Quantum Field Theory
 Exercise 9

January 7, 2016
-to be handed in by 14.01.2016 (12:00 h) to the "Theoretische Physik 6a" letterbox (No. 37) in the foyer of Staudingerweg 7 .

1. Cross section of electron - muon scattering (50 points)
a) (5 points) Use the Feynman rules to write down the amplitude for the process $e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$

Figure 1: Feynman diagram for electron - muon scattering.
b)(40 points) Show that the corresponding squared amplitude, averaged and summed over the spins, is equal to

$$
\begin{equation*}
\frac{1}{4} \sum_{\text {spins }}|\mathcal{M}|^{2}=\frac{8 e^{4}}{q^{4}}\left[\left(p_{1} \cdot p_{2}^{\prime}\right)\left(p_{1}^{\prime} \cdot p_{2}\right)+\left(p_{1} \cdot p_{2}\right)\left(p_{1}^{\prime} \cdot p_{2}^{\prime}\right)-m_{\mu}^{2}\left(p_{1} \cdot p_{1}^{\prime}\right)\right], \tag{1}
\end{equation*}
$$

when neglecting the electron mass $m_{e}=0$.
c) (5 points) Assume to be in the centre of mass (com) system and calculate the differential cross section $\frac{d \sigma}{d \Omega}$ (again for vanishing electron mass, $m_{e}=0$). What is the high energy limit of the differential cross section? The most general formula for the differential cross section for $2 \rightarrow 2$ process (massive particles) is (see exercise 8 ,
problem 2 d))

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{|\mathcal{M}|^{2}}{64 \pi^{2} E_{\mathrm{COM}}^{2}} \frac{\left|\mathbf{p}_{\mathrm{fin}}\right|}{\left|\mathbf{p}_{\mathrm{in}}\right|}, \tag{2}
\end{equation*}
$$

where $\left|\mathbf{p}_{\text {in }}\right|$ and $\left|\mathbf{p}_{\text {fin }}\right|$ are absolute values of momentum in com system in initial and final state, respectively.

Figure 2: Parametrisation of the momenta of the in- and outgoing electron and muon in the com system.

2. Path integrals in Quantum Mechanics (50 points)

In the lecture you derived the amplitude for the propagation of a particle from q at time 0 to q^{\prime} at time t to be

$$
\begin{equation*}
\left\langle q^{\prime}(t)\right| e^{-i H t}|q(0)\rangle=\int \prod_{k=1}^{n} d q_{k} \prod_{j=0}^{n} \frac{d p_{j}}{2 \pi} e^{i p_{j}\left(q_{j+1}-q_{j}\right)} e^{-i \frac{p_{j}^{2}}{2 m} \delta t}, \tag{3}
\end{equation*}
$$

where the potential term is now set to zero for simplicity. Useful formulae are

$$
\begin{equation*}
\dot{q}_{j}=\frac{q_{j+1}-q_{j}}{\delta t}, \quad \delta t=\frac{t}{n+1} . \tag{5}
\end{equation*}
$$

(a)(20 points) Consider the general p_{j} integral. Complete the square in order to make it gaussian. When solving the integral treat it as a real integral, in particular use $\int_{-\infty}^{\infty} e^{-c x^{2}} d x=\left(\frac{\pi}{c}\right)^{\frac{1}{2}}$ where c can contain imaginary unit. Using the result of the integration prove

$$
\begin{equation*}
\int \prod_{j=0}^{n} \frac{d p_{j}}{2 \pi} e^{i p_{j}\left(q_{j+1}-q_{j}\right)} e^{-i \frac{p_{j}^{2}}{2 m} \delta t}=\left(\frac{m}{2 \pi i \delta t}\right)^{\frac{n+1}{2}} \exp \left[\frac{i m}{2 \delta t} \sum_{j=0}^{n}\left(q_{j+1}-q_{j}\right)^{2}\right] \tag{6}
\end{equation*}
$$

(b)(30 points) Now the total amplitude equals

$$
\begin{equation*}
\left(\frac{m}{2 \pi i \delta t}\right)^{\frac{n+1}{2}} \int \prod_{k=1}^{n} d q_{k} \exp \left[\frac{i m}{2 \delta t} \sum_{j=0}^{n}\left(q_{j+1}-q_{j}\right)^{2}\right] . \tag{7}
\end{equation*}
$$

Try to solve also the integrals over $d q_{k}$. First integrate over q_{1}, then q_{2}, etc. and try to look for a pattern. Again, as in a) part, complete the square,treat the integrals as real and apply the formula for gaussian integrals. Help : The result is

$$
\begin{equation*}
\int \prod_{k=1}^{n} d q_{k} \exp \left[\frac{i m}{2 \delta t} \sum_{j=0}^{n}\left(q_{j+1}-q_{j}\right)^{2}\right]=\left[\frac{2 i \pi \delta t}{m}\right]^{\frac{n}{2}} \sqrt{\frac{n!}{(n+1)!}} \exp \left[\frac{i m\left(q_{n+1}-q_{0}\right)^{2}}{2(n+1) \delta t}\right] . \tag{8}
\end{equation*}
$$

Since $q_{0}=q$ and $q_{n+1}=q^{\prime}$ it is now easy to express this result, together with a prefactor from (7) (and using eqs. (5)) as

$$
\begin{equation*}
\left\langle q^{\prime}(t)\right| e^{-i H t}|q(0)\rangle=\sqrt{\frac{m}{2 \pi i t}} \exp \left[\frac{i m\left(q^{\prime}-q\right)^{2}}{2 t}\right], \tag{9}
\end{equation*}
$$

which depends only on the initial and final position, the time and the mass of the particle.

