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In this supplementary note to the Theoretical Astroparticle Physics lecture from May 02,
2013, we clarify a few points regarding the derivation of Einstein’s equations from a La-
grangian, and regarding the energy-momentum tensor of a scalar field.

1. EINSTEIN’S EQUATION FROM A LAGRANGIAN

In the following, we derive Einstein’s equations from the action

S =
∫
d4x (LGR + Lmatter) , (1)

where

LGR = − 1
16πG

√
−g(R+ 2Λ) , (2)

Lmatter =
√
−g L̃ =

√
−g
[
(∂µφ†)(∂νφ)gµν − V (φ†φ)

]
. (3)

Here, G is the gravitational constant, R is the Ricci scalar, Λ is the cosmological constant, φ is a
complex scalar field with potential V (φ†φ), and g is the determinant of the metric. L̃ is the matter
Lagrangian in Minkowski space. Note that for a scalar field, the covariant derivative is identical to
the ordinary derivative, hence we write ∂µ instead of ∇µ for simplicity. (When taking derivatives
of vector fields, one has to use the covariant derivative ∇µ in order to ensure diffeomorphism
invariance of the Lagrangian.)

The variation of LGR is

δLGR = − 1
16πG

[
δ(
√
−g)(R+ 2Λ) +

√
−g δ(gµνRµν)

]
. (4)

To evaluate the first term, we use

δ(
√
−g) =

1
2
√
−g gµνδgµν , (5)

which follows from the matrix identity

∂ detA(x)
∂x

= detA(x)× tr
[
A−1(x)

∂A(x)
∂x

]
(6)

for an arbitrary matrix A depending on a parameter x.
It can be shown that the second term in eq. (4) yields

−
√
−gRµνδgµν , (7)
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plus a total covariant derivative which can be omitted from the action if we apply Stokes’ theorem
and assume as usual that boundary terms vanish.

To see why the second term in eq. (4) has this simple form, one has to begin with the definition of
the Riemann curvature tensor in terms of the Christoffel symbols,

R σ
µνρ = Γσµρ,ν − Γσνρ,µ + ΓαµρΓ

σ
αν − ΓανρΓ

σ
αµ . (8)

The variation of R σ
µνρ is

δR σ
µνρ = ∂νδΓσµρ − ∂µδΓσνρ + (δΓαµρ)Γ

σ
αν + Γαµρ(δΓ

σ
αν)− (δΓανρ)Γ

σ
αµ − Γανρ(δΓ

σ
αµ) . (9)

We now use the definition of the covariant derivative of an arbitrary tensor tα1···αn

β1···βn
,

∇νtα1···αn

β1···βn
= ∂νt

α1···αn

β1···βn
+
∑
i

Γαi
ντ t

α1···τ ···αn

β1···βn
−
∑
i

Γτνβi
tα1···αn

β1···τ ···βn
(10)

to show that

∇ν δΓσµρ = ∂νδΓσµρ + Γσνα δΓ
α
µρ − Γανµ δΓ

σ
αρ − Γανρ δΓ

σ
αµ (11)

and thus eq. (9) reduces to

δR σ
µνρ = ∇ν δΓσµρ −∇µ δΓσνρ . (12)

Here, we have used the identity Γαβγ = Γαγβ as well as the fact that, while a Christoffel symbol
Γαβγ is not a Lorentz tensor, its variation δΓαβγ is. (Hence we can form its covariant derivative.) To
see this, write δ(Γσµρt

ρ) for an arbitrary vector field tρ in terms of partial and covariant derivatives:

(δΓσµρ)t
ρ + Γσµρδt

ρ = δ(∇µtσ)− ∂µδtρ , (13)

from which it follows that

(δΓσµρ)t
ρ = δ(∇µtσ)−∇µδtρ . (14)

The right hand side of this equation is manifestly covariant, so the left hand side must be covariant
as well. Eq. (12) immediately yields the variation of the Ricci tensor Rµρ = R α

µαρ :

δRµρ = ∇α δΓαµρ −∇µ δΓααρ (15)

and of the Ricci scalar R = Rµµ:

δR = δ(Rµρgµρ) = (∇α δΓαµρ)gµρ − (∇µ δΓααρ)gµρ −Rµρδgµρ . (16)

In the last term, we have used δgµρ = −gµα gνβ δgαβ , which in turn follows from the well-known
relation for the derivative of the inverse of a matrix: ∂A−1(x)/∂(x) = −A−1(∂A/∂x)A−1. The
first two terms on the right hand side of eq. (16) form a total covariant derivative because gµρ can
be pulled under the covariant derivative since ∇αgµρ = 0. By the same argument, these terms still
yield a total covariant derivative when multiplied by

√
−g, as in eq. (4).

Plugging everything into eq. (4) and neglecting the total derivative terms we obtain

δLGR = − 1
16πG

[
1
2

(R+ 2Λ)gµν −Rµν
]√
−g δgµν . (17)

The term in square brackets is just the Einstein tensor—the left hand side of Einstein’s equation.
To obtain the right hand side, we now vary Lmatter with respect to gµν :

δLmatter = δ(
√
−gL̃) (18)
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=
1
2
√
−g gµνL̃ δgµν +

δL̃
δgµν

√
−g δgµν . (19)

Adding up eqs. (19) and (17), and using that the variation of the action has to vanish for any δgµν ,
we obtain Einstein’s equation:

Rµν − R

2
gµν = 16πG

[
− 1

2
gµνL̃ − δL̃

δgµν
+

Λ
16πG

]
(20)

= 8πGTµν + Λgµν . (21)

In the last step, we have defined the stress-energy tensor

Tµν = −gµνL̃ − 2
δL̃
δgµν

. (22)

2. THE STRESS-ENERGY TENSOR FOR A SCALAR FIELD

We now apply eq. (22) to the case of a scalar field with a Lagrangian given by eq. (3). We obtain

Tµν = −(∂ρφ†)(∂ρφ)gµν + V (φ†φ)gµν + 2(∂αφ†)(∂βφ)gαµgβν . (23)

Note that in the last term, we have again used δgµρ = −gµα gνβ δgαβ.

It is important here that we write the kinetic term as (∂αφ†)(∂βφ)gαβ before varying it with respect
to gµν , not as (∂αφ†)(∂βφ)gαβ . The reason is that a Lagrangian is always a function of fields (φ in
our example) and their first covariant (not cotravariant) derivatives with respect to the space-time
coordinates (∇µφ = ∂µφ in our case). If we chose to treat φ and the contravariant derivative
∇µφ = ∂µφ as the fundamental functions instead, we would get into trouble when attempting
to derive the Euler-Lagrange equations for the field. Doing so requires applying Stokes’ theorem
once to remove a total derivative term. Stokes’ theorem, however, holds only for total covariant
derivatives (= derivatives with lower indices).

In a Friedmann-Robertson-Walker Universe, we obtain for the time component T 00:

T 00 = (∂0φ)†(∂0φ) +
1

R2(t)

∑
j

(∂jφ)†(∂jφ) + V (φ†φ) , (24)

and for the spatial components T ii:

T ii =
1

R2(t)
(∂0φ)†(∂0φ)− 1

R4(t)

∑
j

(∂jφ)†(∂jφ) + 2
1

R4(t)
(∂iφ)†(∂iφ)− 1

R2(t)
V (φ†φ) . (25)

Note that spatial indices j are only summed where explicitly indicated. In the case of a perfect,
homogeneous, isotropic fluid, the spatial derivate terms vanish. To interpret the components of T in
terms of the energy density and the pressure in this case, we note that (Tµν) = diag(ρ,−p,−p,−p)
for a perfect homogeneous, isotropic fluid (note the position of the indices!). This leads to

ρ = |φ̇|2 + V , (26)

p = |φ̇|2 − V . (27)
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3. ANSWERS TO QUESTIONS THAT AROSE DURING THE LECTURE ON 02.05.2013

1. A missing minus sign in the derivation of δLGR?
The origin of the confusion was the way in which I had expanded δ(gµνRµν) in eq. (4). It is
important to use

δ(gµνRµν) = Rµνδg
µν + gµνδRµν (28)

and not

δ(gµνRµν) = Rµνδgµν + gµνδR
µν (29)

The reason is that δRµν yields a total covariant derivative ∇α (with lower index), whereas
δRµν yields a total contravariant derivative ∇α (with upper index). In order to remove the
total derivative from the action, we need to apply Stokes’ theorem which holds for derivatives
with lower indices.

Since we want to pull δgµν (with lower indices) out of the square brackets in eq. (17), we
need to use δgµρ = −gµα gνβ δgαβ in the first term on the right hand side of eq. (28), hence
the relative minus sign in eq. (17).

2. Do we assume Minkowski space in deriving expressions for ρ and p?
In the lecture, we assumed the Minkowski metric, which is always possible at a given fixed
time t1 in cosmological history if we rescale coordinates in such a way that R(t1) = 1.
However, this assumption is not necessary, as the derivation in sec. 2 shows. The extra
factors of R(t) that appear in eqs. (24) and (25) vanish when the spatial derivatives are
discarded and when one of the indices is lowered to obtain Tµν .
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