Quantum Field Theory
 Exercise 3

November 3, 2015
-to be handed in by 12.11.2015 (12:00 h) to the "Theoretische Physik 6a" letterbox (No. 37) in the foyer of Staudingerweg 7.

1. Lorentz Invariance (25 points)

Prove that the integral

$$
\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{p}}} f\left(p_{\mu} p^{\mu}\right)
$$

where f is an arbitrary function of the four-momentum, is Lorentz invariant.
2. Gordon Identity (25 points)

Derive the so-called Gordon identity

$$
\bar{u}\left(p^{\prime}\right) \gamma^{\mu} u(p)=\bar{u}\left(p^{\prime}\right)\left[\frac{P^{\mu}}{2 M}+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M}\right] u(p)
$$

where $P=p^{\prime}+p, q=p^{\prime}-p$ and $\sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]$.

3. Projection Operators (20 points)

Show that $P_{ \pm}= \pm \frac{p \pm m}{2 m}$ represent a complete sets of projection operators, i.e. satisfy the conditions

$$
P_{i} P_{j}=\delta_{i, j} P_{i}, \quad \sum_{i} P_{i}=1 .
$$

In addition, show that $P_{ \pm}$are the projection operators on positive and negative energy solutions (u and v spinors) for arbitrary particle momentum.
4. γ Matrices (20 points)

Without using an explicit representation for the γ matrices show that:
(a) (2.5 points) $\gamma_{\mu} \gamma^{\mu}=4$;
(b)(2.5 points) $\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu}\right]=4 g^{\mu \nu}$;
(c)(5 points) $\operatorname{Tr}[d b \phi d]=4[(a \cdot b)(c \cdot d)-(a \cdot c)(b \cdot d)+(a \cdot d)(b \cdot c)]$;
(d)(5 points) $\gamma_{5}=\frac{i}{4!} \varepsilon_{\mu \nu \rho \sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}$;
(e) $(5$ points $) \gamma_{5}^{2}=\mathbb{1}$.
5. Identity with γ Matrices (10 points)

Verify the following identity

$$
\operatorname{Exp}\left[\gamma_{5} \phi\right]=\cos \left(\sqrt{a_{\mu} a^{\mu}}\right)+\frac{1}{\sqrt{a_{\mu} a^{\mu}}} \gamma_{5} \phi \sin \left(\sqrt{a_{\mu} a^{\mu}}\right)
$$

where $a^{2}>0$.

