Quantum Field Theory Exercise 8

December 10, 2015

-to be handed in by 17.12.2015 (12:00 h) to the Theoretische Physik 6a letterbox (No. 37) in the foyer of Staudingerweg 7.

1. The Scalar Electrodynamics Lagrangian from Symmetry Arguments (30 points)

Start from the free complex Klein-Gordon field Lagrangian

$$\mathcal{L}_{\text{free}} = (\partial^{\mu}\phi)(\partial_{\mu}\phi^*) - m\phi\phi^*.$$

Check that this Lagrangian is not invariant under U(1) gauge transformations of the form $\phi(x) \to \phi'(x) = e^{-i\alpha(x)}\phi(x)$. By knowing the transformation property of the photon field $A^{\mu} \to A'^{\mu} = A^{\mu} + \frac{1}{e} (\partial^{\mu}\alpha(x))$, supplement the starting Lagrangian with additional interaction terms (\mathcal{L}_{int}) which would help to restore the gauge invariance of the total Lagrangian $\mathcal{L}_{free} + \mathcal{L}_{int}$. Finally, express the Lagrangian in the form

$$\mathcal{L} = (\mathrm{D}^{\mu}\phi)(\mathrm{D}_{\mu}\phi)^* - \mathrm{m}\phi\phi^* - \frac{1}{4}\mathrm{F}_{\mu\nu}\mathrm{F}^{\mu\nu},$$

with $D_{\mu} = \partial_{\mu} + ieA_{\mu}$.

2. Electron-positron annihilation into scalar quark-antiquark pair $e^+e^- \rightarrow q\bar{q}$ (70 points)

Consider electron-positron annihilation into quark-antiquark pair $e^+(k_2)e^-(k_1) \rightarrow q(p_2)\bar{q}(p_1)$. The process is represented by the Feynman diagram in fig. 1. Treat the electron as a massless Dirac particle and the quark as a massless Klein-Gordon particle.

(a)(25 points) The squared matrix element obtained as an average over electron and positron spin configurations can be expressed as

$$|M|^{2} = \frac{e^{4}e_{q}^{2}}{s}L^{\mu\nu}Q_{\mu\nu},$$

with the quark charge $e_q e$ and the Mandelstam variable $s = (k_1 + k_2)^2$. Find the expressions for the quark tensor $Q_{\mu\nu}$ and the lepton tensor $L_{\mu\nu}$ in terms of momenta

 k_1, k_2, p_1, p_2 . The Feynman rule for quark-antiquark-photon vertex is $ie_q e(p_2 - p_1)^{\mu}$.

(b)(15 points) Calculate $L^{\mu\nu}Q_{\mu\nu}$ in terms of Mandelstam variable s and the angle between the initial electron momenta and the final anti-quark momenta in the center-of-mass frame.

(c)(10 points) Express the result for $L^{\mu\nu}Q_{\mu\nu}$ in terms of the Mandelstam variable s and $t = (k_1 - p_1)^2$.

(d)(20 points) The general expression for the differential cross-section in the center-of-mass frame for $2 \rightarrow 2$ process is

$$d\sigma = \frac{1}{2E_{\mathcal{A}}2E_{\mathcal{B}}|\mathbf{v}_{\mathcal{A}} - \mathbf{v}_{\mathcal{B}}|} \frac{d^{3}\mathbf{p}_{1}}{(2\pi)^{3}} \frac{1}{2E_{1}} \frac{d^{3}\mathbf{p}_{2}}{(2\pi)^{3}} \frac{1}{2E_{2}} \left|\mathcal{M}(p_{\mathcal{A}}, p_{\mathcal{B}} \to p_{1}, p_{2})\right|^{2}}{(2\pi)^{4}\delta^{(4)}(p_{\mathcal{A}} + p_{\mathcal{B}} - p_{1} - p_{2})},$$

where the indices \mathcal{A} and \mathcal{B} correspond to the colliding initial state particles, and the indices 1 and 2 are labelling terms corresponding to final state particles. Integrate over the quark phase space $d^3\mathbf{p}_2$ and the antiquark momentum $d|\mathbf{p}_1|$ and obtain the expression for the differential cross section $\frac{d\sigma}{d\Omega}$, where Ω represents the angular part of the antiquark phase space integral. Express it in terms of the energy in the center-of-mass frame squared $s = (k_1 + k_2)^2$ and the angle θ between k_1 and p_1 .

The differential cross-section for this process is $\propto \sin^2 \theta$, whereas the differential cross-section for the process in which quarks are considered to be fermions $\propto (1 + \cos^2 \theta)$, latter being in the perfect agreement with the experimental results.

Figure 1: Electron-positron annihilation into a scalar quark-antiquark pair