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One-dimensional flexible objects are abundant in physics, from polymers to vortex lines to defect lines

and many more. These objects structure their environment and it is natural to assume that the influence

these objects exert on their environment depends on the distance from the line object. But how should this

be defined? We argue here that there is an intrinsic length scale along the undulating line that is a measure

of its stiffness (i.e., orientational persistence), which yields a natural way of defining the variation of

physical properties normal to the undulating line. We exemplify how this normal variation can be

determined from a computer simulation for the case of a so-called bottle-brush polymer, where side chains

are grafted onto a flexible backbone.
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One-dimensional objects are characteristic for the phys-
ics of quite diverse phenomena. Most prominent may be
linear polymers [1,2], be they synthetic ones or biopoly-
mers [3], and vortex matter in high Tc superconductors
[4,5]. But line objects also determine the characteristics of
the structure of (poly-)crystals in the form of defect lines
[6] and they were argued to determine the structure of
metallic glasses [7] in the form of disclination lines. This
list, of course, makes no claim to completeness. In all
cases, however, physical properties around the line objects
will change depending on distance to the object. For poly-
electrolyte chains like, e.g., DNA, one is for instance
interested in the distribution of counterions around the
chain [8] and the phenomenon of counterion condensation
on the (linear) chain. In the case of vortex lines, the order
parameter distribution around these lines is important [9],
and there exists also a rich phenomenology of interactions
between vortex matter and the defect structure of the
underlying lattice [10]. It is also well known that disloca-
tion lines in metals control their plastic deformation.
Defect lines in ordered materials and the strain fields
around them are directly observable in colloidal crystals
and nematic materials [11–13] and are of importance for
instance for the performance of photonic crystals [14]. In
all these cases, physical quantities can be expected to
change in space according to the distance of a given point
from the line object. Such a normal or radial distance is
clearly defined for a straight line, and sometimes one uses
models assuming infinite rigidity to look at radial variation,
like, for example, the cell model of polyelectrolytes [15],
or chain molecules tethered to a straight line as a model for
a molecular bottle brush [16], etc. However, the usefulness
of all these models has been completely uncertain. In
reality these line objects are not infinitely rigid and thus
they undulate due to thermal fluctuations. This undulation
leads to an interaction between different parts of the lines
through the structuring effect they have on their environ-

ment. The question of how to define a radial distance from
the line object in this case naturally arises when one studies
such physical systems with computer simulations, but also
for experiments [17], when the structure of a system can be
observed for instance microscopically or tomographically.
From the differential geometry of space curves we have

an easy answer to this problem locally. Just calculate the
two normal vectors (in 3d) to the line. And globally, when
the line object is curled up to a globule or coil, there is no
natural normal direction. While the latter is true also when
we take into account the granularity of matter, the local
definition seizes to be helpful on the atomic scale. Here we
will find preferred angles between consecutive segments of
the line given either by the underlying chemical nature of
the object like in polymers or by an underlying lattice
structure like in vortex matter or defect lines. The natural
length scale for a definition of normal variation will there-
fore lie in between this local—and very system specific—
and the global—in many cases isotropic—scale. We will
discuss in the following how an optimal choice for this
intermediate length scale can be identified both in simula-
tions and in experiments providing real space structural
information. The procedure will be completely general;
however, we will exemplify it for the case of a so-called
bottle-brush polymer [16].
Our line object will therefore locally be made out of

straight segments—we call them bonds from now on—
making up the linear backbone of a bottle-brush polymer
shown in Fig. 1. We regard a segment of the backbone of
this bottle brush made out of lc consecutive bonds. For this
segment we can define an equivalent cylinder axis as
follows: each unit bond vector êi can be seen as the normal
to a plane, in which we define cylinder coordinates. The
average orientation of these planes is given as

n̂ ¼ 1

lc

Xlc

i¼1

êi: (1)
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This definition of n̂ is similar to how one would define the
normal to an undulating surface. When we assume a trian-
gulation of the surface, each triangle defines a unique
normal vector, and the average over these normal vectors
for adjacent triangles defines the surface normal on a
coarse-grained scale. Using n̂ we can define an equivalent
straight cylinder for our undulating line on the coarse-
grained scale lc. The z axis is given by n̂, it goes through
the center of mass (c.m.) of the backbone segment made of
lc þ 1 monomers and has a length given by the end-to-end
distance Rc

e ¼k ~rnþlc � ~rn k of the backbone segment be-

tween monomers n and nþ lc. In the normal plane to this
axis we employ cylinder coordinates to define the radial
distance of a given point to the axis of the cylinder. Each
point in space is considered to count for the normal varia-
tion within this cylinder segment, when its z coordinate in
the local coordinate frame lies between z ¼ 0 and z ¼ Rc

e.
By construction, each point in space may lie in more than
one of these cylindrical segments, in which case it is,
however, only counted at the smallest distance to these
segments (when degeneracy occurs where a monomer has
the same distance to the axis in two cylinder segments, it
should be counted for both segments with weight 1=2).
Evaluating whichever scalar or tensorial physical property
is characteristic for the considered system at these points,
one can in this way map out a variation of this property
normal to the undulating line for which one performed this
construction.

In our case of bottle-brush polymers we study the nor-
mal variation of the density of side chain monomers with
respect to the backbone of the polymer. This density varia-
tion is something one typically tries to extract from scat-
tering experiments [18–21]. Because of unavoidable
approximations in the analysis of the scattering data, there
has been, however, controversy in the literature [18,19]
about the form of this spatial variation. To resolve this
controversy we apply our procedure of defining what is

meant by variation normal to the backbone of the bottle-
brush polymer. Our construction ensures that each mono-
mer is contributing not more than once to the determination
of the radial density profile; however, near the backbone
chain ends some monomers may not be counted at all
(when their z coordinates do not fall into the allowed range
for any local cylindrical coordinate system). This is an
example of chain end effects occurring whenever the un-
dulating line has only a finite length. The normal variation
defined in this way depends on the coarse-graining length
scale lc along the undulating line. Figure 2 shows the
dependence of the normal density on this length scale for
a backbone of length Nb ¼ 131 and side chain length N ¼
48. The data are for a Monte Carlo simulation of the bond-
fluctuation lattice model [22]. Clearly, the form of the
curves for very small (lc ¼ 3) and very large (lc ¼ 130)
values of the coarse-graining length significantly differs
from the behavior for intermediate scales. The behavior for
small lc gives comparable results to an approach taken in
[23] to measure the counterion concentration around a
polyelectrolyte chain. We now want to argue that at the
intermediate scales there exists an (almost sharply defined)
optimal length scale for coarse graining.
This length scale has to be connected with the intrinsic

stiffness of the undulating line object. In polymer physics
this is called the persistence length of the polymer chain
(here the backbone of the bottle brush). The persistence
length is known to be the natural scale for a coarse graining
of intramolecular behavior, i.e., variation as a function of
chemical distance along the chain. We suggest here, that it
is also a natural scale for construction of a coarse-grained
description of property variation as a function of spatial
distance to the chain. There are several prescriptions of
how to obtain the persistence length from an ensemble of
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FIG. 2 (color online). Variation of the density of side chain
monomers normal to the backbone of the bottle brush for Nb ¼
131 and N ¼ 48. Results for several choices of the coarse-
graining length lc along the backbone are shown. All lengths
are measured in units of the lattice spacing of the underlying
simple cubic lattice.

FIG. 1 (color online). Snapshot of a bottle-brush polymer
simulated using the bond-fluctuation model. The backbone con-
sists of Nb ¼ 387 repeat units and onto each of these a side chain
of length N ¼ 48 is grafted. One segment of the backbone
consisting of lc bonds is plotted next to the chain. Such segments
define a local coordinate system also indicated in the figure and
cylinders surrounding the simulated chain as shown (see text).
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configurations of a chain. One definition uses the projec-
tion of the end-to-end vector of the chain onto the unit bond
vector of bond k, measured in terms of the average length
of this bond

lpðkÞ ¼ h ~bk � ~Re=j ~bkj2i: (2)

In a plot of lpðkÞ as a function of position k along the chain
as shown in Fig. 3 one can clearly identify a plateau
regime. The height of this plateau defines the persistence

length lð1Þp . Another definition employs the bond vector
orientational correlation function hcos�ðsÞi ¼ hêi � êiþsi
where the angular brackets include an average over i. For
idealized polymer models this function decays exponen-

tially as ao expf�s=lð2Þp g (the amplitude prefactor is neces-
sary for discrete models for which the exponential does not
extrapolate to one for s ! 0). In reality, this function
generally is not a single exponential, and we propose to
define the persistence length for arbitrary undulating lines
as

lð2Þp ¼ 1

aðNb � 1Þ
XNb�1

s¼1

hcos�ðsÞi: (3)

If lð2Þp � 1 and the decay of hcos�ðsÞi with s is a single
exponential, one can for Nb ! 1 transform the sum to an

integral and obtain again the standard definition of lð2Þp . It
must be noted, however, that for real polymer chains
(which have excluded volume interactions) one finds
power law decays rather than exponential decay for Nb !
1 [24–26]. For isolated self-avoiding walks (good solvent

conditions) hcos�ðsÞi / s2��2 and then lð2Þp / lð1Þp / N2��1
b

[24]. In dense melts hcos�ðsÞi / s�3=2 [25], lð2Þp [Eq. (3)]
then is dominated by the behavior for small s, and does not
depend on Nb for lager Nb. Thus the use of Eq. (3) requires
care. Both estimates of the persistence length agree within
10% with each other and show an increase by a factor of
about 4 (see Fig. 3) when we increase the side chain length
fromN ¼ 6 toN ¼ 48. This is in excellent agreement with
experiment [27] and agrees with simulations in [28] but is a
stronger variation than found in [29]. For the present
purposes the important point is that the stiffness length
scale lp (and hence the coarse-graining length scale lc in

Fig. 1) can be varied over a wide range, which allows us to
assess the validity of our general concepts.

When we now take the persistence length as the natural
scale for the definition of the coarse-graining length in
Fig. 1, i.e. lc ¼ lp, we find that the normal variation

determined in this way is in excellent agreement with
what one would determine for a completely rigid back-
bone. In Fig. 4 we compare the radial density variation for
a backbone length Nb ¼ 131 and four different side chain
lengths N ¼ 6, 12, 24, 48 obtained using lc ¼ lp to the

radial density variation around a rigid backbone [30].
Obviously, our definition of normal variation with respect
to the undulating backbone for this choice of coarse-
graining length nicely agrees with the variation around
the rigid backbone at small to intermediate distances. In
this way, we justify the often used rigid backbone model
for densely grafted bottle brushes. For large distances, the
density measured for a flexible backbone has to be larger
than the one measured for the rigid backbone, as the former
contains contributions from remote segments of the back-
bone which can bend back on itself. From our experience,
we can vary lc by about 20% around the choice lc ¼ lp
without much affecting the agreement observed in Fig. 4.
Therefore, the persistence length provides the natural
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FIG. 3 (color online). Projection of the end-to-end vector of
the backbone of the bottle brush onto the local bond orientation
as a function of position of the bond along the backbone. The
backbone length is Nb ¼ 259 and the side chain lengths are N ¼
6, 12, 24, 36 and 48 from bottom to top. Dotted lines indicate

values lð1Þp of the persistence length.
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FIG. 4 (color online). Density variation of side chain mono-
mers normal to an undulating backbone of length Nb ¼ 131 for
the choice lc ¼ lp and for the rigid backbone. The four choices

of side chain length are N ¼ 6, 12, 24 and 48 from left to right.
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length scale for the coarse-graining depicted in Fig. 1.
Reinterpreting Fig. 4 from a different perspective, we can
say that an analysis of the variation of physical properties
normal to an infinitely stiff line object gives a good ap-
proximation to the behavior for real, thermally fluctuating
lines on the scale of the persistence length.

To conclude, we have outlined a constructive procedure
on how to define and measure normal variation of physical
properties with respect to an undulating line. This problem
is relevant for a broad range of physical situations ranging
from linear polymers, to vortex matter, to defect lines in
crystals. The procedure is applicable for simulations as
well as for experiments which provide real space structural
information. We explained how a local cylindrical coordi-
nate system can be defined on a coarse-grained scale along
the line, in which the normal variation with respect to the
undulating line object can then be determined. The optimal
length scale for the introduction of cylindrical reference
frames turned out to be the persistence length of the
fluctuating line object. We showed, for the example of
the density variation around the backbone of a bottle-brush
polymer, that a normal variation around a flexible back-
bone determined for this length scale reproduces the nor-
mal variation around a rigid backbone on short and
intermediate scales, where they should ideally be identical.
This example is important, since such stimuli-responsive
polymers may find applications as sensors and actuators
[31], and for this purpose, as well as for asserting biomo-
lecular functions of bottle brushes such as aggrecane in
mammalian joints [32], a deeper understanding of bottle-
brush properties is required.

For a reliable interpretation of experimental data on the
variation of physical properties around an undulating line
object one has to go beyond the approximation of infinite
rigidity. This Letter suggests a controlled way to do this
and to assess to what extent theoretical descriptions assum-
ing infinite rigidity are valid. Besides the realm of synthetic
and biopolymers, we envisage potential applications of our
concepts to problems such as the radial distribution of
vacancies, solute atoms, etc., around lines in dislocation
networks in crystals and liquid crystals. Also, heteroge-
nous nucleation along line defects will be affected by their
local curvature and it will be interesting to elucidate the
differences to the case of completely rigid defect lines.
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Jülich Supercomputer Center for computer time on the
JUMP computer through Project No. HMZ03, and to the

European network of excellence SoftComp for computer
time on the SoftComp computer cluster.

[1] A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of
Macromolecules (AIP Press, Woodbury, 2002).

[2] T.A. Witten, Rev. Mod. Phys. 70, 1531 (1998).
[3] M. Zwolak and M. Di Ventra, Rev. Mod. Phys. 80, 141

(2008).
[4] G. Blatter et al., Rev. Mod. Phys. 66, 1125 (1994).
[5] R. Besseling, N. Kokubo, and P. H. Kes, Phys. Rev. Lett.

91, 177002 (2003).
[6] M. Kleman and J. Friedel, Rev. Mod. Phys. 80, 61 (2008).
[7] S. Sachdev and D. R. Nelson, Phys. Rev. Lett. 53, 1947

(1984).
[8] G. S. Manning, J. Chem. Phys. 51, 924 (1969).
[9] T. Nattermann and S. Scheidl, Adv. Phys. 49, 607 (2000).
[10] T. Verdene et al., Phys. Rev. Lett. 101, 157003 (2008).
[11] D. Andrienko and M. P. Allen, Phys. Rev. E 61, 504

(2000).
[12] I. I. Smalyukh et al., Mol. Cryst. Liq. Cryst. 450, 79/[279]

(2006).
[13] A. C. Callan-Jones et al., Phys. Rev. E 74, 061701 (2006).
[14] B. D. Snow et al., Mol. Cryst. Liq. Cryst. 502, 178 (2009).
[15] M. Deserno, C. Holm, and S. May, Macromolecules 33,

199 (2000).
[16] H.-P. Hsu, W. Paul, and K. Binder, Macromol. Theory

Simul. 16, 660 (2007).
[17] D. Pires, J. B. Fleury, and Y. Galerne, Phys. Rev. Lett. 98,

247801 (2007).
[18] B. Zhang et al., Macromolecules 39, 8440 (2006).
[19] S. Rathgeber et al., J. Chem. Phys. 122, 124904 (2005).
[20] L. Fenz et al., Eur. Phys. J. E 23, 237 (2007).
[21] H.-P. Hsu, W. Paul, and K. Binder, J. Chem. Phys. 129,

204904 (2008).
[22] K. Binder and W. Paul, Macromolecules 41, 4537 (2008).
[23] H. J. Limbach and C. Holm, J. Phys. Chem. B 107, 8041

(2003).
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