Quantum Field Theory
 Exercise 4

November 11, 2015
-to be handed in by 19.11.2015 (12:00 h) to the "Theoretische Physik 6a" letterbox (No. 37) in the foyer of Staudingerweg 7.

1. Gamma Matrices II (25 points)

Without using an explicit representation for the Dirac matrices, show that:
(a)(5 points) $\left\{\gamma_{5}, \gamma^{\mu}\right\}=0 ;$
(b) (5 points) $\operatorname{Tr}\left[\gamma_{5}\right]=0$;
(c)(5 points) $\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma_{5}\right]=0$;
(d)(5 points) $\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma_{5}\right]=4 i \varepsilon^{\mu \nu \rho \sigma} ;$
(e)(5 points) $\operatorname{Tr}\left[\gamma^{\mu_{1}} \cdots \gamma^{\mu_{n}}\right]=0$ if n is odd;
where $\not \alpha \equiv \gamma^{\mu} a_{\mu}, \gamma_{5} \equiv i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$ and $\varepsilon_{0123}=+1$.
2. Dirac Bilinears (60 points)

Since a spinor turns into minus itself after a rotation over 2π, physical quantities must be bilinears in ψ, so that physical quantities turn into themselves after a rotation over 2π. These bilinears have the general form $\bar{\psi} \Gamma \psi$. There are 16 independent covariant ones related to 16 complex 4×4 matrices:

- $\Gamma_{S}=\mathbb{1}$ (scalar);
- $\Gamma_{P}=\gamma_{5}$ (pseudoscalar);
- $\Gamma_{V}^{\mu}=\gamma^{\mu}$ (vector);
- $\Gamma_{A}^{\mu}=\gamma^{\mu} \gamma_{5}$ (axial vector);
- $\Gamma_{T}^{\mu \nu}=\sigma^{\mu \nu} \equiv \frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]$ (tensor).

Without referring to any explicit representation for the Γ matrices,
(a) (5 points) show that $\Gamma^{2}= \pm \mathbb{1}$.
(b) (5 points) show that for any Γ except Γ_{S}, we have $\operatorname{Tr}[\Gamma]=0$.
(c) (10 points) check that the product of 2 different Γ 's is proportional to some Γ different from Γ_{S};
(d) (20 points) using the Lorentz transformation of the Dirac spinor $\psi^{\prime}\left(x^{\prime}\right)=$ $S(a) \psi(x)$ with $x^{\prime \mu}=a^{\mu}{ }_{\nu} x^{\nu}$, check that the bilinears transform according to their name, i.e. $\bar{\psi}^{\prime} \psi^{\prime}=\bar{\psi} \underline{\psi}, \bar{\psi}^{\prime} \gamma_{5} \psi^{\prime}=\operatorname{det}(a) \bar{\psi} \gamma_{5} \psi, \bar{\psi}^{\prime} \gamma^{\mu} \psi^{\prime}=a^{\mu}{ }_{\nu} \bar{\psi} \gamma^{\nu} \psi, \bar{\psi}^{\prime} \gamma^{\mu} \gamma_{5} \psi^{\prime}=$ $\operatorname{det}(a) a^{\mu}{ }_{\nu} \bar{\psi} \gamma^{\nu} \gamma_{5} \psi$ and $\bar{\psi}^{\prime} \sigma^{\mu \nu} \psi^{\prime}=a^{\mu}{ }_{\rho} a^{\nu}{ }_{\sigma} \bar{\psi} \sigma^{\rho \sigma} \psi$.
(e) (20 points) Show the following bilinear transformation properties :

- tensor $\Gamma_{T}^{\mu \nu}$ under parity P,
- axial vector Γ_{A}^{μ} under charge conjugation C,
- vector Γ_{V}^{μ} under time reversal T.

3. Lorentz transformation identity ($\mathbf{1 5}$ points)

Verify that for arbitrary proper Lorentz transformation S

$$
S^{-1}=\gamma_{0} S^{\dagger} \gamma_{0}
$$

