Quantum Field Theory

 Exercise 11January 20, 2016
-to be handed in by 28.01 .2016 (12:00 h) to the "Theoretische Physik 6a" letterbox (No. 37) in the foyer of Staudingerweg 7 .

1. Path Integral for a Free Complex Scalar Field (35 points)

Obtain the following form of a path integral $Z_{0}\left(J, J^{*}\right)$ for a free complex scalar field

$$
\begin{equation*}
Z_{0}\left(J, J^{*}\right)=\operatorname{Exp}\left[-\int d^{4} x \int d^{4} x^{\prime} J^{*}\left(x^{\prime}\right) \Delta\left(x-x^{\prime}\right) J(x)\right] \tag{1}
\end{equation*}
$$

where $\Delta\left(x-x^{\prime}\right)$ is the Feynman propagator in position space. Hint: Note that in the case of a complex scalar field one has to introduce two source terms of the form $J^{*}(x) \phi(x)+J(x) \phi^{*}(x)$.

2. Crossing Symmetry (20 points)

In the exercise 9 you derived the spin averaged squared matrix element for the process $e^{+}\left(p_{2}\right) e^{-}\left(p_{1}\right) \rightarrow \gamma\left(k_{1}\right) \gamma\left(k_{2}\right)$

$$
\begin{equation*}
\frac{1}{4} \sum_{\text {spins }}|\mathcal{M}|^{2}=2 e^{4}\left[\frac{p_{1} k_{2}}{p_{1} k_{1}}+\frac{p_{1} k_{1}}{p_{1} k_{2}}+2 m^{2}\left(\frac{1}{p_{1} k_{1}}+\frac{1}{p_{1} k_{2}}\right)-m^{4}\left(\frac{1}{p_{1} k_{1}}+\frac{1}{p_{1} k_{2}}\right)^{2}\right] . \tag{2}
\end{equation*}
$$

Using the so called crossing symmetry (see literature : Srednicki,Peskin...), obtain the spin averaged squared matrix element for Compton scattering $e^{-}(p) \gamma(k) \rightarrow$ $e^{-}\left(p^{\prime}\right) \gamma\left(k^{\prime}\right)$.
3. Polarized $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$Cross Section (45 points)

Starting from the matrix element for $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$process

$$
\begin{equation*}
i \mathcal{M}\left(e^{-}(p) e^{+}\left(p^{\prime}\right) \rightarrow \mu^{-}(k) \mu^{+}\left(k^{\prime}\right)\right)=\frac{i e^{2}}{\left(p+p^{\prime}\right)^{2}}\left(\bar{v}\left(p^{\prime}\right) \gamma^{\mu} u(p)\right)\left(\bar{u}(k) \gamma_{\mu} v\left(k^{\prime}\right)\right) \tag{3}
\end{equation*}
$$

calculate the differential cross section

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}\left(e_{R}^{+} e_{L}^{-} \rightarrow \mu_{L}^{+} \mu_{R}^{-}\right), \tag{4}
\end{equation*}
$$

where indices L and R label left and right handed particles, respectively. Work in the massless limit ($m_{e}, m_{\mu} \rightarrow 0$). Express the differential cross section in terms of the incoming electron energy E and the angle between the incoming electron and the outgoing muon.

