## Neutrino anomalies

Joachim Kopp

#### Max Planck Institut für Kernphysik, Heidelberg

October 5, 2013

## Recap: summary of neutrino oscillation results





- Established theoretical formalism
- Precise measurements of  $\theta_{23}$ ,  $|\Delta m_{31}^2|$ ,  $\theta_{12}$ ,  $\Delta m_{21}^2$ ,  $\theta_{13}$ .

## Recap: summary of neutrino oscillation results





- $sgn(\Delta m_{31}^2)$  unknown
- No sensitivity to δ<sub>CP</sub> yet
- Absolute neutrino masses not known
- Some open questions regarding coherence properties of neutrinos

## Recap: summary of neutrino oscillation results





- LSND and MiniBoonE
  - Anomalous <sup>(¬)</sup><sub>e</sub> appearance at short baseline
- Reactor and gallium anomalies
  - Anomalous vertice disappearance at short baseline
- $\rightarrow$  Today's lecture

## Oscillation anomalies: LSND and MiniBooNE

- LSND:
  - *ν
    <sub>e</sub>* appearance in *ν
    <sub>μ</sub>* beam from stopped pion source (> 3σ) at L/E ~ 1 km/GeV
- MiniBooNE:
  - No significant ve or ve excess in the LSND-preferred region
  - but ve consistent with LSND
  - Low-E excess not understood



vents/MeV 2.5 Neutrino Data (stat err.) 2.0 fromui from K\* 1.5 1.0 other Constr. Syst. Error 0.5 Events/MeV 1.2 Antineutrino 1.0 0.8 0.6 0.4 0.2 0.0 L 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.5 3. E<sub>v</sub><sup>QE</sup> (GeV) 3.0

#### MiniBooNE arXiv:1207.4809

LSND hep-ex/0104049

## $\nu_{\mu} \rightarrow \nu_{e}$ oscillations at $L/E \sim 1$ km/GeV?

- Remember: Oscillation maxima for standard oscillations expected at
  - $L/E \sim 500 \text{ km/GeV}$  (from  $\Delta m_{31}^2 \sim 2.4 \times 10^{-3} \text{ eV}^2$ )
  - $L/E \sim 15\,000 \text{ km/GeV}$  (from  $\Delta m_{21}^2 \sim 8.1 \times 10^{-5} \text{ eV}^2$ )
- Explaining LSND and MiniBooNE requires an additional mass squared difference Δm<sup>2</sup><sub>41</sub> ~ 1 eV<sup>2</sup>.
- This requires an additional neutrino species.
- LEP measurements of the invisible Z width constrain the number of active neutrinos to three.
- Only possibility: A sterile neutrino ν<sub>s</sub>, not coupling to SM gauge interactions.
  - "3 + 1 scenario"
- Then: Possibility of  $\nu_{\mu} \rightarrow \nu_{s} \rightarrow \nu_{e}$  oscillations at  $L/E \sim$  1 km/GeV

## $(\vec{\nu}_e \text{ appearance in the 3+1 scenario and beyond})$



 Significant improvement in 3+2 and 1+3+1

## The Gallium anomaly

- Intense radioactive ν<sub>e</sub> sources (<sup>51</sup>Cr and <sup>37</sup>Ar) have been deployed in the GALLEX and SAGE solar neutrino detectors
- Neutrino detection via  ${}^{71}\text{Ga} + \nu_e \rightarrow {}^{71}\text{Ge} + e^-$
- Result: Measurements consistently lower than expectation (2.7σ)



Giunti Laveder arXiv:1005.4599, arXiv:1006.3244 Mention et al. Moriond 2011 talk

 Question: How well are efficiencies of the radiochemical method understood?

## The reactor anomaly

- Recent reevaluation of expected reactor  $\bar{\nu}_e$  flux is  $\sim 3.5\%$  higher than previous prediction Mueller et al. arXiv:1101.2663, confirmed by P. Huber arXiv:1106.0687
- Method: Use measured  $\beta$ -spectra from <sup>238</sup>U, <sup>235</sup>U, <sup>241</sup>Pu fission at ILL and convert to  $\bar{\nu}_e$  spectrum (for single  $\beta$ -decay:  $E_{\nu} = Q E_e$ )
- Problem: Requires knowledge of *Q*-values for all contributing decays.
   → take from nuclear databases where available, fit to data otherwise

| Old method Schreckenbach 1985 | New method Mueller et al. arXiv:1101.2663          |
|-------------------------------|----------------------------------------------------|
| 30 effective $\beta$ decays   | Uses nuclear databases (90% of $\bar{\nu}_e$ flux) |
| (fit parameters to ILL data)  | 5 effective $\beta$ decays (remaining 10%)         |
|                               | Error propagation, correlation matrix              |
|                               | Corrections to the Fermi theory of $\beta$ decay   |
|                               | Off-equilibrium corrections                        |
|                               | (not all $\beta$ -decay chains in equilibrium      |

#### • Cross check:

- Simulate mock e<sup>-</sup> spectra using few well-understood β-decays
- Reconstruct  $\bar{\nu}_e$  spectrum using old method: Result is 3% too low
- Reconstruct  $\bar{\nu}_e$  spectrum using new method: Result is exact.

## The reactor anomaly

- Recent reevaluation of expected reactor  $\bar{\nu}_e$  flux is  $\sim 3.5\%$  higher than previous prediction Mueller et al. arXiv:1101.2663, confirmed by P. Huber arXiv:1106.0687
- Method: Use measured  $\beta$ -spectra from <sup>238</sup>U, <sup>235</sup>U, <sup>241</sup>Pu fission at ILL and convert to  $\bar{\nu}_e$  spectrum (for single  $\beta$ -decay:  $E_{\nu} = Q E_e$ )
- Problem: Requires knowledge of *Q*-values for all contributing decays.
   → take from nuclear databases where available, fit to data otherwise

| Old method Schreckenbach 1985 | New method Mueller et al. arXiv:1101.2663          |
|-------------------------------|----------------------------------------------------|
| 30 effective $\beta$ decays   | Uses nuclear databases (90% of $\bar{\nu}_e$ flux) |
| (fit parameters to ILL data)  | 5 effective $\beta$ decays (remaining 10%)         |
|                               | Error propagation, correlation matrix              |
|                               | Corrections to the Fermi theory of $\beta$ decay   |
|                               | Off-equilibrium corrections                        |
|                               | (not all $\beta$ -decay chains in equilibrium      |

#### Possible problems:

Poorly understood effects in nuclei with large log ft

Huber arXiv:1106.0687

- Large systematic uncertainties for non-unique forbidden  $\beta$  decays

Hayes et al. arXiv:1309.4146

## The reactor anti-neutrino anomaly

• Have short-baseline reactor experiments observed a  $\bar{\nu}_e$  deficit?



red = new reactor  $\bar{\nu}_e$  flux prediction blue = old reactor  $\bar{\nu}_e$  flux prediction

# $(\vec{\nu}_e \text{ disappearance in the 3+1 scenario})$



|                         | $\sin^2 2\theta_{14}$ | $\Delta m_{41}^2 [\mathrm{eV}^2]$ | $\chi^2_{\rm min}/{ m dof}~({ m GOF})$ | $\Delta\chi^2_{ m no \ osc}/ m dof$ (CL) |
|-------------------------|-----------------------|-----------------------------------|----------------------------------------|------------------------------------------|
| SBL rates only          | 0.13                  | 0.44                              | 11.5/17 (83%)                          | 11.4/2 (99.7%)                           |
| SBL incl. Bugey3 spect. | 0.10                  | 1.75                              | 58.3/74 (91%)                          | 9.0/2 (98.9%)                            |

# $(\vec{\nu}_e \text{ disappearance in the 3+1 scenario})$



|                         | $\sin^2 2\theta_{14}$ | $\Delta m_{41}^2 [\mathrm{eV}^2]$ | $\chi^2_{\rm min}/{ m dof}~({ m GOF})$ | $\Delta \chi^2_{ m no \ osc}/ m dof$ (CL) |
|-------------------------|-----------------------|-----------------------------------|----------------------------------------|-------------------------------------------|
| SBL rates only          | 0.13                  | 0.44                              | 11.5/17 (83%)                          | 11.4/2 (99.7%)                            |
| SBL incl. Bugey3 spect. | 0.10                  | 1.75                              | 58.3/74 (91%)                          | 9.0/2 (98.9%)                             |
| SBL + Gallium           | 0.11                  | 1.80                              | 64.0/78 (87%)                          | 14.0/2 (99.9%)                            |
| global $\nu_e$ disapp.  | 0.09                  | 1.78                              | 403.3/427 (79%)                        | 12.6/2 (99.8%)                            |

## Relation between appearance and disappearance

We find:  $\overleftarrow{\nu}_e$  disappearance experiments consistent among themselves,  $\overleftarrow{\nu}_e$  appearance experiments consistent among themselves.

But:

### 3+1 neutrinos

At large baseline ( $L \gg 4\pi E / \Delta m_{41}^2$ , but  $L \ll 4\pi E / \Delta m_{31}^2$ 

$$\begin{aligned} P_{ee} &= 1 - 2|U_{e4}|^2(1 - |U_{e4}|^2) \\ P_{\mu\mu} &= 1 - 2|U_{\mu4}|^2(1 - |U_{\mu4}|^2) \\ P_{e\mu} &= 2|U_{e4}|^2|U_{\mu4}|^2 \end{aligned}$$

It follows

$$2P_{e\mu}\simeq (1-P_{ee})(1-P_{\mu\mu})$$

In the 3 + 1 case, at large enough baseline, there is a one-to-one relation between the appearance and disappearance probabilities.

# $\overleftarrow{\nu}_{\mu}$ disappaearance in the 3+1 scenario

• Parameter regions favored by tentative hints are in tension with null results from  $\overleftarrow{\nu}_{\mu}$  disappearance searches



JK Machado Maltoni Schwetz, 1303.3011



|     | $\chi^2_{ m min}/ m dof$ | GOF |  |
|-----|--------------------------|-----|--|
| 3+1 | 712/(689 - 9)            | 19% |  |

 3 + 1 Severe tension between appearance and disappearance and between exp's with and without a signal



|     | $\chi^2_{ m min}/ m dof$ | GOF |  |
|-----|--------------------------|-----|--|
| 3+1 | 712/(689 – 9)            | 19% |  |

3 + 1 Severe tension between appearance and disappearance and between



- 3+1 Severe tension between appearance and disappearance and between exp's with and without a signal
- 3 + 2 Fit improves considerably with two sterile neutrinos

JK Machado Maltoni Schwetz, 1303.3011



Parameter goodness of fit (PG) test: Compares  $\chi^2_{min}$  from global and separate fits to test compatibility of 2 data sets

|     | $\chi^2_{ m min}/ m dof$ | GOF | $\chi^{\rm 2}_{\rm PG}/{ m dof}$ | PG                  |
|-----|--------------------------|-----|----------------------------------|---------------------|
| 3+1 | 712/(689 - 9)            | 19% | 18.0/ <mark>2</mark>             | $1.2 	imes 10^{-4}$ |
| 3+2 | 701/(689 - 14)           | 23% | 25.8/4                           | $3.4	imes10^{-5}$   |

- 3+1 Severe tension between appearance and disappearance and between exp's with and without a signal
- 3 + 2 Fit improves considerably with two sterile neutrinos
- 1 + 3 + 1 Further improvement, especially in appearance fit

Parameter goodness of fit (PG) test:

Compares  $\chi^2_{min}$  from global and separate fits to test compatibility of 2 data sets



|       | $\chi^{\rm 2}_{\rm min}/{ m dof}$ | GOF | $\chi^{\rm 2}_{\rm PG}/{ m dof}$ | PG                   |
|-------|-----------------------------------|-----|----------------------------------|----------------------|
| 3+1   | 712/(689 - 9)                     | 19% | 18.0/ <mark>2</mark>             | $1.2 \times 10^{-4}$ |
| 3+2   | 701/(689 – 14)                    | 23% | 25.8/ <mark>4</mark>             | $3.4 	imes 10^{-5}$  |
| 1+3+1 | 694/(689 - 14)                    | 30% | 16.8/ <mark>4</mark>             | $2.1 	imes 10^{-3}$  |

Conclusion from oscillation fits: severe tension in all cases

## Sterile neutrinos in cosmology

Models with  $\mathcal{O}(eV)$  sterile neutrino(s) constrained by cosmology:





see e.g. Ade et al. (Planck), arXiv:1303.5076 Gonzalez-Garcia Maltoni Salvado, arXiv:1006.3795 Hamann Hannestad Raffelt Tamborra Wong, arXiv:1006:5276 talks by Krysztof Gorski, Massimiliano Lattanzi, Ninetta Saviano on Monday

## Are light sterile neutrinos ruled out by cosmology?

 $\nu_s$  production in the early Universe through  $\nu_{e,\mu,\tau} \rightarrow \nu_s$  oscillations at  $T \gtrsim MeV$ Dodelson Widrow 1994

### Reconciling sterile neutrinos with cosmology

- Large lepton asymmetry (≥ 0.01) → ν<sub>s</sub> production MSW-suppressed Foot Volkas hep-ph/9508275, Chu Cirelli astro-ph/0608206, Saviano et al. arXiv:1302.1200
- New gauge interactions between  $\nu_s$  and dark matter  $\rightarrow \nu_s$  production MSW-suppressed Dasgupta JK, in preparation
- Couplings to a Majoron field → suppressed production

Bento Berezhiani, hep-ph/0108064

• Very low reheating temperature

Gelmini Palomares-Ruiz Pascoli, astro-ph/0403323

 Entropy production after neutrino decoupling (e.g. due to late decay of heavy sterile neutrinos or other particles) → neutrinos diluted

Fuller Kishimoto Kusenko 1110.6479, Ho Scherrer 1212.1689

• > 1 new relativistic degrees of freedom + w < -1 +  $\mu_{\nu} \neq 0$ 

Hamann Hannestad Raffelt Wong, arXiv:1108.4136