Quantum Field Theory Exercise 2

October 29, 2015

-to be handed in by 5.11.2015 (12:00 h) to the "Theoretische Physik 6a" letterbox (No. 37) in the foyer of Staudingerweg 7.

1. Real Klein-Gordon Field (40 points)

Using the normal mode expansion of the real Klein-Gordon field

$$\phi(\mathbf{x},t) = \int \frac{d^3k}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{k}}}} \left[a(\mathbf{k}) e^{-ik \cdot x} + a^{\dagger}(\mathbf{k}) e^{ik \cdot x} \right], \qquad (1)$$

and the equal-time commutation relations

$$[\phi(\mathbf{x},t),\phi(\mathbf{x}',t)] = 0, \qquad (2)$$

$$\dot{\phi}(\mathbf{x},t), \dot{\phi}(\mathbf{x}',t) = 0,$$
 (3)

$$\left[\phi(\mathbf{x},t),\dot{\phi}(\mathbf{x}',t)\right] = i\,\delta^{(3)}(\mathbf{x}-\mathbf{x}'),\tag{4}$$

show that

(a) (20 points) the creation and annihilation operators satisfy the following commutation relations

$$[a(\mathbf{k}), a(\mathbf{k}')] = 0, \tag{5}$$

$$\begin{bmatrix} a^{\dagger}(\mathbf{k}), a^{\dagger}(\mathbf{k}') \end{bmatrix} = 0, \tag{6}$$

$$\left[a(\mathbf{k}), a^{\dagger}(\mathbf{k}')\right] = (2\pi)^3 \,\delta^{(3)}\left(\mathbf{k} - \mathbf{k}'\right), \tag{7}$$

(b)(20 points) the momentum $\mathbf{P} = -\int d^3x \,\dot{\phi} \,\nabla\phi$ takes the form

$$\mathbf{P} = \int \frac{d^3k}{\left(2\pi\right)^3} \mathbf{k} \left(a^{\dagger}(\mathbf{k})a(\mathbf{k}) + \frac{1}{2} \left[a(\mathbf{k}), a^{\dagger}(\mathbf{k}) \right] \right).$$
(8)

2. Complex Klein-Gordon Field (60 points)

The complex Klein-Gordon field is used to describe charged bosons with spin 0. Its Lagrangian is given by

$$\mathcal{L} = (\partial_{\mu}\phi^{\dagger})(\partial^{\mu}\phi) - \mu^{2}\phi^{\dagger}\phi, \qquad (9)$$

where the field ϕ has the following normal mode expansion

$$\phi(\mathbf{x},t) = \int \frac{d^3k}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{k}}}} \left[a(\mathbf{k}) e^{-ik\cdot x} + b^{\dagger}(\mathbf{k}) e^{ik\cdot x} \right], \qquad (10)$$

and satifies the equal-time commutation relations

$$[\phi(\mathbf{x},t),\Pi_{\phi}(\mathbf{x}',t)] = i\,\delta^{(3)}(\mathbf{x}-\mathbf{x}'),\tag{11}$$

$$\left[\phi^{\dagger}(\mathbf{x},t),\Pi_{\phi^{\dagger}}(\mathbf{x}',t)\right] = i\,\delta^{(3)}(\mathbf{x}-\mathbf{x}').$$
(12)

In the following, you can conveniently consider the fields ϕ and ϕ^{\dagger} as independent.

(a)(15 points) Show that the Lagrangian in eq. (9) is equivalent to the Lagrangian of two independent real scalar fields with the same mass and satisfying the standard equal-time commutation relations. *Hint*: Decompose the complex field in real components $\phi = \frac{1}{\sqrt{2}} (\phi_1 + i\phi_2)$.

(b)(15 points) Write down the conjugate momentum fields Π_{ϕ} and $\Pi_{\phi^{\dagger}}$ in terms of ϕ and ϕ^{\dagger} . Derive the equal-time commutation relations of a, a^{\dagger} , b and b^{\dagger} . *Hint*: Assuming you have derived expressions for annihilation and creation operators in terms of ϕ and $\dot{\phi}$ for a real scalar field (problem 1), you can without the full derivation write down the corresponding expressions for a, a^{\dagger} , b and b^{\dagger} when complex scalar field is considered. For instance, by looking at eq.(1) and eq.(10) one can infer that the expression for a^{\dagger} in real Klein-Gordon theory corresponds to the expression for b^{\dagger} in the complex one.

(c)(15 points) Show that the Lagrangian in eq. (9) is invariant under any global phase transformation of the field $\phi \to \phi' = e^{-i\alpha}\phi$ with α real. Write down the associated conserved Noether current J^{μ} and express the conserved charge $Q = \int d^3 \mathbf{x} J^0$ in terms of creation and annihilation operators.

(d)(15 points) Compute the commutators $[Q, \phi]$ and $[Q, \phi^{\dagger}]$. Using these commutators and the eigenstates $|q\rangle$ of the charge operator Q, show that the field operators ϕ and ϕ^{\dagger} modify the charge of the system. How would you interpret the operators a, a^{\dagger} , b and b^{\dagger} ?