
Theoretical Astroparticle Physics Exercise Sheet 5 June 27, 2013

1. East–west effect for charged cosmic rays
Argue that the flux of low-energy (. few × 10 GeV) cosmic ray protons is larger
from the west than from the east. Assume that cosmic rays are isotropic before they
enter the Earth’s magnetic field. What is the minimum energy a cosmic ray proton
travelling in the (magnetic) equatorial plane must have in order to reach a detector
on Earth?

2. The GZK (Greisen-Zatsepin-Kuzmin) cutoff
Cosmic ray protons whose energy is sufficient to induce the reactions

p+ γCMB → p+ π0 , p+ γCMB → n+ π+ (1)

(inelastic scattering on CMB photon) loose energy very quickly and thus cannot reach
the Earth. This is called the GZK (Greisen-Zatsepin-Kuzmin) cutoff.

(a) What is the proton energy Ep at the cutoff? What velocity would a tennis ball
(m ∼ 60 g) of the same kinetic energy have?
Hint: The average energy of CMB photons can be calculated from their tem-
perature of 2.73 Kelvin. Assume for simplicity that all collisions are head-on.

(b) What is the energy of the pions produced at rest in the reactions (1)?

(c) Compute the maximum neutrino energy from the decay of these pions.

Note: GZK neutrinos have not been detected yet, since their average flux on Earth
is about 10 km−2 yr−1, and their average interaction length is about 300 km.

3. Dark matter capture in the Sun
When dark matter particles scatter on atomic nuclei in the Sun, they can loose enough
energy to remain gravitationally bound to the Sun. Over astrophysical timescales,
they can dissipate also their remaining kinetic energy through scattering, and even-
tually settle down in the core of the Sun. In the resulting dark matter cloud at the
center of the Sun, dark matter annihilation is efficient, and if neutrinos are among the
annihilation products, one expects a possibly observable flux of high-energy neutrinos
from the Sun. (All other annihilation products will be absorbed in the Sun.)

In the following, we derive an expression for the rate of dark matter capture in the
Sun, following A. Gould, Astrophys. J. 321 (1987) 571.

(a) Let f(u)du be the (isotropic) DM velocity distribution far away from the Sun’s
gravitational field. (Here, u ≡ |~u|). Show that the number of DM particles
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entering a spherical region of radius R per unit time is given by

4πR2 · 1

4
nχf(u)u du

d(J2)

R2u2m2
χ

, (2)

where J is the DM angular momentum, mχ is the DM mass, and nχ is the DM
number density.

(b) Consider now a thin spherical mass shell of radius r and thickness dr, centered
around the origin. Let vesc(r) be the escape velocity of the shell, i.e. the velocity a
particle located at radius r must have in order to escape the shell’s gravitational
field. We define Ω(vesc, w) as the probability per unit time for a dark matter
particle of velocity w to scatter to a velocity < vesc while travelling through the
shell material. Show that the total DM capture rate of the shell is

dC = 4πr2 dr

∫ ∞
0

dunχ
f(u)

u
wΩ

(
vesc, w

)
, (3)

where w =
√
u2 + v2

esc.
Hint: Show first that the time a DM particle spends inside the shell material is

2
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dr θ(rwmχ − J) . (4)

Here θ(. . . ) denotes the Heaviside step function.

(c) Next, we derive an expression for Ω(vesc, w). Compute the maximum fractional
kinetic energy loss ∆E/E of a DM particle of mass mχ scattering elastically on
a nucleus of mass mN , and the minimum fractional kinetic energy loss required
for a DM particle of velocity w to scatter to a velocity < vesc. (Work in the
nonrelativistic approximation).

(d) Using that kinetic energy losses ∆E/E in DM scattering are equally distributed
between zero and the maximum value, show that

Ω
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)
. (5)

Here σ is the DM–nucleus scattering cross section and nN is the number density
of nuclei.

(e) Assume the DM velocity follows a Maxwell-Boltzmann distribution

f(u) =
4

ū3
√
π
u2 exp(−u2/ū2) . (6)

Derive an expression for the DM capture rate in the Sun per unit time, C =
∫
dC,

neglecting the proper motion of the Sun relative to the galactic rest frame. (You
do not need to evaluate the integrals analytically.)

(f) Estimate the total mass of the DM particles the Sun has captures during the
4.6 × 109 yrs of its existence. Compare the result to the total mass of the
Sun. Assume mχ = 100 GeV, nχmχ = 0.3 GeV/cm3, v̄ = 220 km/sec, and
σ = 10−45 cm2. You may neglect scattering on nuclei other than hydrogen here,
but note that it can increase the capture rate by about two orders of magnitude!
Assume that the solar mass was constant throughout its history, and that the
Sun has a constant density.
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