Quantum Field Theory
 Exercise 1

October 20, 2015
-to be handed in by $29.10 .2012(12: 00 \mathrm{~h})$ to the WA-THEP letterbox (No. 22) in the foyer of Staudingerweg 7 .

1. Complex Scalar Field (20 points)

Consider the following Lagrangian density for a complex scalar field ϕ

$$
\begin{equation*}
\mathcal{L}=\left(\partial^{\mu} \phi^{*}\right)\left(\partial_{\mu} \phi\right)+\mu^{2} \phi^{*} \phi-\frac{\lambda}{2}\left(\phi^{*} \phi\right)^{2} . \tag{1}
\end{equation*}
$$

(a)(10 points) Treating ϕ and ϕ^{*} as independent, show that the corresponding Hamiltonian is given by

$$
\begin{equation*}
H=\int d^{3} x\left(\dot{\phi}^{*} \dot{\phi}+\nabla \phi^{*} \cdot \nabla \phi-\mu^{2} \phi^{*} \phi+\frac{\lambda}{2}\left(\phi^{*} \phi\right)^{2}\right) \tag{2}
\end{equation*}
$$

Use that, in the case of n independent fields, the Hamiltonian of the system is given by $H=\int d^{3} x\left(\sum_{i=1}^{n} \pi_{\phi_{i}} \dot{\phi}_{i}-\mathcal{L}\right)$ where $\pi_{\phi_{i}}=\frac{\partial \mathcal{L}}{\partial \dot{\phi}_{i}}$ is the conjugate momentum associated with i-th degree of freedom ϕ_{i}.
(b)(10 points) Show that the kinetic term in eq. (11) can be effectively taken as

$$
\begin{equation*}
\mathcal{L}_{\text {Kin }}=-\phi^{*} \square \phi . \tag{3}
\end{equation*}
$$

2. Scalar Theory with $S O(2)$ Invariance (35 points)

Consider the following Lagrangian density for two real scalar fields $\phi_{1}(x), \phi_{2}(x)$:

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial^{\mu} \phi_{1}\right)\left(\partial_{\mu} \phi_{1}\right)+\frac{1}{2}\left(\partial^{\mu} \phi_{2}\right)\left(\partial_{\mu} \phi_{2}\right)-\frac{m^{2}}{2}\left(\phi_{1}^{2}+\phi_{2}^{2}\right)-\frac{\lambda}{4!}\left(\phi_{1}^{2}+\phi_{2}^{2}\right)^{2} . \tag{4}
\end{equation*}
$$

(a)(10 points)

Identify the equations of motion and construct the Hamilton density \mathcal{H}.
(b)(10 points) Show that the above Lagrangian is invariant under the transformations

$$
\begin{align*}
& \phi_{1} \rightarrow \phi_{1}^{\prime}=\phi_{1} \cos \theta-\phi_{2} \sin \theta, \tag{5}\\
& \phi_{2} \rightarrow \phi_{2}^{\prime}=\phi_{1} \sin \theta+\phi_{2} \cos \theta . \tag{6}
\end{align*}
$$

(c)(15 points) Calculate the Noether current j^{μ} and show explicitly, using equations of motion, that its divergence vanishes. Noether current for n independent fields is given as $j^{\mu}=\sum_{i=1}^{n} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{i}\right)} \Delta \phi_{i}-\mathcal{J}^{\mu}$ where \mathcal{J}^{μ} (see the script) equals zero in this particular case as transformation in b) does not generate any new term containing the total derivative.

3. Real Scalar Field in 1+1 Dimensions (45 points)

Consider the following Lagrangian for a real scalar field ϕ in $1+1$ (one spatial and one time) dimensions

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial^{\mu} \phi\right)\left(\partial_{\mu} \phi\right)-\frac{\lambda}{4}\left(\phi^{2}-v^{2}\right)^{2}, \tag{7}
\end{equation*}
$$

where v is a constant.
(a)(20 points) Construct the corresponding Hamiltonian and find the condition on classical field configurations $\phi_{0}(x)$ which minimizes the energy.
(b)(10 points) Find the equations of motion for the field ϕ.
(c)(15 points) The static solution $(\dot{\phi}=0)$ which interpolates between 2 vacuum states

$$
\begin{equation*}
\phi_{0}(x)=v \tanh \left(\sqrt{\frac{\lambda}{2}} v x\right) \tag{8}
\end{equation*}
$$

is called the kink solution. Prove that the kink is indeed a solution of the equations of motion.

