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“bottle brushes”: No sharp phase transition
but a tunable length scale
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Abstract. – A lattice model for a symmetrical copolymer “bottle brush” molecule, where two
types (A, B) of flexible side chains are grafted with one chain end to a rigid backbone, is studied
by a variant of the pruned-enriched Rosenbluth method (PERM), allowing for simultaneous
growth of all side chains in the Monte Carlo sampling. Choosing repulsive binary interactions
between unlike monomers and varying the solvent quality, it is found that phase separation
into an A-rich part of the cylindrical molecule and a B-rich part can occur only locally. Long-
range order (in the direction of the backbone) does not occur, and hence the transition from
the randomly mixed state of the bottle brush to the phase separated structure is strongly
rounded, in contrast to corresponding mean-field predictions. This lack of a phase transition
can be understood from an analogy with spin models in one space dimension. We predict that
the range of microphase separation along the bottle brush backbone can be controlled on the
nanoscale by varying the solvent quality.

Introduction and motivation. – Macromolecules with a comb-like architecture, where
side chains are grafted to a linear (backbone) chain, find increasing interest: if the backbone
is a rigid polymer, its solubility and processibility is improved [1–3]; if the grafting density
of the side chains is very high, cylindrical “bottle brush”-shaped objects form, which under
certain conditions show a thermally induced collapse transition to a spherical structure, pro-
viding interesting perspectives for the design of “molecular actuators” [4]; if copolymer bottle
brushes are created by dense grafting of two types of side chains (A,B) on the backbone,
interesting “horseshoe” and “meander”-like structures are observed, which is attributed to a
local phase separation along the backbone of the bottle brush [5]. Clearly, this creates addi-
tional possibilities when one considers the desired [5] use of such shape persistent cylindrical
macromolecules as building blocks in molecular assemblies. Thus, the problem of phase sep-
aration within a simple copolymer bottle brush has also found attention both by analytical
theory [6] and computer simulation [7]; the possibility to create “Janus cylinders” (the upper
half of the cylinder containing the B monomers, the lower half containing the A monomers)
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Fig. 1 – Crossover scaling behavior of the correlation length ξ as a function of temperature T . ξ ∝
(T/Tc − 1)−ν for T > Tc, and ξ ∝ R2Γ(T )/kBT for T < Tc.

was suggested, and predictions on how the phase transition point from the randomly mixed
state (where both A and B monomers are homogeneously distributed in the cylinder volume)
to the separated state depends on the chain length of the side chains N were given [6].

In the case of flexible backbones there is a delicate interplay between the local segregation
between the A and B side chains and the global geometric structure (such as “horseshoe”, etc.)
of the bottle brush, requiring a detailed and accurate understanding of the phase separation
in these molecules. We reconsider this problem, performing Monte Carlo simulations of a
similar model as in ref. [7], but our analysis focuses on a different aspect, that has been
completely ignored in the literature so far: single bottle brush molecules with side chains
of finite chain length N and very long, ideally infinitely long length of the backbone chain
are quasi-one-dimensional (1d) objects. Statistical mechanics of systems with short-range
interactions implies quite generally [8, 9] that there cannot be any sharp phase transitions
in 1d systems in thermal equilibrium. A point in case is e.g. the 1d XY model, a chain
of spins where each spin i is described by an angle ϕi in the xy-plane, with 0 ≤ ϕi ≤ 2π.
Neighboring spins along the chain experience a coupling −J cos(ϕi − ϕj). While mean-field
theories predict that ferromagnetic order along the chain occurs for temperatures T < TMF

c =
cJ , where c is a constant of order unity [8], an exact solution of this problem [8, 9] shows
that ferromagnetic long-range order is unstable against long-wavelength fluctuations, and
actually the ferromagnetic correlation length ξ grows completely gradually as the temperature
is lowered,

ξ = 2a(J/kBT ) , (1)

a being the lattice spacing. Thus Tc = 0: note that ξ has to diverge when Tc is approached,
and the singularity of ξ predicted by mean-field theory at T = TMF

c is completely washed out.
This consideration can be generalized to cylinders of cross-section area πR2 [10]. Then eq. (1)
gets replaced by a more complicated behavior that is sketched in fig. 1. For T > Tc (the
critical temperature of the corresponding bulk three-dimensional system) ξ ∝ (T/Tc − 1)−ν ,
where ν is the appropriate critical exponent, until ξ is of the order of R. Then the critical
singularity is rounded off, and a crossover sets in to a relation analogous to eq. (1),

ξ = 2Γ(T )πR2/kBT ∝ (R2/a)(J/kBT ) , T → 0 . (2)

Note that the “spinwave stiffness” (helicity modules) Γ(T ) characterizes the cost of long-
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Fig. 2 – Perfect phase separation of side chains in a binary (A, B) copolymer bottle brush with
alternating grafting sequence ABAB · · · into a “Janus cylinder” structure implies formation of an
interface plane (part a), shaded) between the A-rich part (bottom) and the B-rich part (top) of
the cylindrical bottle brush. The local orientation of this interface can be characterized by a vector
oriented normal to it (arrows). At nonzero but low temperature phase separation will occur locally, but
entropy will lead to long-wavelength fluctuations of the orientation of this vector (b), destroying axial
long-range order along the direction of the backbone of the bottle brush. Since the interface is not a
sharp plane at nonzero temperature, but rather has a finite width, a numerical characterization of the
local orientation of the interface is difficult. An essentially equivalent but numerically unambiguous
characterization of this “Janus cylinder”-type ordering is achieved by calculating the unit vector from
the grafting site (n) of each chain to the projection of its center-of-mass position into the xy-plane
�Rα

cm(n), see part (c).

wavelength order parameter rotations, and Γ(T → 0) ∝ J . In the present work we shall
provide evidence that the correlation length describing phase separation of a “Janus cylinder”
type behaves qualitatively similar to eqs. (1) and (2), cf. fig. 2b. Then the Flory-Huggins
parameter χAB that describes the incompatibility between A and B monomers takes the role
that (J/kBT ) plays for the spin model. However, the problem whether for N → ∞ (and
depending on the solvent condition) sharp phase transitions are restored is nontrivial, and in
particular, describing the extent of rounding of the (mean-field) transitions illustrated in [6]
by these long-range fluctuations along the chain backbone remains a challenge.

Model and simulation technique. – As considered previously [6,7], the generic model for
this problem treats a completely rigid rod, oriented along the z-axis of a simple cubic lattice,
and the side chains of type A and B are grafted in an alternating way, every site of the
backbone chain being the grafting site of a side chain end. Of course, creating a statistical
copolymer where the type of side chain along the backbone is chosen at random would be
more realistic, from the experimental point of view. However, the quenched disorder thus
introduced would encumber a theoretical treatment considerably, therefore this has not been
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considered previously [6,7], and hence we study here regularly alternating copolymers, for the
sake of better comparison to previous work. Also, we introduce a periodic boundary condition
in z-direction, to avoid end effects associated with a finite backbone length.

The side chains are self- and mutually avoiding random walks. Between monomers of the
side chains and monomers of the backbone chain only the excluded-volume effect is considered.
We allow for nearest-neighbor interactions εAB , εAA = εBB = ε between the respective pairs
of monomers of the side chains, and hence the partition sum for this model is

Z =
∑

qmAA+mBBqmAB

AB , (3)

where q = exp[−ε/kBT ], qAB = exp[−εAB/kBT ], and mAA, mBB , mAB are the numbers of
nonbonded occupied nearest-neighbor monomer pairs AA, BB, and AB, respectively. The
sum in eq. (3) extends over all possible configurations of these walks. Varying q in the
range 1 ≤ q ≤ 1.5, we cover the full range from good solvents (ε = 0) to poor solvents
(q = 1.5), since the θ-solvent corresponds to a choice [11] qθ = exp[−ε/kBTθ] ≈ 1.3087. We
vary qAB in the range 0 ≤ qAB ≤ q: The case qAB = 0 corresponds to a very strong repulsion
between A and B, while for qAB = q the chemical incompatibility vanishes (recall that [12]
χAB ∝ εAB − (εAA + εBB)/2).

For our simulations, we use the pruned-enriched Rosenbluth model (PERM) [11]. This
is a biased chain growth algorithm with population control. PERM has been applied very
successfully both to linear and branched polymers (stars [13,14], lattice animals [15]). Similar
to [13, 14], the bottle brush is generated by adding one monomer to each side chain until all
side chains have the same number of monomers, thus growing all side chains simultaneously.
For efficiency, side chains are grown with higher probabilities in the directions perpendicular
to the backbone and in the direction where there are more free next neighbor sites. This
additional bias must be taken into account by suitable weight factors. High statistics (105–106

independent configurations) is obtained by using the population control (pruning/cloning) [11,
13–15]. The backbone length also is varied (Lb = 32, 48, 64) to check that finite-size effects
caused by too small Lb are still negligible.
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Fig. 3 – Correlation function Cn describing the correlation of local phase separation along the back-
bone plotted vs. the distance n on a semi-log scale, for good-solvent conditions (ε = 0), N = 6 (left
part) and N = 18 (right part). All data are for Lb = 32, and several choices of qAB are included, as
indicated. Note that Cn ≡ (〈�SA

i · �SA
i+n〉 + 〈�SB

i+1 · �SB
i+1+n〉)/2. Curves show the best fit to the data,

i.e. Cn ∼ [exp[−n/ξ] + exp[−(Lb − n]/ξ)].
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Fig. 4 – Correlation function Cn plotted vs. n on a semi-log scale, for a poor solvent (q = 1.5),
Lb = 32, N = 6 (left) and N = 18 (right). Several choices of qAB are included, as indicated. Curves
show the best fit to the data, i.e. Cn ∼ [exp[−n/ξ] + exp[−(Lb − n)/ξ]].

Results and discussions. – As has also been discussed in [7], the quantification of the
phase separation that occurs in a bottle brush is difficult. We follow here an approach that is
motivated by the analogy with the spin problem mentioned in the introduction (fig. 2). We
draw from each grafting site the vector �Rα

cm to the center of mass (CM) of each side chain
of type α (α = A or B), and use the x and y components of these vectors to define a unit
vector �Sα

i that points along that direction in the xy-plane. Making use of the fact that we
have grafted A and B chains in an alternating way, we compute the correlation functions
〈�SA

i · �SA
i+n〉, 〈�SB

i+1 · �SB
i+1+n〉, for n = 0, 2, 4, 6, . . . . If we had a symmetry breaking of “Janus

cylinder” type (i.e. a plane containing the backbone exists, such that the A-monomers are
on one side of this plane and the B-monomers on the other), the above correlations would
not decay to zero as n increases, but rather settle down at a nonzeroth-order parameter
square. Figures 3 and 4 show that this is not the case: for good-solvent conditions q = 1
even strong incompatibility (qAB → 0) can induce only a correlation of rather short range. In
poor solvents there is also little correlation when the side chains are very short (N = 6) and
much stronger correlations occur for longer chains (N = 18). Although our data are already
somewhat affected by the finite length of the backbone (note the symmetry of Cn = CLb−n),
they are fitted by exp[−n/ξ] + exp[−(Lb − n)/ξ] quite well. In fig. 5 corresponding snapshots
(similar to those of [7]) show rather pronounced phase separation, but this clearly is an artifact
of the finite system size. The correlation lengths ξ which are determined by fitting Cn for
n ≥ 2 as shown in figs. 3 and 4 are shown in fig. 6. As expected in view of the discussion
given in the introduction, ξ increases gradually with increasing chemical incompatibility χAB

qAB = 1.5 qAB = 0.1

Fig. 5 – Snapshots of the copolymer bottle brushes for a poor solvent (q = 1.5), Lb = 64, N = 18,
qAB = 1.5 (mixed state) and qAB = 0.1 (state with local phase separation). Monomers A, monomers
B, and monomers on the backbone are shown in black, gray, and white colors, respectively.
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Fig. 6 – Inverse of correlation lengths ξ vs. χ−1
AB for copolymer bottle brushes with backbone length

Lb = 32, 48, and 64, and three chain lengths N = 6, 12, and 18. Both good- (left) and poor- (right)
solvent conditions are shown.

(decreasing temperature). Choosing poor solvent and/or N larger makes ξ also larger. Since
1/ξ decreases linearly as χ−1

AB → 0, one can extrapolate the data to χ−1
AB = 0 by fitting a

straight line 1/ξ = 1/ξN + b/χAB . Results of ξN in a poor solvent are shown in fig. 7. It gives
an indication that a sharp phase transition (1/ξN → 0) will develop in the limit of large χAB

and large N . For very poor-solvent condition, one expects that the brush fills a cylinder of
radius proportional to

√
N densely, so the situation should be analogous to eq. (2), with πR2

being replaced by N . Our data are roughly compatible with such an interpretation. However,
the radial density profiles of the bottle brush molecules (fig. 7) show that the actual density
profile ρ(r) is still far from a profile of a densely filled cylinder (ρ(r) = 1 for 0 < r < R). This
low density is probably responsible for the fact that ξ stays finite as χ−1

AB → 0 (fig. 6).
Alternatively, one could partition a bottle brush along its backbone direction into disks

with height a (distance between the neighboring grafting sites in our model). Each disk only
contains one grafting site. The unit vector �Sα

i is then defined by the direction from each
grafting site to the CM of monomers of type α (α = A or B) in the xy-plane. However, our
results show that the correlation functions of this observable decay much faster due to the
large fluctuations of the orientation of the vector �Sα

i .
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Fig. 7 – Inverse of correlation length ξN in the limit of χAB → ∞ vs. 1/N for a poor solvent (q = 1.5).
The straight line shows the asymptotic behavior as N → ∞ (left part). Monomer density profile ρ(r)
plotted vs. r for a poor solvent (q = 1.5), qAB = 0.1 and Lb = 64 (right part).
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Summarizing these results, we have presented evidence that the phase separation towards
a “Janus cylinder” structure develops completely gradually as the incompatibility between the
two types of monomers increases. For our short side chain lengths, no trace of the sharp phase
transitions predicted by Stepanyan et al. [6] could be detected (a similar conclusion was also
reached in [7]). Very large length of side chains and/or very strong incompatibility is needed
to produce a correlation extending over a large number of side chains. The fluctuation that
has been ignored by the mean-field theory [6], long-wavelength random “twist”-like rotation
of the local interface between the A-rich and the B-rich region in the “Janus cylinder”, costs
very little energy and destroys long-range order dramatically (fig. 2b). On the other hand,
varying suitably side chain length and solvent quality, one can control the nanoscopic length
scale over which Janus-type phase separation occurs along the backbone of the bottle brush.
For asymmetric side chain lengths (and flexible backbones) this length scale is related to the
spontaneous curvature of the cylinder-shaped bottle brush polymer. Controlling this curvature
is desirable for the anticipated application of such molecules in nanotechnology [5].
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