
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Other characteristic lengths of the chain molecule are
the mean square end�to�end distance

(9)

and the contour length

(10)

but neither of these lengths can be inferred directly
from the scattering. For chains in dense melts or in
dilute solutions under Theta conditions one typically
uses an ideal chain approximation (disregarding, e.g.,
logarithmic corrections at the Theta point [3, 43, 64])

(11)

with  a characteristic constant [1–5]. In this case
one introduces an equivalent freely jointed Kuhn

chain with the same contour length, ,
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24, projected into the xy�plane (this model is discussed in more detail in Section “Monte Carlo Simulation Methods and Mod�
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where  is the number of equivalent Kuhn segments
and  their length,

(12)

For a semiflexible worm�like chain with 
Eq. (1) holds. However, since under Theta conditions
(and melts) formula (12) is approximately true, one
finds

(13)

if the relation  then simply is
taken as an alternative definition of a persistence
length. For the simple SAW model of Fig. 1 this gives

 lattice spacings: but as expected, using this
value in the simple exponential  one
does not obtain a description of the actual data in
Fig. 1 on the basis of this description, because the
actual behavior of bond orientational correlations is a
power law decay, Eq. (3). Note, however, that the rela�
tion  makes only sense for semiflexible

chains for which  at the Theta point, which is
not the case for the model of Fig. 1.

In the case of good solvent conditions excluded
volume interactions invalidate formula (11) and one
finds instead [3, 7, 43, 64]

(14)

with [7]  instead of the mean field value
 that appears in formula (13). Note that we

have defined the prefactors of the relations  ∝ N2ν,

 in formula (14) in complete analogy with
formula (13) [11], but we shall see shortly that the

lengths ,  do not play the role of a persistence
length that describes the local intrinsic stiffness of the
chains.

For a better understanding of this problem, in par�
ticular when  is very large, it is of interest to consider
the crossover from the rod limit (that occurs for

, i.e. ) to the Gaussian coil limit. This
problem can be worked out easily for various models of
discrete chains [1–5] as well as for the Kratky–Porod
model. Describing the chain by a continuous curve

,  being the curvilinear coordinate along the
chain contour, the potential energy of a particular
conformation of the chain is given by

(15)

In Eq. (15) it is clearly assumed that  is a constant,
independent of the contour length L (or chain length
N, respectively), and the same holds for p. The phys�
ical interpretation of  is in terms of the local bend�
ing stiffness of the chain. Eq. (15) can be used for
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arbitrary values of the ratio , and one can
show [60, 65]
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One immediately recognizes that for 
one recovers Eq. (13), while in the opposite limit the
results for rigid rods of length L are obtained,

(18)

However, the generalization of these results to the
good solvent case, where excluded volume matters, is
not straightforward. Of course, for  excluded
volume is irrelevant, Eq. (18) remains valid. It turns
out, however, that in d =2 Eqs. (16), (17) are not valid
at all, one has no regime of Gaussian chain behavior as
described in Eq. (13), and rather near  a cross�
over from rigid rod behavior to the behavior of two�
dimensional self�avoiding walks occurs [62, 66]
(ν = 3/4)

(19)

For d = 3, however, Eqs. (16), (17) for semiflexible chains

remain valid for  where  → ∞) → ∞.

This crossover contour length  has first been
estimated by a Flory argument as [62, 67, 68]

(20)

Note, however, that Flory arguments imply  in
d = 3 (rather than the precise value  [7]) and
cannot predict any prefactors in Eq. (20); they are
based on a crude balancing of the elastic energy of
chain stretching (taken as Gaussian) and a mean field
estimate of binary interactions: having in mind a
model description as in Fig. 4b, one takes the second
virial coefficient proportional to the rod volume on the

scale of the persistence length, , and in this
way the effective chain diameter D enters the esti�
mated Eq. (20) [62, 67, 68]. Numerical results, how�

ever, seem to suggest that rather [62] 
with an exponent .

In any case, the conclusion of this discussion is that
for semiflexible chains in d = 3 the mean square radii
as a function of the reduced contour length 
exhibit two successive crossovers, from rods to Gauss�
ian coils near  and from Gaussian coils to swol�

len chains (described by Eq. (14)) near . These
two crossovers have in fact been seen nicely in both
experiment [69] and computer simulation of the
model of Fig. 4c [62, 70, 71].
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We now turn to a discussion how these behaviors
show up in the scattering function  at larger wave�
numbers, when Eq. (7) does not hold. In the regime

, when the chain behaves like a rigid rod, one
can work out the scattering function in the continuum
limit as [72]

(21)

while for a discrete chain of N + 1 scatterers along a
rod of length  one has

(22)

It is noteworthy to recall that the large q�limit of
Eq. (21) contains information on the contour length L
and shows a 1/q decay,

(23)
In the Gaussian regime, that applies for chain lengths

that correspond to  in d = 3, the struc�
ture factor  is described by the well�known Debye
function,

(24)

For small X, Eq. (24) reduces to Eq. (7), as it must be,
while for large X Eq. (24) yields  =

. While for flexible chains at the Theta

point Eq. (24) is expected to hold for large q, up to 
of order unity where effects due to the local structure
of monomeric units comes into play, the validity of
Eq. (24) for semiflexible chains is much more
restricted, since then the rod to coil crossover matters
also with respect to the intrinsic structure of these
polymers, as it is probed by . In oder to discuss this
problem, it is useful to cast  in the representation
of the so�called Kratky plot [73],  is plotted as a
function of . For rigid rods, one simply would
have a linear increase of  with Y for small Y,
which smoothly crosses over near Y = 1 to a flat pla�
teau (which has the value , cf. Eq. (23)). For chains
where intermonomer distances follow Gaussian distri�
butions, at all scales, the Kratky plot exhibits a maxi�
mum at , and then a crossover to a decay propor�

tional to  occurs. To locate this maximum, it is

convenient to write  as 

as a function of , noting that the maximum occurs at
, i.e. the Kratky plot has its maximum at

Ymax ≈ , and the height of this maximum

also is of order . Using now Eq. (13) in the
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form , we recognize that the maximum
of the Kratky plot occurs at

(25)

and also the height of this maximum scales propor�

tional to . However, while for flexible chains
under Theta conditions (for which  and  are of the
same order), one observes on the Kratky plot for

 a decay , for semiflexible chains
a crossover from this decay to the plateau value 
(given by Eq. (23)) is expected. This is also true for
semiflexible chains under good solvent conditions, if
the persistence length  is large enough so that

 < , and hence excluded volume
effects still can be ignored. The description of this
decay of the structure factor from its peak towards this
so�called “Holtzer plateau” [74] has been a long�
standing problem in the literature [75–96]. Only in the
limit  a simple explicit result derived from
Eq. (15) is available [80],

(26)

but we should keep in mind that the limit  is
well�defined for a simple mathematical continuum
model such as Eq. (15), while for real chains (and for
simulations) the regime  is not at all mean�

ingful. Although the decay , that Eq. (26)
predicts for , is compatible with the power law
decay of the Debye function, Eq. (24), for large q

(27)

the prefactor in Eq. (27) is by a factor of 9 larger than

the prefactor of the  term in Eq. (26), so both Eqs.
(24) and (26) are inconsistent with each other. This
inconsistency is due to the fact that Eq. (26) is only
accurate for , it should not be used for small

. After many less successful attempts, Kholodenko
[86–89] achieved a description which interpolates
between the limiting cases of rigid rods and of Gauss�
ian coils, capturing the scattering law of both limits
exactly, but deviating from the exact result (“exact”
refers to the Hamiltonian Eq. (15), so no excluded vol�
ume effects are being accounted for) in the intermedi�
ate regime; this exact behavior is known from system�
atic expansions [94–96] whose use requires heavy
numerical work, and will not be considered here.
Recently we have shown [97] that the exact method of
Stepanow [95, 96] deviates only very little from the
approximation of Kholodenko [89], which can be cast
in the form

(28)
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where

(29)

with

(30)

We stress that all these analytical results Eqs. (11)–
(13), (16), (17), (24)–(30) are only applicable if
excluded volume effects are negligible. When we con�
sider very long semiflexible chains, such that  =

 > , we expect that the Gaussian results

 =  =  and  =  = 

hold roughly up to , and there a smooth cross�
over to the excluded volume power laws, Eq, (14),
occurs. We first note that hence  corresponds to

a crossover radius  of the chains as well,  =

 = . Omitting factors of order unity, we
conclude

(31)

where in the last step Eq. (20) was used. For
 we hence expect, invoking the fact that the

crossover in the linear dimensions for  should
be smooth,

(32)

where in the last step the Flory estimate  was
used (recall that in Eq. (31) the exponent  defined
above has also been put to its Flory value, . In

terms of N and , Eq. (32) becomes  ∝

. In terms of the constant  defined in

Eq. (14), we would have .

The consequences for the scattering function 
are now clear, since the gyration radius shows the same

scaling behavior as , apart from prefactors of
order unity. Hence we have

(33)

and only for  we can expect to see
the nontrivial power law
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while at  defined from  we have a smooth

crossover to the standard Debye law, . Near
 then a smooth crossover to the rod�like scat�

tering law  occurs. So the three power laws

for the radii as a function of chain length 

in the rod regime,  in the regime of Gaussian

coils, and  in the regime of swollen coils) find
their counterpart in the scattering function, if N is
large enough. The schematic Fig. 5 illustrates these

crossover behaviors. The three regimes of the  ver�

sus N (or , respectively) curve, namely rods, Gauss�
ian coils, and swollen coils (Fig. 5a) appear in the 
vs. q curve (or  vs. qL�curve, in the Kratky rep�
resentation) in inverse order: the rods occur for large q,
then occurs a first crossover to Gaussian coils, and a
second crossover to swollen coils. Of course, if the
chains are very stiff but not extremely long, it may be

that the regime  is not reached: then in part (a)
the swollen coil regime is absent, and in part (b) as
well: then the K–P model can describe  fully,
including the regime of the maximum of the Kratky
plot. Since the crossovers are smooth, it may be diffi�
cult to identify the different power laws in Fig. 5b in
practice, however.

We also note that the different regimes are also only
well separated if both  is very large (in comparison to

) and also  needs to be very large. If  is very
large, but D also (as in the case of bottle�brush poly�
mers [11, 17, 70, 71]) then the regime of Gaussian
coils disappears from both Fig. 5a and 5b, and the
K⎯P model loses its applicability.

MONTE CARLO SIMULATION
METHODS AND MODELS

In the present work, we focus on lattice models
exclusively, because for them particularly efficient
simulation methods exist; pertinent work on coarse�
grained off lattice models of bottle�brush polymers
studied in Molecular Dynamics methods for variable
solvent quality [98] will be mentioned in the conclu�
sions section.

The archetypical lattice model of a polymer is the
self�avoiding walk on the simple cubic lattice [99].
Each effective monomer takes a single lattice site, the
length of an effective bond is the lattice spacing, so
adjacent monomers along the chain are nearest neigh�
bors on the lattice. Double occupancy of lattice sites
being forbidden, excluded volume interactions under
very good solvent conditions are modelled.

The properties of this basic model are very well
established [100]. Solvent quality can be included as a
variable into this model implicitly, by allowing for an
(attractive) energy  that is won if two monomers (that
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are not nearest neighbors along the chemical sequence
of the chain) are nearest neighbors on the lattice. One
then finds that the Theta point, at which (apart from
logarithmic corrections [3, 64]) the mean square

radius  scales like a Gaussian chain, ,

occurs for  =  [12]. On the
other hand, if one introduces an energy cost  when�
ever the walk makes a turn by  (of course, reversals
by 180° are forbidden, because of the excluded volume
constraint), one can vary the local intrinsic stiffness of
the chain (cf. Fig. 4c, which illustrates this model for
d = 2 dimensions). For  one
recovers the standard SAW, while the limit 
corresponds to rigid straight rods. Following up on our
previous work [11, 62, 70, 71, 97], we shall focus on
this model in the present paper, applying the pruned�
enriched Rosenbluth method (PERM) [12, 101].
PERM is a biased chain growth algorithm with resam�
pling and allows to get accurate data up to N = 50000
for this model [70, 71], PERM yields a direct estimate
of the partition function of a self�avoiding walk with N
steps and  90°�bends

(35)

where  is the number of configurations of
SAW’s with N bonds and a number  of 
turns. It would be interesting to extend the approach

2R ∝
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from athermal semiflexible chains (q =  = 1)
to semiflexible chains in solvents of variable quality
(q > 1), which would mean an estimation of

(36)

with  the number of nonbonded nearest neighbor
pairs of monomers in the considered configuration.
However, we are not aware of any study of the full
problem, Eq. (36), yet.

Sampling suitable data on the monomer coordi�
nates of the configurations that contribute to the par�
tition function Eq. (35), one can obtain reasonably
accurate estimates of the radii and of , as defined
in previous section.

The second model that is studied here is the bond
fluctuation model of bottle�brush polymers. In the
bond fluctuation model [102–104], each effective
monomer blocks all eight corners of the elementary
cube of the simple cubic lattice from further occu�
pancy. Two successive monomers along a chain are

connected by a bond vector , chosen from the set
, , , , ,
, including also all permutations. Originally

configurations were relaxed by an algorithm where a
monomer of the chain is chosen at random, and one
also randomly chooses one of the six directions ( ,

, or ), respectively, and attempts to move the
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Fig. 5. (a) Schematic plot of the normalized mean square radius  versus  (apart from a factor of 2 this is
the number of Kuhn segments), on log–log scales. The Kratky–Porod (K–P) model describes the crossover from rods

( ) to Gaussian coils  = . At  = , according to the Flory theory a crossover to swollen coils occurs,

where  with  (according to the Flory theory). (b) Schematic Kratky plot of the structure factor of a semiflexible

polymer,  plotted vs. qL, on log–log scales. Four regimes occur: in the Guinier�regime, ; it ends at

the maximum of the Kratky plot, which occurs roughly at  (constants of order unity being ignored throughout).

For very large L then a regime of swollen coils with  is observed, until near  a crossover to Gaussian coil behav�

ior occurs (R* ≈ ). In the Gaussian coil regime , until at  of order unity the crossover to the rod�like regime
occurs (  = ). Only the latter two regimes are captured by the Kratky–Porod model.
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monomers by one lattice unit in the chosen direction.
Of course, the move is accepted only if it does not vio�
late excluded volume or bond length constraints. This
move is called the “L6” move. Recently Wittmer et al.
[9] provided evidence that a much faster algorithm
results if one allows monomers to move to one of the
26 nearest and next nearest neighbor sites surrounding
a monomer. With this “L26” move bonds can cross
one another, and while such moves do not correspond
to a real dynamics of macromolecules, it leads to a
much faster exploration of phase space and hence a
faster equilibration [105].

This model for linear polymers is generalized to the
bottle�brush architecture by adding side chains at reg�
ular spacings  (which must be integer, e.g. for

 a side chain is attached to every second mono�
mer of the backbone; the densest packing that is stud�
ied here is ). The side chains have chain length

, and are described by the bond fluctuation model
as well. Furthermore, one more monomer is added to
each chain end, to clearly identify the latter. The num�
ber  of monomers that constitute the backbone then
is related to the number of side chains  via Nb =

 and the total number of monomers of the
bottle�brush polymer is . For the sake
of computational efficiency, the L26 move is com�
bined with Pivot moves [100]. We refer to [17, 105] for
implementation details.

As an example for well�equilibrated bottle�brush
polymers as studied in [11, 17, 70, 71] and in the
present paper, Fig. 6a shows selected snapshot pictures
for side chain length  = 24 and various backbone
chain lengths Nb. According to the visual impression,
it seems rather natural to describe these bottle�brush
polymers by the worm�like chain model, but as we
shall see below, this conclusion would be totally mis�
leading. Experimentalists often are led to a similar
conclusion from microscope images of semiflexible
polymers (e.g. DNA) adsorbed at a substrate (see e.g.
[106–108]). However, such a conclusion is misleading
for several reasons: (i) depending on the speed of
adsorption of the polymer on the substrate, the con�
formation of the adsorbed polymer may be a frozen
“projection” of the three�dimensional coil, which did
not have enough time to relax to the two�dimensional
equilibrium. (ii) In d = 2 dimensions, excluded vol�
ume forces render the Kratky–Porod (K–P) model of
wormlike chains inapplicable [62, 66], one encounters
a direct crossover from the rod regime to two�dimen�
sional self�avoiding walk behavior (cf. Eq. (19)) when
the contour length L exceeds the persistence length

. One also should note that the persistence length of
a polymer in d = 2 dimensions is not at all identical to
the persistence length of the same polymer in d = 3
dimensions [62, 66]. The experimental work (see, e.g.,
[106–108]) seems to be unaware of these problems
and the resulting conclusions from this work need to

σ/1
σ = /1 2

σ = 1

sN

bN

cn
− σ +/( 1) 3cn

= +tot b c sN N n N
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p�

be considered with care. It is also interesting to note
that the snapshot pictures of the semiflexible SAW
model (Fig. 6c) do not yield an immediate visual
impression that the chains can be described by the
K⎯P model, because of the 90° kinks; however, as we
shall see, despite this difference of the local structure
the statistical properties on the mesoscopic length
scales are well described by the K–P model, for

 and  less than . Thus, we argue that
on the basis of the inspection of AFM images of semi�
flexible polymers one should be very careful on draw�
ing conclusions which model is appropriate to
describe these polymers.

SIMULATION RESULTS

Mean Square Gyration Radii and Their Analysis

We start with a description of our results for the

mean square gyration radius  of the semiflexible
SAW model (similar data for the mean square end�to�

end distance  of this model have already been pre�
sented elsewhere [70, 71]), Fig. 7. We clearly see that
there are three regimes (Fig. 7a): in the chosen nor�
malization where we divide out the asymptotic power

law , we first have a regime where

 increases with . For small  this is

interpreted as a rod�like regime; for  the
chains are still too flexible, however, so a strictly rod�
like behavior cannot yet be seen. Then a maximum

occurs, and the ratio  decreases, before it
settles down, after a second smooth crossover at a hor�
izontal plateau (which according to Eq. (14) defines

the value ). While this plateau for  is (pre�
sumably) actually reached for N = 50000, the data also
indicate that for  even chains of length N =
50000 are at least an order of magnitude too short to
allow a direct convincing estimation of the amplitude

value . On the other hand, even for 
(where we estimate from Eq. (4) that the persistence
length  is as large as  [62]) the slope of the
data in the intermediate regime has not fully reached
the theoretical value , the slope of the data in
Fig. 7a is still affected by crossover effects: the gradual
crossover away from the Gaussian plateau towards the
excluded volume�dominated behavior already starts
when the gradual crossover from the rod�like regime to
the Gaussian regime ends. Thus, even stiffer chains
would be required to have a fully developed Gaussian
behavior of the gyration radius. Figure 7b now
attempts a scaling plot, where the persistence length
estimates extracted from Eq. (4) were used to rescale

 in the K–P model representation (cf. Eq. (17)).
It is evident that the rod�like regime and the onset of
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the crossover towards the K–P plateau are very well
described by Eq. (17). For , of course, there
is basically a direct crossover from the rod�like
regime to the excluded volume dominated regime,
but even then it is evident that the curves do not

≥ .0 2bq
superimpose on a master curve, as they do in d = 2
dimensions [62, 66], but rather splay out systemati�
cally, and the smaller  becomes (and hence the
larger  becomes) the more the data still are slightly
above the K–P plateau.

bq

p�

(a)

(b)

1 3

2 4

1 3

2 4

(c)

1 2

Fig. 6. (a) Snapshot pictures of bottle�brush polymers as described by the bond�fluctuation model, for side chain length  = 24,
and backbone chain length Nb = (1) 99, (2) 195, (3) 387, and (4) 643. (b) Same as (a), but displaying the backbone of these bottle�

brush polymers (c) Snapshot pictures of the SAW model with N = 25600 and two choices of qb,  = (1) 0.05 and (2) 0.005.
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Using the estimates for  extracted from the

analysis of  for this model in our previous work

[70, 71], the data for  do collapse on a simple
straight line on the log–log plot, however (Fig. 7c).

*( )p bn q
2R

*
p pn n�

For  near  the curves splay out, the master curve
describing this second crossover from the K–P plateau
to the excluded volume power law emerges as an enve�
lope of the curves for individual values of  (which fall
increasingly below the master curve in the crossover
region the larger  is). Of course,  can�
not produce a scaling of the crossover towards the rod�
behavior, there the curves must splay out, irrespective
of how small  is, but the deviation of the data from
the horizontal K–P plateau moves more and more to
the left of the plot the smaller  becomes.

Recalling that for the semiflexible SAW model the
effective chain thickness D simply is , the

Flory theory, Eq. (20), simply predicts ; ,
while the rod to Gaussian coil behavior occurs around

, of course. Qualitatively, our data are in good
agreement with these predictions, but not quantita�

tively: This is illustrated in Fig. 8, where  and  are
plotted in log–log form versus . It is seen that
instead of the theoretical value  an exponent

 is observed. Now it is clear that Flory argu�
ments imply also  instead of  [7], but
this small difference cannot account for the large dis�
crepancy encountered here. It would be desirable to
study much larger values of N to confirm whether this
discrepancy is a real effect (or our estimation of the

crossover master curves in Fig. 7c for  (and for

 in [71]) are systematically off). Thus, more work
is still needed to fully clarify the situation.

It turns out that the behavior of our model for the
bottle�brush polymers (which can describe actual
scattering data for bottle�brush polymers very well, as
demonstrated by Hsu et al. [17]) is much simpler: a

plot of the mean square gyration radius  of the
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backbone versus backbone chain length , for differ�

ent side chain lengths , Fig. 9a, normalized by 
reveals a monotonic increase towards a plateau, there
is not the slightest indication of a regime where the

ratio  decreases, unlike the behavior of the

semiflexible SAW (Fig. 7a). Thus, there is no evidence
whatsoever for a Gaussian K–P plateau for this model.

But the increase of the plateau value  with increas�

ing side chain length  does indicate that the chain

bN

sN ν2
bN

ν/2 2
,g b bR N

gR
p�

sN

considerably stiffens, as  increases. However, this
stiffening goes along with an increase in the effective
chain thickness D. The latter can be estimated from
the radial density profile (Fig. 10) by identifying the
diameter D of the bottle�brush as D =

. Hsu et al. [70, 71] suggested to

coarse�grain the bottle�brush along the backbone,
dividing it into “blobs” along the chemical sequence
of the backbone. The chemical distance  along the
backbone between its exit and entry points into a blob
is found from a simple construction which assumes
that the blobs are essentially spherical, so the geomet�
rical distance  between exit and entry points of
the backbone should be equal to D. Recording 
for arbitrary s, Fig. 10a, using the equation  =

D allows us to simply read off the numbers  for the
choices of , as illustrated in Fig. 10. The success of
the rescaling shown in Fig. 9b shows that the persis�
tence length  of bottle�brushes simply is propor�
tional to D. We also recognize that the asymptotic
SAW�like behavior (where the horizontal plateau in
Fig. 9 is reached) only occurs for about .
Comparing this behavior to Fig. 7b, we see that there
the power law (for ) or K–P plateau (for small

) is reached for , Roughly, these
successive blobs then are equivalent to one persistence
length. This comparison suggests that for the bottle�

brushes we should identify  with , i.e. the

number of monomers along the backbone corre�
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sponding to one persistence length is , 15, 18

and 21 for , 12, 18 and 24, respectively. Noting
that the average bond length  in the bond fluctuation

model is , we would obtain persistence lengths

, 27, 34 and 41 for , 12, 18

and 24, respectively. The result that  is of the
same order as D irrespective of the side chain length
agrees with early theoretical predictions [18, 19] but is
at variance with the result of Fredrickson [20] who
predicted a much faster increase of  with . How�
ever, Feuz et al. [30] pointed out that the result of Fre�
drickson [20] can only be expected to hold for
extremely long side chains, such as . Such
long side chains are neither relevant for simulations
nor for experiment, however. We stress that the range
of  accessible to simulations (Figs. 9, 10) nicely cor�
responds to the range of  studied experimentally
[28, 32–38].

The mapping performed in Fig. 9 means that we
have coarse�grained the bottle�brush polymers
(Fig. 4a) into an effective bead�spring model (Fig. 4d).
If this mapping is taken literally, it can also be used to
obtain the resulting coarse�grained contour length 
(Fig. 3) as

(37)
Instead of the “chemical” contour length L =

 a reduced length is found, namely ≈

=blob
3 9
2

s

= 6sN
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= .2 7b�
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3( ) 17
2
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= 1000sN
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≈ 2773b bN � ccL

1989, 1824, 1963 and 2016, for , 12, 18 and 24,
respectively. This means that the coarse�grained con�
tour length  is about 30% smaller than the “chemi�
cal” contour length in this model.

Analysis of the Structure Factor

We now turn to the structure factor of the semiflex�
ible SAW model presenting Kratky plots for two con�
tour lengths, L = 400 and L = 25600, in Fig. 11. As
expected, cf. Fig. 5, one first has a linear increase with
qL, then a round maximum followed by a decrease
which then gradually settles down at a horizontal pla�
teau, that again is compatible with the theoretical pre�
diction, π.

While for the short chain length (L = 400) the
agreement with the theoretical prediction (due to
Kholodenko [89], Eqs. (28)–(30), which were found
[97] to be numerically almost indistinguishable from
the exact result provided by Stepanow [95, 96]) is
almost perfect, for the very long chains (L = 25600) we
note systematic deviations between Kholodenko’s
prediction [89] and the data for relatively large  near
the maximum of the Kratky plot. This must be
expected, since the input in the Kholodenko formula
is just the persistence length  {which we have
extracted from Eq. (4)} and implicit in the theory is the

Gaussian prediction for , namely 

{Eq. (13)}. As seen in Fig. 7, for  already rather
clear deviations from this result occur for N = 25600,
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while for small N such as N = 400 such deviations still
are rather small. In contrast, in the Debye formula the

correct (as observed) value of  was used as an
input: then deviations from the Debye function are
only seen near the region where the crossover to

 starts to set in at large q (the Debye func�
tion does not describe this crossover at all). Since the
shape of the Kholodenko function always is rather
similar to the actual function, it is obvious that one
always can fit the data to the Kholodenko function, if

 is not known: however, the resulting fitted persis�
tence length will be systematically too large, if
excluded volume effects are present as shown in
Fig. 11c.

To elucidate the significance of excluded volume
on the structure factor further, we show a magnifica�
tion of the region near the maximum for , 0.2,
and 0.005 in Fig. 12. It is seen that the identification of
the two power laws suggested for the decay of  in
the region beyond the maximum of the Kratky plot is
rather subtle. In particular, for rather stiff chains the
crossover to the rod�like scattering sets in rather early,
so for the clear identification of power laws the avail�
able range of q simply is not large enough. This very
gradual crossover between the three different regimes
(rods to Gaussian coils to coils swollen by the excluded
volume interaction) complicates the data analysis, if
only a restricted range of parameters (such as the chain
length N and the wavenumber q) can be investigated.

The smoothness of the crossover also becomes evi�
dent when one studies the dependence of the position
of the peak in the Kratky�plot (and its height) on the
persistence length (Fig. 13). Typically, the data fall
neither in the regime where strict Gaussian behavior
occurs, nor in the regime where excluded volume scal�
ing is fully developed.

Despite all these difficulties due to the gradual
crossovers, the semiflexible SAW nevertheless is a rel�

2
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= π( )qLS q
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atively simple case, since one knows that here
, and  can be varied over a wide range by

variation of , keeping all other parameters constant,
and moreover  can be estimated precisely from the
initial decay of the bond vector autocorrelation func�
tion (or, equivalently, from Eq. (4)). For the second
model studied here, bottle�brush polymers under good
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. In (a)(b) several choices of  are
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and (5) 0.005. The scattering functions of a rigid rod and
the Debye function are included, as well as the prediction
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Kholodenko formula the persistence length (estimated
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solvent conditions, we have seen that varying the side
chain length  we change D and  together, and also
the coarse�grained contour length  is significantly

smaller than the chemical contour length , and it
is nontrivial to estimate  accurately.

In previous work [11, 17] we have already consid�
ered the decomposition of the total scattering function
of bottle�brush polymers into the scattering from the
backbone and from the side chains. This analysis
which has the advantage that it provides a direct link to

sN p�

ccL

b bN �

ccL

corresponding experiments [32, 33] will not be
addressed here, but we rather focus on the scattering
function of the backbone only. Figure 14 shows Kratky
plots for relatively short backbone chain lengths
(  and 259, respectively). One recognizes that

for short side chain lengths ( )  does
not settle down to a well�defined “Holtzer Plateau”, at
least not within the available window of wavenumbers.
Clearly, also the range over which  decays from
the maximum to the horizontal part that appears for
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 = 24 and 48 is rather small, and does not warrant
any analysis in terms of the power laws suggested in
Fig. 5b. This mismatch between the actual plateau val�
ues (for Ns = 24 and 48), which are close to 4, and the
theoretical value π can be attributed to reduction of 
in comparison to  since the actual orientations of
the backbone vectors are not strictly aligned with the
coarse�grained backbone (Fig. 4), as is also evident

from the fact that  (Fig. 2b) is already
reduced to about 0.7, but the further decrease of

 is rather slow, due to the side chain
induced stiffening of the backbone on mesoscopic
scales. The ratio at about  is compatible with the
reduction of  by about 30% relative to L noted pre�
viously, so gratifyingly our analysis is internally consis�
tent.

Figure 15 shows plots of  vs. q for fixed side
chain length  = 24 but different backbone chain
lengths. In this plot, an attempt is made to locate an
onset wavenumber q* for the Holtzer plateau, in terms
of a fit of two intersection straight lines. Of course, the
data are smooth and the onset of the Holtzer plateau
does not occur sharply but rather gradual; thus q* can
be estimated only with considerable error (for large 
we estimate , while for  the
estimate rather is  [11]). Now the
question is, how can one relate  explicitly to the per�
sistence length? Should one take , or  =

sN

ccL
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1/q*? Lecommandoux et al. [28] who were the first to
try such a method suggested the relation ,
but we see little theoretical support for this choice
either.

It would be advantageous if one could rely on the
des Cloizeaux relation, Eq, (26), which suggests to
plot  vs.  for : one should find a straight
line, the intercept at the ordinate should yield , the
slope of the straight line should yield .

However, when one tests this method for the semi�
flexible SAW, one finds that the data that can be fitted
to a straight line are at  rather than at ,
and the slope of the straight line disagrees with the pre�
diction (Fig. 16a). Thus, it is not really a big surprise
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515, (6) 771, and (7) 1027. The point of intersection
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that this does not work well for our bottle�brush model
either (Fig. 16b).

An interesting alternative of data analysis is, how�
ever, a fit of the Kholodenko Eqs. {formulas (28)–
(30)} to the structure factor, using both  and  as
individual adjustable parameters for each value of 
(Fig. 17). First of all, one sees that the Kholodenko
structure factor provides a good fit in all cases, and the
result for the coarse�grained contour length, Lcc =

, even is physically very reasonable: we have
obtained that there is a 30% reduction of the  in
comparison to the “chemical” contour length L =

 in the previous subsection.
However, the problem of this fit is the unphysical

behavior of the persistence length : since we know
that the Kholodenko [89] approach involves necessar�

ily the Gaussian result  =  but we know that

for our model  and , the only
way to reconcile these results is a persistence length

scaling as , and this is what we see in
Fig. 17c. Thus, despite the seemingly good fit
(Fig. 17a) and good results for  (Fig. 17b), the
results for the persistence lengths are completely unre�
liable!

In order to apply this approach, one must make
sure that one works with data in the Gaussian regime,
and this is not at all the case for bottle�brush polymers
under good solvent conditions.

CONCLUSIONS

In this paper, we have focused on the behavior of
single semiflexible polymers under very good solvent
conditions, considering how the chain stiffness affects
polymer properties such as the mean square gyration
radius, the structure factor, etc. Our analysis focused
on the question how the variation of chain stiffness
affects these properties, and hence one can infer from
these properties a characterization of the “intrinsic
stiffness” of the polymer chain in terms of the so�
called “persistence length”.

We have contrasted two models, the self�avoiding
walk on the simple cubic lattice where a bending
energy  causes pronounced stiffening of the polymer
when , and a lattice model for bottle�brush
polymers, where backbone stiffening is caused by
increasing the length of side chains. These two models
constitute two quite distinct limiting cases: in the SAW
model, increase of  causes stiffening without
any effect on the local thickness of the chain, which
strictly remains the lattice spacing. For the bond fluc�
tuation model of polymer brushes, however, we have
found that backbone stiffening is caused by the thick�
ness of the (coarse�grained) worm�like chain, the per�
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sistence length increases proportional to the cross�
sectional diameter of the bottle�brush.

Since snapshot pictures (Fig. 6) suggest that the
bottle�brush polymers (or their backbones, respec�
tively) resemble worm�like chains (and the same con�
clusion is often drawn from AFM pictures or electron
micrographs of actual polymers), the use of the
Kratky–Porod worm�like chain model has become
very popular. However, we demonstrate here that for
bottle�brush polymers this model yields very mislead�
ing results: since the mean square gyration radii of bot�
tle�brushes are found to scale with their contour

length L as , the Kratky–Porod (K–P)

result  =  invariably causes a spurious con�
tour length dependence of the persistence length when

fit to the data, namely  as .
Although the fits of the K–P model look almost per�
fect (Fig. 17a) and numbers for L resulting for the con�
tour length from the fit are rather reasonable, the result
for “the” persistence length simply is meaningless!

Already in our earlier papers we have shown that
similar ambiguous results for the persistence length are
gotten when orientational correlations along the chain
backbone are analyzed, or the projection of bond vec�
tors on the end�to�end distance are studied (although
the resulting numbers for  seem to be somewhat
smaller than those shown in Fig. 17c). The large q�
behavior of the structure factor  yields a qualita�
tively more reasonable behavior, but a unique choice
for a well�defined persistence length as a measure for
intrinsic chain stiffness does not emerge. All these dif�
ficulties in understanding the stiffness of bottle�brush
polymers in good solvents are intimately linked to the
fact that one can coarse�grain into some effective self�
avoiding walk model (Figs. 9, 10), and no regime exists
where the polymers resemble Gaussian chains. Of
course, this fact is different if we would consider bot�
tle�brush polymers in Theta�solvents (as done by The�

odorakis et al. [98]), since then  and the use
of the K–P model is qualitatively reasonable. Another
interesting possibility to extract a persistence length of
bottle brushes would be an attempt to estimate an
effective bending modulus. One would have to esti�
mate the coarse�grained free energy of bent versus
non�bent configurations of suitable pieces of bottle�
brush polymers, which in principle can be deduced
from sampling suitable angular distribution functions
for such sub�chains. However, the implementation of
such an approach is not straightforward and has not
been attempted.

We have found that the situation in some respects is
simpler if one considers polymers where the stiffness
can be enhanced while keeping their thickness con�
stant, as modeled by a semiflexible extension of the
standard SAW model. Then an intermediate Gauss�
ian�like behavior of the mean square radii and the

ν

∝
2 2
gR L

2
gR /3pL�

ν−

∝ → ∞
2 1( )p L L� → ∞L

( )p bN�

( )S q

∝
2
gR L

structure factor emerges, and this can be understood
theoretically (Fig. 5), at least in qualitative terms.
While still the asymptotic decay of bond vector auto�
correlation functions is unsuitable to infer anything
about the intrinsic stiffness (due to the fact that the
asymptotic decay is not exponential but rather
described by a power law), in favorable cases the initial
decay of these autocorrelation functions provided use�
ful estimates of the persistence length, which then can
be used as input in the K–P model. While still some
problems occur to understand for very long chains the
crossover between the K–P model and the ultimate
SAW behavior quantitatively, in qualitative terms the
situation is understood. We emphasize, however, that
all these comments only address the three�dimen�
sional case: in d = 2 dimensions, the K–P model does
not work at all, and one has a direct crossover from
rod�like polymers to SAW’s.

It is hoped that our analysis will help experimental�
ists with a proper interpretation of their data on semi�
flexible polymers.
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