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Bond-percolation processes are studied for random lattices on the surface of a sphere, and
for their duals. The estimated threshold is 0.3326± 0.0005 for spherical random lattices
and 0.6680 ± 0.0005 for the duals of spherical random lattices, and the exact threshold
is conjectured as 1/3 for two-dimensional random lattices and 2/3 for their duals. A
suitably defined spanning probability at the threshold, Ep(pc), for both spherical random
lattices and their duals is 0.980 ± 0.005, which may be universal for a 2-d lattice with
this spanning definition. The shift-to-width ratio of the distribution function of the
threshold concentration and the universal values of the critical value of the effective
coordination number can be extended from regular lattices to spherical random lattices
and their duals. The results of critical exponents are consistent with the assertion from
the universality hypothesis. Finite-size scaling is also examined.

Keywords: Percolation threshold; critical exponent; scaling function; spherical random
lattice.

1. Introduction

Percolation processes,1 viewed as a simple geometric transitions, have attracted
much interest. Things such as new universal quantities and their finite-size correc-
tions, universal scaling functions of geometric quantities, etc., have been studied
very actively.2–17 But most of the studies have been conducted on a variety of reg-
ular lattices with periodic or free boundary conditions. For irregular lattices, there
exist only few results. Yonezawa et al.18 used the lattices of dice, Penrose tilings,
and the dual of Penrose tilings. The critical percolation exponents calculated in
these lattices belong to the same universality class as on regular lattices. Consid-
ering that these lattices have mixed values of coordination numbers but still own
a regular pattern. Recently the authors used periodic planar random lattices and
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Fig. 1. An example of a random lattice ( ) with its dual ( ) on a 2D spherical surface.

their duals to simulate the percolation process.19 The coordination number varies
from site to site with the average number 6 on a planar random lattice, and is al-
ways 3 on the dual of a planar random lattice.20–22 The results from these lattices
show that not only the critical exponents belong to the same universality class as
those from regular lattices, but also the scaling functions with the properly chosen
metric factors are universal. In order to extend the above consideration to another
boundary condition, in this paper we study the percolation process on spherical
random lattices and their duals.

Spherical random lattices are random lattices defined on a two-dimensional
spherical surface. A sample lattice is shown in Fig. 1. About the construction and
the structure of such lattices, see Refs. 21 and 22. Here we briefly describe some
of their properties. Consider N0 sites randomly distributed on a sphere of area σ
with unit site density. Each of the N0 sites is connected to the nearby sites by links
in a way that the finite area σ of the spherical surface is completely covered by
nonoverlapping convex triangles whose vertices are on the N0 random sites. Under
this construction, the ratio of the link number to the site number in a sufficiently
large sphere is 3(1−2/N0), and the ratio of the triangle number to the site number
is 2(1 − 2/N0). From these ratios, we find the average coordination number for a
site is 6(1 − 2/N0), and a site on the average is shared by 6(1 − 2/N0) triangles.
There are two special features for this type of lattices: a homogeneous distribution
of lattice sites and the absence of a boundary. These geometric characteristics are
the main motivation for this study.

To study percolation processes on spherical random lattices and their duals, we
first calculate the percolating probabilities (defined in Sec. 2), the spanning prob-
abilities, the mean cluster size distributions, and the mean cluster sizes in a bond
percolation model. The configurations used in calculating these quantities are gen-
erated by a random bond process as follows. For a given occupation probability p,
we randomly assign a number r, 0 < r < 1 to all links on the lattice. If the number
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r of a link is less than p, this link is occupied and a bond exists. The minimum
number of configurations used in the calculations is determined by the condition
that the average of the ratios of bond number to link number over the configura-
tions should be equal to the given value of p. From these geometric quantities we
determine the percolation thresholds and the critical exponents by mainly using the
techniques of the finite-size scaling theory. Finally we examine the scaling functions
of these geometric quantities using the obtained thresholds and critical exponents.

This paper is organized as follows. In Sec. 2, we report the simulation results
of various geometric quantities. The estimated values of the percolation thresholds
and critical exponents from the simulation results are given in Sec. 3. In Sec. 4,
using the estimated values of the percolation thresholds and critical exponents, we
investigate if the simulation data of the geometric quantities of finite systems are
consistent with the predictions from the finite-size scaling theory. Finally in Sec. 5
we summarize the results.

2. Geometric Quantities

In the bond-percolation model studied in this work, the occupation probability is
set to be the same for all the links in a lattice. We define a percolating cluster as
a cluster in which the following holds: There exists at least one site, say A, of the
cluster with the property that one of the three corners of the triangle containing
the “antipode” B (see Fig. 1) in the cluster. Using the distributions of clusters in
the lattice of size L, we then calculate the mean cluster size distribution ns(p, L),
which is defined as the ratio of the average number of clusters with s bonds to
the total number of bonds. The percolating probability P (p, L) defined as the ratio
of the number of bonds in the percolating cluster to the total number of bonds.
The spanning probability Ep(p, L) defined as the probability of the appearance of
percolating clusters, and the mean cluster size S(p, L) defined as:

S(p, L) =
∞∑
s=1

s

(
sns∑∞
s=1 sns

)
, (1)

where the quantity, sns/
∑∞
s=1 sns, is the probability that an occupied site belongs

to a cluster containing the s sites.
In the simulation, we use spherical random lattices of unit density and their duals

on spheres of sizes L = 80, 100, 120 and 160. Here the size L is defined as the square
root of the spherical area σ with the total number of sites N = σ = L2. We took
60 occupation probabilities around the critical percolation threshold with ∆p =
0.002, and generated 105 configurations for each. This number of configurations
was doubled at the occupation probability around the peaks of S(p, L). The results
of P , Ep, and S for spherical random lattices and their duals of different sizes are
shown in Figs. 2–4. These results show that due to the larger coordination number
percolating clusters form more easily than on the duals.
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Fig. 2. The percolating probabilities P (p, L) for spherical random lattices ( ) and their duals
( ). The curves from left to right are for linear dimensions L = 80, 100, 120, and 160.
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Fig. 3. The spanning probabilities Ep(p, L) for spherical random lattices ( ) and their duals
( ). The curves from left to right are for linear dimensions L = 80, 100, 120, and 160.

3. Percolation Thresholds and Critical Exponents

We use the finite-size scaling theory23,24 to determine the percolation thresholds,
and to extract the critical exponents from the simulation results. The method
we used here is the same as we used in planar random lattices, and in the following
we briefly describe this method. For the estimation of percolation thresholds we
notice that the spanning probability, Ep(p), is a step function for an infinite sys-
tem, and for a finite large system the derivative, dEp/dp, has a sharp peak close
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Fig. 4. The mean cluster size S(p, L) for spherical random lattices ( ) and their duals ( ).
The peaks from up to down curves are for linear dimensions L = 160, 120, 100, and 80.

to pc(L),25–27 and the spanning probability changes from close zero towards close
to one in a transition region ∆(L). Here pc(L) is the average threshold for a finite
system of size L, and the width ∆(L) is defined as the deviation

∆2(L) = 〈p2〉 − 〈p〉2 . (2)

We adopt standard algorithms16,27 to generate a fixed sequence of random numbers
for each configuration and do the binomial search in p to find the value of pc, at
which the percolating cluster appears for the first time. We start from the initial
guess p = 1/2, and check if the percolating cluster exists. If there exists at least one
percolating cluster in the system, we decrease the value of p by 2−n−1, where n is
the number of iteration. If there is no percolating cluster, we increase the value of p
by 2−n−1. After we repeat the process over 14 times, the accuracy of the estimation
is around 10−4. According to the finite-size scaling theory, we have

|pc(L)− pc| ∝ L−1/ν , (3)

where pc is the threshold of the infinite system. Finite size scaling predicts that the
width also scales as

∆(L) ∝ L−1/ν . (4)

Thus we first use the scaling law Eq. (4) to determine the critical exponent ν, and
then using the result for ν we determine the percolation threshold pc for the infinite
system from Eq. (3). Once ν and pc are determined, we use the scaling laws

P (p, L) ∝ L−β/ν , (5)

S(p, L) ∝ Lγ/ν , (6)

ns(pc, L) ∝ s−τ , (7)
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Fig. 5. The logarithms of the deviation ∆(L), log(∆(L)), versus logL for spherical random
lattices and their duals.

and

sperc(pc, L) ∝ LD , (8)

to determine the critical exponents D, τ , β, and γ. Here sperc(pc, L) is the mean
size of a percolating cluster at the percolation threshold pc for the lattice of size L.

Using the above method, we obtain the effective percolation thresholds pc(L)
and the width ∆(L). Then from Eq. (4) we obtain the critical exponent ν by using
the least-square fit to find the slope of the line log ∆(L) versus logL as shown in
Fig. 5. The estimated value of ν is 1.3188 for spherical random lattices and 1.3139
for the duals. The deviations of these values from the exact value for regular lattices,
which is ν = 4/3, are only about 2%. We then take the value ν = 4/3, and we use
Eq. (3) to obtain the percolation threshold pc by extrapolating as shown in Fig. 6.
The thresholds we obtain are 0.3326(5) for spherical random lattices and 0.6680(5)
for the duals.

We check the values of the thresholds with two known properties. One is the
dual relation. For an infinite planar lattice L∞ and its dual Ld∞, there is a relation
between the two corresponding thresholds,18,28,29

pc(L∞) + pc(Ld∞) = 1 . (9)

Our threshold results agree with this relation up to the third digit after the decimal
point. The other known property is an empirical approximate relationship for the
thresholds. They seem to occur at a critical value ηc of the effective coordination
number, which is defined as the product of the threshold pc and the coordination
number z. This critical value seems to be given as18,30:

ηc ≡ zpc =
d

d− 1
, (10)
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Fig. 6. Thresholds pc versus L−1/ν for spherical random lattices and their duals. Notice that
2pc is shown for the spherical lattices, in order to reduce the scale of the y-axis.

which is 2 for 2D. For spherical random lattices, the coordination number varies
from site to site, and we take the average value 6 to obtain the result ηc = 1.9956.
For their duals, the coordination number is a constant, 3, and the corresponding ηc
is 2.0004. They all agree with the value 2 very well. We notice that we had obtained
previously19 pc = 0.3333(1) for planar random lattices and pc = 0.6670(1) for the
duals of planar random lattices. From these threshold results and the above two
properties, we conjecture that the exact value of pc is 1/3 for planar or spherical
random lattices and 2/3 for their duals. There is another universal quantity
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Fig. 7. The shift (pc − pc(L)) versus the width ∆(L) for spherical random lattices and their
duals.
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pointed out by Gropengiesser and Stauffer,9 and it is the shift-to-width ratio
(pc − pc(L))/∆(L), which is about 2 for two-dimensional finite, but large systems.
We plot (pc − pc(L)) versus ∆(L) curve in Fig. 7 for spherical random lattices and
their duals of sizes L = 10, 20, 40, 80, 100, 120, and 160, and the result indicates
that the data are consistent with the relation, (pc − pc(L)) ' 2∆(L). Recently the
value of Ep(p) at p = pc has been investigated by many researchers, and it is known
that this value depends on the aspect ratio and the boundary condition. In our pre-
vious study, we showed that the universal value of Ep(pc) for a specified aspect ratio

1.8 1.9 2.0 2.1 2.2 2.3
3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

lo
g(

s 
pe

rc
 )

log(L)

 spherical random
 dual of spherical random

Fig. 8. Logarithm of the average size of a percolating cluster, log sperc, as a function of logL for
spherical random lattices and their duals.
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Fig. 9. The logarithm of the number of clusters composed of s bonds, logns, as a function of
logL for spherical random lattices and their duals.
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obtained from periodic regular lattices can be extended to periodic planar random
lattices and their duals. For spherical random lattices and their duals, there are
no boundary condition and aspect ratios, and from the results shown in Fig. 3 the
Ep(pc) value for both spherical random lattices and their duals is 0.980(5), which
may be an universal value for our definition of spanning.

We further use Eqs. (5)–(8) to obtain the critical exponents D, τ , β, and γ. We
show the line log sperc versus logL in Fig. 8, the line logns(pc) versus log s in Fig. 9,
the line logP versus logL in Fig. 10, and the line logS versus logL in Fig. 11. We
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Fig. 10. The logarithm of the percolating probability, log P , as a function of logL for spherical
random lattices and their duals.
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Fig. 11. The logarithm of the mean cluster size, logS versus logL for spherical random lattices
and their duals.
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Table 1. The simulation results of the critical exponents ν, β/ν, γ/ν, τ
and D for spherical random lattices and their duals.

Lattices ν β/ν γ/ν τ D

Spherical random 1.3188 0.1049 1.6812 2.0246 1.8951
Dual of spherical random 1.3139 0.0915 1.6459 2.0480 1.9085

Theoretical prediction
4

3

15

144

129

72

187

91

91

48

obtain exponents, D, τ , β/ν, and γ/ν, by calculating the slopes of these lines. The
results of all the exponents we obtained are listed in Table 1.

The errors of our results are estimated as follows: First in finding the geometric
quantities, we use the variance of block averages to get our error estimate. The
deviations we obtain are less than 1% for the resultant values of the spanning
probability, percolating probability, and the mean cluster size. To estimate the
errors in our results of critical exponents, we applied the same method to periodic
square lattices to find the critical exponents, and we take the deviations of these
results from the known exact values as the estimations of the errors. For periodic
square lattices, we find that the deviations for the exponents ν, D, τ , and β/ν

are less than 1%, and the deviation is about 8% for γ/ν. Our results of critical
exponents for spherical random lattices and their duals deviate from the exact values
for regular lattices by about the same percentages. Therefore we may conclude that
our results are consistent with universality.

4. Scaling Function

For a quantity X to scale as X(t) ∼ t−ρ near the critical point t = 0 in the infinite
system, according to the finite-size scaling theory23,24 the quantity XL(t) in a finite
system characterized by a size L should obey the general scaling law,

XL(t) ∼ Lρ/νF (tL1/ν) (11)

where F (x) with x = tL1/ν is called a scaling function. When finite-size scaling is
valid, the scaled data, XL(t)/Lρ/ν for different values of L and t are described by
a single scaling function F (x). To examine this scaling form, we use the simulation
results of lattice sizes L = 80, 100, 120 and 160 to plot Ep, P/L−β/ν and S/L−γ/ν

as a function of x = (p− pc)L1/ν with the exponent values, ν = 4/3, β = 5/36 and
γ = 43/18, and the percolation threshold 0.3326 for spherical random lattices and
0.6680 for the duals of spherical random lattices. The results are shown in Figs. 12
and 13. We can see from these results that all the scaled data of Ep, P and S can
be described by a single scaling function respectively.

5. Summary

We have studied bond-percolation processes in spherical random lattices and their
duals. By the use of the finite-size scaling theory, we estimate the percolation
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Fig. 12. The scaled results of Ep(p, L), P (p, L)/L−β/ν and S(p, L)/Lγ/ν for spherical random
lattices with linear dimensions L = 80, 100, 120, 160 as functions of x = (p − pc)L1/ν .
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Fig. 13. The scaled results of Ep(p, L), P (p, L)/L−β/ν and S(p, L)/Lγ/ν for the duals of spherical
random lattices with linear dimensions L = 80, 100, 120, 160 as functions of x = (p− pc)L1/ν .

thresholds and the critical exponents. For the percolation thresholds the results
are 0.3326 ± 0.0005 for spherical random lattices and 0.6680 ± 0.0005 for the du-
als of spherical random lattices. These results agree very well with the relation
pc+pdc = 1. Here pdc is the threshold on the dual of a lattice with threshold pc. Also
the empirical universal value of the critical value, ηc, of the effective coordination
number, which is defined as the product of the threshold pc and the coordination
number, can be extended to spherical random lattices and their duals. From these
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results and the previous study on planar random lattices and their duals we con-
jecture that the exact threshold is 1/3 for two-dimensional random lattices and 2/3
for the duals of two-dimensional random lattices. We also confirm that the rela-
tion, pc − pc(L) ' 2∆(L), holds in spherical random lattices and their duals. For
spherical random lattices and their duals, there is no boundary line, and the Ep(pc)
value is 0.980(5), which may be universal for a lattice defined on a two-dimensional
compact space. By taking the errors into account, our results of critical exponents
are consistent with the assertion of the universality hypothesis. Also the finite-size
scaling of the percolating probability P (p, L), the spanning probability Ep(p, L),
and the mean cluster size S(p, L) can be described by a single scaling function
respectively.
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