Quantum Field Theory
 Exercise 8

December 10, 2015
-to be handed in by 17.12 .2015 (12:00 h) to the Theoretische Physik 6a letterbox (No. 37) in the foyer of Staudingerweg 7.

1. The Scalar Electrodynamics Lagrangian from Symmetry Arguments (30 points)

Start from the free complex Klein-Gordon field Lagrangian

$$
\mathcal{L}_{\text {free }}=\left(\partial^{\mu} \phi\right)\left(\partial_{\mu} \phi^{*}\right)-m \phi \phi^{*} .
$$

Check that this Lagrangian is not invariant under $\mathrm{U}(1)$ gauge transformations of the form $\phi(x) \rightarrow \phi^{\prime}(x)=e^{-i \alpha(x)} \phi(x)$. By knowing the transformation property of the photon field $A^{\mu} \rightarrow A^{\mu}=A^{\mu}+\frac{1}{e}\left(\partial^{\mu} \alpha(x)\right)$, supplement the starting Lagrangian with additional interaction terms $\left(\mathcal{L}_{\text {int }}\right)$ which would help to restore the gauge invariance of the total Lagrangian $\mathcal{L}_{\text {free }}+\mathcal{L}_{\text {int }}$. Finally, express the Lagrangian in the form

$$
\mathcal{L}=\left(\mathrm{D}^{\mu} \phi\right)\left(\mathrm{D}_{\mu} \phi\right)^{*}-\mathrm{m} \phi \phi^{*}-\frac{1}{4} \mathrm{~F}_{\mu \nu} \mathrm{F}^{\mu \nu}
$$

with $D_{\mu}=\partial_{\mu}+i e A_{\mu}$.
2. Electron-positron annihilation into scalar quark-antiquark pair $e^{+} e^{-} \rightarrow q \bar{q}$ (70 points)

Consider electron-positron annihilation into quark-antiquark pair $e^{+}\left(k_{2}\right) e^{-}\left(k_{1}\right) \rightarrow$ $q\left(p_{2}\right) \bar{q}\left(p_{1}\right)$. The process is represented by the Feynman diagram in fig. 1. Treat the electron as a massless Dirac particle and the quark as a massless Klein-Gordon particle.
(a)(25 points) The squared matrix element obtained as an average over electron and positron spin configurations can be expressed as

$$
|M|^{2}=\frac{e^{4} e_{q}^{2}}{s} L^{\mu \nu} Q_{\mu \nu}
$$

with the quark charge $e_{q} e$ and the Mandelstam variable $s=\left(k_{1}+k_{2}\right)^{2}$. Find the expressions for the quark tensor $Q_{\mu \nu}$ and the lepton tensor $L_{\mu \nu}$ in terms of momenta
$k_{1}, k_{2}, p_{1}, p_{2}$. The Feynman rule for quark-antiquark-photon vertex is $i e_{q} e\left(p_{2}-p_{1}\right)^{\mu}$.
(b)(15 points) Calculate $L^{\mu \nu} Q_{\mu \nu}$ in terms of Mandelstam variable s and the angle between the initial electron momenta and the final anti-quark momenta in the center-of-mass frame.
(c)(10 points) Express the result for $L^{\mu \nu} Q_{\mu \nu}$ in terms of the Mandelstam variable s and $t=\left(k_{1}-p_{1}\right)^{2}$.
(d)(20 points) The general expression for the differential cross-section in the center-of-mass frame for $2 \rightarrow 2$ process is

$$
\begin{aligned}
& d \sigma=\frac{1}{2 E_{\mathcal{A}} 2 E_{\mathcal{B}}\left|\mathbf{v}_{\mathcal{A}}-\mathbf{v}_{\mathcal{B}}\right|} \frac{d^{3} \mathbf{p}_{1}}{(2 \pi)^{3}} \frac{1}{2 E_{1}} \frac{d^{3} \mathbf{p}_{2}}{(2 \pi)^{3}} \frac{1}{2 E_{2}}\left|\mathcal{M}\left(p_{\mathcal{A}}, p_{\mathcal{B}} \rightarrow p_{1}, p_{2}\right)\right|^{2} \\
&(2 \pi)^{4} \delta^{(4)}\left(p_{\mathcal{A}}+p_{\mathcal{B}}-p_{1}-p_{2}\right),
\end{aligned}
$$

where the indices \mathcal{A} and \mathcal{B} correspond to the colliding initial state particles, and the indices 1 and 2 are labelling terms corresponding to final state particles. Integrate over the quark phase space $d^{3} \mathbf{p}_{2}$ and the antiquark momentum $d\left|\mathbf{p}_{1}\right|$ and obtain the expression for the differential cross section $\frac{d \sigma}{d \Omega}$, where Ω represents the angular part of the antiquark phase space integral. Express it in terms of the energy in the center-of-mass frame squared $s=\left(k_{1}+k_{2}\right)^{2}$ and the angle θ between k_{1} and p_{1}.

The differential cross-section for this process is $\propto \sin ^{2} \theta$, whereas the differential cross-section for the proces in which quarks are considered to be fermions $\propto(1+$ $\cos ^{2} \theta$), latter being in the perfect agreement with the experimental results.

Figure 1: Electron-positron annihilation into a scalar quark-antiquark pair

