1. Three-flavor neutrino oscillations

In this problem, we derive approximate expressions for the 3-flavor neutrino oscillation probabilities. Crucial to this is the observation that

$$\Delta m_{21}^2 \ll \Delta m_{31}^2, \Delta m_{32}^2 \tag{1}$$

Indeed, global fits show that $\Delta m_{21}^2 \simeq 8 \times 10^{-5} \text{ eV}^2$, $\Delta m_{31}^2, \Delta m_{32}^2 \simeq 2 \times 10^{-3} \text{ eV}^2$.

(a) Consider oscillations over baselines such that

$$\frac{\Delta m_{21}^2 L}{2E} \ll 1.$$

Since Δm_{21}^2 appears only in the combination $\Delta m_{21}^2 L/2E$ in the oscillation probabilities, this implies that we can effectively take $\Delta m_{21}^2 \rightarrow 0$. Eq. (2) is relevant for atmospheric, accelerator, and most reactor neutrino experiments. Show that, if (2) holds, the oscillation probabilities are given by

$$P_{\alpha\beta} \simeq 4|U_{\alpha3}|^2|U_{\beta3}|^2\sin^2\frac{\Delta m_{31}^2L}{4E}$$
 (3)

- (b) Using the explicit parameterization of U from the lecture, derive expressions for $P_{e\mu}$ and P_{ee} in the limit (2).
- (c) Consider now the limit

$$\frac{\Delta m_{31}^2 L}{2E} \simeq \frac{\Delta m_{32}^2 L}{2E} \gg 1, \qquad (4)$$

which is relevant for instance to very long baseline reactor neutrino experiments. In this case, oscillations driven by Δm_{31}^2 , Δm_{32}^2 are very fast, and only their averaged effect can be probed experimentally due to finite experimental energy and position resolutions. Show that, in the limit (4), P_{ee} is given by

$$P_{ee} = \sin^4 \theta_{13} + \cos^4 \theta_{13} \left(1 - \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{21}^2}{4E} \right).$$
(5)

- 2. Imagine a world in which neutrinos are massive, but charged leptons are massless. Will neutrinos oscillate in such a world?
- 3. Do neutrinos produced in the decay $Z^0 \to \bar{\nu}\nu$ oscillate? If so, describe a gedankenexperiment in which these oscillations could be observed.

4. Atmospheric neutrinos

Explain why the initial flavor ratio of atmospheric neutrinos at energies \leq few GeV is $\stackrel{(-)}{\nu}_e : \stackrel{(-)}{\nu}_\mu : \stackrel{(-)}{\nu}_\tau \sim 1 : 2 : 0$. Consider the main products of the interactions of high-energy cosmic ray protons with nuclei in the Earth's atmosphere.

- 5. Discuss the advantages and disadvantages of a hypothetical neutrino oscillation experiment using a mono-energetic beam of $\mathcal{O}(\text{GeV})$ neutrinos. Can you think of a possible realization of such an experiment?
- 6. Imagine there is a fourth neutrino flavor in nature, with a mass of order $m_4 \sim 1 \text{ eV}$, and with $U_{e4} \simeq U_{\mu4} \simeq 0.1$. (Such scenarios will be one of the main topics of tomorrow's lecture.) Discuss the phenomenological consequences. How would you test this hypothesis experimentally? Describe at least two possible experimental setups.