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Semi-flexible polymer chains in quasi-one-dimensional
confinement: a Monte Carlo study on the square lattice

Hsiao-Ping Hsu* and Kurt Binder

Single semi-flexible polymer chains are modeled as self-avoiding walks (SAWs) on the square lattice with

every 90� kink requiring an energy 3b. While for 3b ¼ 0 this is the ordinary SAW, varying the parameter

qb ¼ exp(�3b/kBT) allows the variation of the effective persistence length ‘p over about two decades.

Using the pruned-enriched Rosenbluth method (PERM), chain lengths up to about N ¼ 105 steps can be

studied. In previous work it has already been shown that for contour lengths L ¼ N‘b (the bond length ‘b

is the lattice spacing) of order ‘p a smooth crossover from rods to two-dimensional self-avoiding walks

occurs, with radii R f ‘p
1/4L3/4, the Gaussian regime predicted by the Kratky–Porod model for worm-like

chains being completely absent. In the present study, confinement of such chains in strips of width D is

considered, varying D from 4 to 320 lattice spacings. It is shown that for narrow strips (D < ‘p) the

effective persistence length of the chains (in the direction parallel to the confining boundaries) scales like

‘p
2/D, and Rk f L (with a pre-factor of order unity). For very wide strips, D [ ‘p, the two-dimensional

SAW behavior prevails for chain lengths up to Lcross f ‘p(D/‘p)
4/3, while for L [ Lcross the chain is a string

of blobs of diameter D, i.e. Rk f L(‘p/D)
1/3. In the regime D < ‘p, the chain is a sequence of straight

sequences with length of the order ‘p
2/D parallel to the boundary, separated by sequences with length <

D perpendicular to the boundary; thus Odijk's deflection length plays no role for discrete bond angles.
1 Introduction

Semi-exible macromolecules (such as double-stranded DNA
and other biomolecules) conned in nanoscopic channels have
gained enormous interest recently, in experiments,1–8 analytical
theory,9–28 and computer simulations.29–32 If the diameter D of
the (cylindrical) channel is much larger than the persistence
length ‘p of the semi-exible polymer, one expects a situation
similar to the case of exible chains conned in tubes; the chain
forms a one-dimensional string of blobs along the channel. For
a exible chain, where ‘p is of the order of the bond length, one
needs to account for excluded volume interactions in the case of
good solvent conditions.33 Then the number of monomers per
blob g is estimated as g ¼ (D/‘b)

1/n where n z 0.588 (in d ¼ 3
dimensions)34 is the critical exponent characterizing the size of
an isolated swollen polymer coil,33 and pre-factors of order unity
are ignored throughout. For a chain with N effective monomeric
units, then according to this scaling argument,35 the number of
blobs in the string is

n ¼ N/g ¼ N(‘b/D)1/n (1)

and the chain extension along the tube is

Rk ¼ nD ¼ N‘b(‘b/D)1/n�1 z N‘b(‘b/D)2/3 (2)
ersität Mainz, Staudinger Weg 7, D-55099

e
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where in the last step the Flory approximation33 n ¼ 3/5 was
used. If one considers the analogous problem in d ¼ 2 space
dimensions, for a chain conned in a slit of width D in a plane,
the argument is identical, the only difference being that n ¼ 3/4
and hence

n ¼ N(‘b/D)4/3, Rk ¼ N‘b(‘b/D)1/3, d ¼ 2. (3)

One can also consider the (entropic) force per monomer
exerted on the conning wall, and then nds

f ¼ kBTD
�1�1/n. (4)

If one considers exible polymers conned within parallel
repulsive walls in d ¼ 3 space dimensions, eqn (1) still remains
valid, but now the chain conformation rather is characterized by
a two-dimensional self-avoiding walk (SAW) of n blobs of
diameter D, i.e.

Rk ¼ Dn3/4 ¼ ‘bN
3/4(‘b/D)�1+3/(4n) z ‘bN

3/4(‘b/D)1/4. (5)

The result for the force on the walls {eqn (4)} remains the
same, the free energy (in units of kBT) simply is given by n, since
each blob contributes kBT.

This picture gets clearly modied when we consider semi-
exible chains, where the persistence length ‘p enters as an
additional length scale.36–38 As is well-known, this concept of a
persistence length is valid for perfectly Gaussian chains with no
Soft Matter
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interactions among the beads whatsoever, while for more real-
istic models of polymers different denitions for the persis-
tence length disagree,39 some simply being unsuitable. Since we
wish to dene the persistence length such that it reects only
the “intrinsic” chain stiffness and does not depend on the
contour length L¼ (N� 1)‘b of the chain, we shall dene ‘p here
from the average hcos qi where q is the angle between subse-
quent bonds of the chain,

‘p ¼ �‘b/lnhcos qi. (6)

Note that this choice is equivalent to the use of the initial
slope of the decay of the bond angle correlation function
hcos q(s)i, for bonds that are s steps apart from the chain
contour, hcos q(s)i ¼ exp(�s‘b/‘p), for small s‘b/‘p; the asymp-
totic decay of hcos q(s)i for large s cannot be used, since it is
described by a power law,40 hcos q(s)if s�b (with b¼ 1/2 in d¼ 2
dimensions40,41). We also recall that in the description of the
standard continuum model of semi-exible polymers, the
Kratky–Porod model,42 the persistence length is related to the
bending stiffness k (in units of temperature) as

‘p ¼ 2k/(d � 1). (7)

The Kratky–Porod model describes the energy function H of
a chain molecule described by a curve ~r(s) for its contour in
continuum space as

H KP

n
~r ðsÞ

o
¼ k

2

ðL
0

ds

 
v2~r

vs2

!2

: (8)

The Kratky–Porod model describes the crossover from rod-
like behavior (for L # ‘p) to Gaussian random coil-like behavior
(for L[ ‘p). Although in general this model is commonly used
for the description of semi-exible polymers (see e.g. ref. 43 and
refs. therein), it has been shown41 to be rather unsuitable in d¼
2. Specically, the mean square end-to-end distance hR2i of the
polymer has been shown to cross over at L z ‘p from the
(trivial!) rod-like behavior hR2i ¼ L2 (for L < ‘p) to the d ¼ 2 SAW
behavior (omitting again an unimportant non-universal
constant of order unity)

hR2i ¼ ‘p
1/2L3/2, L [ ‘p. (9)

The predicted Gaussian behavior (hR2i ¼ 2‘pL) is completely
absent41 in d ¼ 2.

When we now consider the connement of a semi-exible
chain in d¼ 2 in a slit of width D, eqn (3) is easily generalized for
D [ ‘p. The chain still forms a string of blobs of diameter D,
the number n of these blobs and the extension Rk of the chain
along the slit being

n ¼ L/Lcross, Lcross/‘p ¼ (D/‘p)
4/3, Rk ¼ L(‘p/D)1/3. (10)

Thus we see that scaling predicts essentially the role of the bond
length ‘b taken over by the persistence length. However, more
interesting is the behavior when ‘b � D < ‘p; the slit is too
Soft Matter
narrow to allow the formation of blobs with d¼ 2 SAW statistics.
The excluded volume effects are not important, when we
assume that the chain is essentially stretched out along the slit
(hairpin formation25 shall be disregarded here). However, still
the chain is not simply stretched out according to a straight line
(which would lead to simple rod behaviors Rk ¼ L) but deviates
due to bending uctuations from such a straight line. Using eqn
(8) Odijk12 derived that the length scale over which the chain
follows an essentially straight path, but inclined relative to the
x-axis along the slit, is

l ¼ (D2‘p)
1/3 (l < ‘p for D < ‘p), (11)

and typical angles that the chain makes with the x-axis then are
of order q z D/l ¼ (D/‘p)

1/3. Odijk12 also derived the free energy
cost of connement as

DF/kBT z (L/l)ln(‘p/l) (for L $ ‘p and ‘p [ l). (12)

In the present paper, we present extensive Monte Carlo
simulations using the pruned-enriched Rosenbluth method
(PERM)44,45 to study this problem of conned two-dimensional
semi-exible polymers for the model of self-avoiding walks on
the square lattice, including an energy penalty 3b whenever the
SAW makes a kink. In previous work this model has been
studied in the absence of any connement, and it has been
shown that ‘p can be conveniently varied from the fully exible
case (where ‘p is of the order of the lattice spacing) to the order
of 100 lattice spacings.41,46 Our main focus, of course, is on the
nontrivial regime where D and ‘p are of the same order, where
all theoretical predictions sketched above {eqn (10)–(12)} clearly
are doubtful. We also note that for 3b ¼ 0 this model has been
used very successfully to test eqn (3) and (4) describing
connement of exible chains.47

In the following section, we briey summarize the simula-
tion method. Then we describe our results, and the concluding
section gives the summary and outlook.

2 Simulation method

Our model is the SAW on the square lattice, where each effective
monomer occupies a lattice site, the bond length between the
nearest neighbors along the chain (‘b) is just the lattice spacing,
and this is henceforth our unit of length. The excluded volume is
accounted for by the fact that double occupancy of lattice sites is
forbidden. Using the standard bond bending potential Ub¼ 3b(1
� cos q), where q is the angle between subsequent bond vectors
along the chain, the problem is enormously simpliedby the fact
that only angles q ¼ 0� and �90� are possible on the square
lattice. Thus no energy cost arises if the bond vector continues
along the direction of the previous one, while every kink costs the
same energy 3b. Thus, the partition sum can be expressed as a
polynomial in the Boltzmann factor qb ¼ exp(�3b/kBT),

ZNðqb;DÞ ¼
X
config

CN;Nbend
ðqb;DÞqNbend

b ; (13)

where the sum over congurations includes all SAWs with
y-coordinates of the monomers in the range 1# y# D, to realize
This journal is ª The Royal Society of Chemistry 2013
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Table 1 Estimates of the persistence length ‘p(qb) (eqn (6)), the fugacity per
monomer mN(qb) (eqn (13)), and the amplitude C(qb) of the end-to-end distance
(
ffiffiffiffiffiffiffiffiffi
hR2i

p
¼ CðqbÞN3=4) as N / N for semi-flexible chains in the bulk

qb ‘p mN C(qb)

1.0 1.06 0.37905227(6) 0.8765(4)
0.4 2.00 0.60046275(8) 0.9778(8)
0.2 3.50 0.74878796(8) 1.098(5)
0.1 6.46 0.85568975(5) 1.262(5)
0.05 12.35 0.92201161(5) 1.412(3)
0.03 20.21 0.95163915(8) 1.662(7)
0.02 30.02 0.96720943(5) 1.825(7)
0.01 59.22 0.98331993(7) 2.166(4)
0.005 118.22 0.99158684(9) 2.565(4)
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the connement. That is, following previous work on exible
SAWs the walls47 are placed at y ¼ 0 and y ¼ D + 1.

We apply the pruned enriched Rosenbluth method
(PERM)44–47 which is a chain growth algorithm with population
control and depth-rst implementation. Details about this
algorithm can be found in a recent review.45 This algorithm
allows the study of the chain length up to about N ¼ 105, for a
wide variety of chain stiffnesses, varying qb from qb ¼ 1 (exible
chains) to qb ¼ 0.005. Table 1 gives an overview of the corre-
sponding persistence lengths ‘p(qb) in the bulk, as well as the
fugacity mN(qb) per monomer (dened as ln mN(qb) ¼ �(1/N)ln
[ZN(qb)/N

g�1)] with g ¼ 43/32) and the amplitude C(qb) of the
end-to-end distance,

ffiffiffiffiffiffiffiffiffihR2ip ¼ CðqbÞN3=4 as N / N. Related
data can be found in ref. 46. The conned chains studied in
the present work refer to the choices D ¼ 4, 8, 10, 16, 20, 32, 40,
64, 80, 160 and 320.

Finally we note that when the excluded volume is neglected
(apart from forbidding immediate reversals of the SAW) one
nds easily that hcos qi ¼ 1/(1 + 2qb) and hence ‘p z 1/(2qb) for
small qb. The data of Table 1 rather imply46 ‘p z 0.61/qb.
3 Simulation results and their use for the
test of the scaling predictions
3.1 Flexible chains

While the connement of exible SAWs in d ¼ 2 has already
been considered in ref. 47, we extend these results here since it
is necessary to compare the behavior of semi-exible chains and
exible ones in order to elucidate the effects of chain stiffness.
Fig. 1 summarizes our main results; (for very long chains, up to
N ¼ 128 000) one can see that the fugacity mD per monomer, the
rescaled x-component of the end-to-end distance hDxi/N and the
density rb of wall contacts satisfy simple power laws as a func-
tion of D in the thermodynamic limit, i.e., as N / N, Fig. 1a,

mD � mN z 0.737D�4/3, (14)

hDxi/N z 0.915D�1/3, (15)

rb ¼ [n( y ¼ 1) + n( y ¼ D)]/2hDxi z 10.75D�2. (16)

Here n( y ¼ 1) and n( y ¼ D) are the average numbers of mono-
mers adjacent to the wall. Note that rb can be simply related to
This journal is ª The Royal Society of Chemistry 2013
the pressure exerted on the wall, since the force f per monomer
can be written as (kBT h 1)

f ¼ 1

N

v lnZNðqb;DÞ
vD

fD�1�1=n ¼ D�7=3; (17)

using the fact that ln mD(qb) ¼ �lnZN(qb,D)/N and eqn (14),
recalling that n ¼ 3/4 in d ¼ 2. Thus eqn (17) justies eqn (4).
Since the pressure p on the wall is the force per unit length
rather than per monomer, we can write p ¼ Nf /hDxi to nd that
p f rb. Thus eqn (16) veries eqn (4) and (17), while eqn (15)
veries eqn (3); note that ‘b h 1 in our model. Thus Fig. 1a
shows that for exible SAW's these scaling relationships hold
essentially true for D as small as a few lattice spacings, and the
amplitude prefactors are of order unity.

It is remarkable to note that the density in the boundary
layers rb is much smaller than the average monomer density in
the region of the “string of blobs” taken by the chain, which is
rav ¼ hDxi/(ND) f D�4/3. This result already implies that the
density prole across the lm is very nonuniform, as actually
observed (Fig. 1b). In ref. 47 a phenomenological expression for
the scaling function describing r(y) was proposed as follows:

rð yÞ ¼ 1

Dþ 1
frðxÞh 1

Dþ 1
A½xð1� xÞ�4=3; x ¼ y=ðDþ 1Þ: (18)

Of course, there is a slight arbitrariness in the precise
normalization of transverse distances y; here we have dened
the scaling variable x by dividing y with the geometrical distance
D + 1 between the two walls. One could have introduced a kind
of “extrapolation length” d, writing rather x ¼ ( y � d)/(D + 1 �
2d), where d is of order unity.47 However, this does not improve
the quality of the t signicantly.

Fig. 1c demonstrates a similar scaling proposed for the
lateral distribution of the chain ends re(y), described as47

reð yÞ ¼
1

Dþ 1
feðxÞh 1

Dþ 1
Ae ½xð1� xÞ�25=48: (19)

The result that re( y) f y25/48 has been rigorously derived from
the conformal invariance48 and hasmotivated eqn (19), where Ae
(just as A in eqn (18)) is an adjustable amplitude factor.

Finally, Fig. 1d shows the mean square end-to-end distance
in the direction parallel to the conning boundary, in a scaling
plot normalized such that unconned chains tend to a constant
while conned chains exhibit the power law, eqn (3). Note that
all data irrespective of the chain length N collapse on a master
curve ~Pk when we rescale variables in terms of the radius R0 of
an unconned two-dimensional SAW, with R0 ¼ N3/4 (absorbing
a prefactor in the normalization)

hRk
2i/R0

2 ¼ ~Pk(z), z ¼ R0/(D + 1) ¼ N3/4/(D + 1). (20)

For large z we have ~P(z) f z2/3 and hence hRk
2i f N3/2N1/2/

(D + 1)2/3 ¼ (N/(D + 1)1/3)2, which for large D is equivalent to
eqn (3), as it should be. A similar scaling function applies to
the component hRt2i in the y-direction as well, hRt

2i/hR0
2i ¼

~Pt(z) with ~Pt(z) f z�2 for z [ 1 (not shown here to save
Soft Matter
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Fig. 1 (a) Log–log plot of mD� mN, hDxi/N, and rb versus D asN/N. The straight lines are the power laws quoted in eqn (14)–(16). All data are for qb¼ 1. (b) Rescaled
monomer density profile (D + 1)r(y) versus x ¼ y/(D + 1). The full curve shows eqn (18) with the amplitude factor A ¼ 10.38. (c) Rescaled profile of the density of the
chain ends, (D + 1)re(y) versus x. The full curve shows eqn (19) with the amplitude factor Ae ¼ 2.85. (d) Rescaled mean square end-to-end distance hRk2i/N3/2 parallel to
the boundaries versus the scaling variable N3/4/(D + 1). The straight line shows the slope 2/3, which corresponds to eqn (3). All data are for qb ¼ 1.0 and for D ranging
from D ¼ 8 to D ¼ 320, as indicated. In (b)(c)(d), all data are for qb ¼ 1, and for D ranging from D ¼ 8 (N ¼ 5000) to D ¼ 320 (N ¼ 128 000).
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space). In any case, we conclude that the behavior of conned
exible chains in d ¼ 2 dimensions can be understood in full
detail.
3.2 The persistence length of conned semi-exible chains

In Section II we have seen that the persistence length ‘p is
related inversely to the Boltzmann factor qb ¼ exp(�3b/kBT) for
the walk to make a kink, ‘pz 0.61/qb. However, when ‘p exceeds
D, the walk must predominantly run along the x-axis; whenever
a kink occurs so that the walk starts to run along the y-axis, a
second kink must soon occur so that the walk continues along
the x-axis again. So the picture of the chain consists of long
straight segments (of length ‘p(D)) oriented along the x-axis,
separated by short pieces (of a length smaller than D) oriented
along the y-axis, involving two kinks, one kink from 4 ¼ 0� to
4 ¼ �90� and then a second kink back to 4 ¼ 0� again. Such-
defects containing two neighboring kinks (which would anni-
hilate each other when they meet) clearly involve an activation
energy of 23b, their probability to occur hence scales as qb

2

or ‘p
�2. This consideration suggests to consider a scaling

hypothesis for ‘p(D) in the form (henceforth we denote
‘p(D ¼ N) simply as ‘p throughout)

‘p(D) ¼ ‘p ~PL(‘p/D) (21)
Soft Matter
with a scaling function ~PL(h) which scales as ~PL(h)z 1 for h� 1
but ~PL(h) f h for h [ 1.

Fig. 2 tests this ideawithour simulationdata for various values
of qb (and hence ‘p, cf. Table 1), and furthermore shows that ‘p/D
is a useful scaling variable to describe the rescaled fugacity per
monomer [mD(qb) � mN(qb)]‘p, rescaled force per monomer f‘p

2,
and rescaled pressure f rb‘p exerted on the wall. It is evident
from Fig. 2a that indeed the effective persistence length ‘p(D) is
the sameas that in thebulk (‘p) as long asD exceeds ‘p by at least a
factor of two. Then a gradual crossover to the relationship ‘p(D)f
‘p

2/D sets in. The slight scatter of the data from qbz 0.005 to 0.02
for strongly conned chains (D/‘p # 0.2) probably indicates
problems of efficient sampling in the limit where ‘p(D) is in the
range of several hundred lattice spacings.

Fig. 2b demonstrates that the proper generalization of eqn
(14) from exible to stiff chains is

[mD(qb) � mN(qb)]‘p ¼ const(D/‘p)
�4/3, D/‘p [ 1, (22)

while for D/‘p < 1 we nd saturation at a constant value (close to
unity). Of course, for exible chains such a regime did not exist
(Fig. 1a). Thus using a scaling expression for the free energy per
monomer

Fðqb;DÞ ¼ � 1

N
ln

ZNðqb;DÞ
ZNðqb;NÞ ¼

1

‘p
~F
�
D=‘p

�
; (23)
This journal is ª The Royal Society of Chemistry 2013
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Fig. 2 Log–log plot of the rescaled persistence length ‘p(D)/‘p (a), rescaled fugacity per monomer [mD(qb) � mN(qb)]‘p (b), rescaled force per monomer f‘p
2 (c), and

rescaledmonomer density of the wall rb‘p (d) versus D/‘p. Different choices of qb are shown in the key of the figures. Straight lines indicate the theoretical exponents. All
these data were obtained by extrapolating first data for finite N at fixed qb and fixed D towards N / N (cf. Fig. 3).
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which leads to eqn (22), one concludes for the force

f ¼ vF(qb,D)/vD ¼ ‘p
�2 ~Ff (D/‘p), ~Ff (D/‘p [ 1) f (D/‘p)

�7/3,(24)

which is the scaling behavior seen in Fig. 2c. Finally, combining
the scaling of the force, eqn (24), with the scaling for the
x-component of the end-to-end distance, which we write in
generalization of eqn (10) as

hDxi ¼ N ~X (D/‘p), (25)
Fig. 3 End-to-end distance per monomer hDxi/N in the direction parallel to the co
D ¼ 4 to D ¼ 320 are included, as indicated.

This journal is ª The Royal Society of Chemistry 2013
where ~X z const for D� ‘p and ~X f (D/‘p)
�1/3 for D[ ‘p. This

yields for the pressure (or monomer density on the walls,
respectively)

rb f N( f‘p)/hDxi ¼ ‘p
�1 ~Fr(D/‘p)

with ~Fr(D/‘p [ 1) f (D/‘p)
�2 (26)

This is the behavior seen in Fig. 2d. We remind the
reader that this simple scaling behavior applies only in
the regime of extremely long chains, so that the regime where D
nfining boundary, plotted vs. N for qb ¼ 0.05 (a) and 0.005 (b). Choices of D from

Soft Matter
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Fig. 4 Log–log plot of hRk2i/‘p1/2N3/2 vs. ‘p
1/4N3/4/(D + 1) for several choices of qb: 0.2 (a), 0.05 (b), 0.02 (c) and 0.01 (d). Several choices of D are included, as indicated.

Straight lines indicate the scaling exponent 2/3 that results with this choice of variables in the blob regime.

Fig. 5 Log–log plot of hRk2i/N2 vs. N/(2‘p) for qb ¼ 0.2 (a), 0.05 (b), 0.02 (c) and 0.01 (d). Many choices of D are included. Straight lines show the relationship
hRk2i/N2 f N�1/2, i.e. the d ¼ 2 SAW behavior hRk2i f N3/2.

Soft Matter This journal is ª The Royal Society of Chemistry 2013
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becomes so large that D is comparable to the extension of a free
chain {eqn (9),

ffiffiffiffiffiffiffiffiffihR2ip ¼ ‘p
1=4N3=4} is not yet reached. To avoid

any corrections due to such a crossover caused by nite chain
length, an extrapolation of suitably normalized data (such as
hDxi/N) towards N / N has been attempted (Fig. 3). While for
not too small qb (Fig. 3a) the limiting values for N / N are
rather quickly reached, for very small qb the convergence seems
to be problematic for D much smaller than ‘p.
3.3 Linear dimensions of conned semi-exible chains of
nite chain length

Being interested also in the crossover from unconned semi-
exible chains to weakly conned chains for which the blob
description, eqn (10), is supposed to hold, we present plots of
hRk

2i rescaled by the mean square linear dimension of the free
semi-exible chain, hR2i0 {eqn (9)}, as a function offfiffiffiffiffiffiffiffiffiffiffihR2i0
p

=ðDþ 1Þ, see Fig. 4. Here, only data for D [ ‘p are
included, so that the blob-type description should hold. The free
chain behavior in this plot shows up as a horizontal plateau for

small values of
ffiffiffiffiffiffiffiffiffiffiffihR2i0

p
=ðDþ 1Þ. While for qb¼ 0.2 this plateau is

rather well developed, for smaller qb deviations from scaling
come into play, indicating that strips even wider than D ¼ 320
wouldbeneeded to reach this regime. Thedeviation fromscaling

in the vicinity of
ffiffiffiffiffiffiffiffiffiffiffihR2i0

p
=ðDþ 1Þ ¼ 1 indicates that the cross-

overs from one regime to the next one are somewhat subtle.
Fig. 6 Log–log plot of hRk2i/(2‘p(D)N) vs. N/(2‘p(D)) for qb ¼ 0.2 (a), 0.05 (b), 0.02 (
exponents 1 (for rod-like behavior) and 1/2 (for SAW-like behavior), respectively.
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In order to elucidate the various regimes, where hRk2i f N2,
we plot our data hRk

2i/N2 versus N/(2‘p) for several choices of the
stiffness parameter and various strip widths (Fig. 5). One
expects that when ‘p is large and D is small, one should have a
simple rod-behavior hRk

2i ¼ N2 for N/(2‘p) < 1 and this indeed is
seen for qb¼ 0.01 and D¼ 4 orD¼ 8. On the other hand, when 1
< N/(2‘p) < 10 and D is sufficiently large one can see the d ¼ 2
SAW behavior, as is obvious from the straight lines in Fig. 5.
Then a minimum occurs, and the data rise to another plateau
that characterizes the regime where D < ‘p. While the minimum
moves monotonously to larger values of N/(2‘p) when D
increases for small values of ‘p (Fig. 5a), the variation of the
location of the minimum with D is non-monotonic for large ‘p
(Fig. 5c and d). It is also interesting to look at the data for hRk

2i/N
in the case where D ¼ 40, and qb ¼ 0.01 (Fig. 5c); the data
increase towards a maximum at around N/(2‘p) z 0.5 and then
reach a minimum around (N/2‘p) z 10 and then increase
towards a plateau, which is only reached for N/2‘p of order 1000.
Obviously, the interplay of the crossover from rod to SAW (for
short enough chains) and the connement either to a string of
blobs or to a somewhat exible rod (if D < ‘p) is complicated.

A somewhat simpler picture results when we rescale the data
with ‘p (D) rather than with ‘p (Fig. 6). However, this represen-
tation also cannot produce perfect data collapse on a master
curve either. We also note that in Fig. 5 the ordinate shows only
one and half decades, while in Fig. 6 the ordinate shows 5
c) and 0.01 (d). Several choices of D are included, as indicated. Straight lines show

Soft Matter

http://dx.doi.org/10.1039/c3sm51202a


Fig. 7 Rescaled monomer density profile (D + 1)r(y) versus x¼ y/(D + 1) for the case qb ¼ 0.05 (a) and qb ¼ 0.01 (b). Several choices of D are included, as indicated. Full
curves show eqn (18) with the same amplitude factor as for flexible chains, A ¼ 10.38.

Fig. 8 Rescaled monomer density, (D + 1)re(y) versus x¼ y/(D + 1), including data for many choices of D, for qb ¼ 0.05 (a) and 0.01 (b). Full curves show eqn (19), with
the same amplitude factor Ae as for flexible chains, Ae ¼ 2.85.
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decades; so differences between the various curves in Fig. 6 are
less clearly visible.
3.4 Transverse monomer proles

In analogy to Fig. 1b, we present scaled monomer proles
across the lm in Fig. 7 and in analogy to Fig. 1c, scaled end
monomer distributions are given in Fig. 8. Note that here the
abscissa variable already is a ratio of lengths, and hence there is
no possibility for any rescaling with the persistence length. In
fact, for D[ ‘p, we nd that these proles are quite compatible
with the behavior detected for exible chains. However, when
we cross over to the regime D # ‘p, the behavior becomes
drastically different; both r( y) and re( y) become almost
constant, independent of y. In the extreme case, even a slight
enhancement of the densities near the walls is seen, in contrast
to what one nds for exible chains. In fact, when a monomer is
close to one wall, a relatively long straight piece (almost of
length D) running in the y direction perpendicular to the
boundaries is possible. Such long straight pieces are preferred if
qb is small. In contrast, for monomers in the center of the strip
Soft Matter
the longest straight pieces of the chain in the y-direction can
only have a length less than D/2.
4 Summary and outlook

In this work we have presented a Monte Carlo simulation study
of the effects of connement on the conformation of single
semi-exible chains under good solvent conditions. For
simplicity, we consider the two-dimensional case as a rst step,
since it is already known from studies of the behavior in the
bulk that only two types of behavior occur, rod-like behavior for
contour lengths of the chain not exceeding its persistence
length, and two-dimensional self-avoiding walk behavior
(hR2i0 f N3/2). Using a simple self-avoiding walk model on the
square lattice, where each �90� kink costs an energy 3b, we can
vary the persistence length ‘p(z0.61/qb for small qb) over two
orders of magnitude, and chain lengths N up to about N ¼ 105

are accessible, relying on the PERM algorithm. For this model,
the fugacity per monomer mN (relative to a non-reversal random
walk) scales with ‘p, i.e. (1� mN)‘pz 1 for large ‘p, and a similar
scaling with ‘p carries over to describe connement effects
This journal is ª The Royal Society of Chemistry 2013
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when the walk is conned in a strip of width D; we nd (mD �
mN)‘p to be a function of D/‘p, and the force per monomer f
when normalized as f‘p

2 also is a function of D/‘p, etc. (Fig. 2).
Particularly interesting is the behavior for D# ‘p, when the SAW
proceeds mostly in the x-direction so

ffiffiffiffiffiffiffiffiffiffiffiffihR||
2ip
=N stays of order

unity (Fig. 5), and one can dene an “effective” D-dependent
persistence length ‘p(D) f ‘p

2/D, cf. Fig. 2a. In our model, no
regime occurs where the “deection length” (eqn (11)) would
play any role. For wider strips, D > ‘p, the blob picture (where the
chain is a cigar-like string of blobs, d ¼ 2 excluded volume
statistics applies inside the blob of diameter D) applies, and the
scaling behavior is similar to that of exible chains (compare
Fig. 4 to Fig. 1).

We emphasize that our results for D < ‘p (including also the
monomer proles in Fig. 7 and 8) differ qualitatively from the
corresponding predictions based on the Kratky–Porod model,
eqn (8). While for D [ ‘p the Kratky–Porod description fails
due to its neglect of the excluded volume, the question of its
validity for D < ‘p is more subtle; here the excluded volume is not
so important, but another crucial difference is that eqn (8)
allows for continuous bending, and bond angles can be arbi-
trarily close to zero, unlike the present lattice model. However,
one should not neglect the latter too hastily on the grounds of
lattice artefacts. Real polymers such as polyethylene, poly-
styrene etc. have very stiff potentials both for the length ‘cc of
carbon–carbon bonds and the angle q between them, which can
be taken as delta functions at the preferred length h‘cci and
angle hqi, for a very good approximation; the chain exibility is
basically due to the fact that the torsional potential exhibits
multiple minima (at 4¼ 0�,�120�, for instance). If a piece of an
alkane chain exhibits only 4 ¼ 0, it continues essentially
straight in the “all trans” zig-zag conguration,36–38 and if only a
“gauche state” (4 ¼ �120�) occurs for a bond, the chain
proceeds in a different direction. Physically hence ‘p corre-
sponds to the typical length of all-trans segments, and is
controlled by the Boltzmann factor exp(�3g/kBT) needed to be
used to estimate the density of gauche states along the chain. A
simple description of this situation is the well known rotational
isomeric state (RIS) model,36–38 of course. The energy parameter
3g is the analog of our energy parameter 3b, of course, and while
the angles in the RIS model and in alkane chains clearly are not
90�, they are (essentially) discrete, and in this sense our model
is more realistic than the Kratky–Porod model allowing for
arbitrarily small angles. Of course, there is no direct one-to-one
correspondence between our model, where the energy penalty
for chain bending is dened in terms of two successive bonds,
while in the RIS model the energy penalty refers to the torsional
degree of freedom, which can only be dened using three
successive bonds. However, there is a qualitative correspon-
dence, e.g., if we would treat an alkane-like chain in the
approximation, where interdependence of bond rotational
degrees of freedom is neglected, the characteristic ratio could
be written as36 CN ¼ [(1 + cos q)(1 + hcos fi)]/[(1 � cos q)(1 �
hcos fi)] ¼ 2(1 + hcos fi)/(1 � hcos fi), where we have used that
for a tetrahedrally coordinated chain cos q ¼ 1/3 (both bond
angles q and bond lengths are taken as rigidly xed). Using then
the standard result for this model36 hcos fi ¼ (1 � s)/(1 + 2s),
This journal is ª The Royal Society of Chemistry 2013
where s ¼ exp(�Es/kBT) is the Boltzmann factor for the gauche
states relative to the trans state, one nds CN ¼ 2(2 + s)/(3s) z
4/(3s) for small s. Since36 ‘p/‘ ¼ (CN + 1)/2 one nds that for
small s (necessary to have stiff chains) ‘p/‘ z (2/3)s�1 ¼ (2/3)
exp(Es/kBT), which is the analog of our result ‘p/‘ z 0.61
exp(3b/kBT) quoted at the end of Section 2. Of course, one should
be aware that in real alkane chains successive torsional angles
are not independent of each other, so a really quantitative
application of our model to real polymers would be premature.
For systems such as microtubuli where ‘p is in the range of mm,
on the other hand, it is obvious that such atomistic effects do
not play any role, and then eqn (8) presumably is a reasonable
description. In our view, it matters whether or not the persis-
tence length is orders of magnitude larger than this atomistic
length of chemical bonds along the chain. Thus eqn (8) clearly
is unsuitable to describe connement effects on single-stranded
DNA, for conned double-stranded DNA eqn (8) would work if
all hydrogen bonds remain intact.

Of course, for a direct application of our simulations to a real
system one would have to consider a strongly adsorbed polymer
on a surface of nite extent in one direction (e.g. a terrace of
width D on a stepped surface, under conditions where it is too
energetically unfavorable for the polymer to cross a terrace
boundary.) Clearly, there is a lot of interest in polymers
conned in cylindrical tubes or in slits bound by planar walls;
we hope to report on an extension of the present work to d ¼ 3
dimensions in the future.
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