Quantum Field Theory

Exercise 10

Janurary 19, 2016
-to be handed in by 26.01.2017 (12:00 h) to the letterbox No. 37 ("relativistische QFT") in the foyer of Staudingerweg 7.

1. $e^{+} e^{-}$pair annihilation into photons (100 points)

$$
e^{+}\left(p_{2}\right) e^{-}\left(p_{1}\right) \rightarrow \gamma\left(k_{1}\right) \gamma\left(k_{2}\right)
$$

a) (80 points)

Show that the squared matrix element (summed over initial spins and averaged over the outgoing polarisations) is equal to

$$
\begin{equation*}
\frac{1}{4} \sum_{\text {spins }}|\mathcal{M}|^{2}=2 e^{4}\left[\frac{p_{1} k_{2}}{p_{1} k_{1}}+\frac{p_{1} k_{1}}{p_{1} k_{2}}+2 m^{2}\left(\frac{1}{p_{1} k_{1}}+\frac{1}{p_{1} k_{2}}\right)-m^{4}\left(\frac{1}{p_{1} k_{1}}+\frac{1}{p_{1} k_{2}}\right)^{2}\right] . \tag{1}
\end{equation*}
$$

The relevant Feynman diagrams are shown in 1.
Hint: First add the matrix elements corresponding to each diagram and then construct the squared matrix element.

Figure 1: Tree-level Feynman diagram for $e^{+}\left(p_{2}\right) e^{-}\left(p_{1}\right) \rightarrow \gamma\left(k_{1}\right) \gamma\left(k_{2}\right)$ process.
b) (10 points) Calculate the differential cross section in the center of mass frame (the kinematics are shown in Figure 22). It should give

$$
\begin{equation*}
\frac{d \sigma}{d \cos \theta}=\frac{\pi \alpha^{2}}{2 E p}\left[\frac{E^{2}+p^{2} \cos ^{2} \theta}{m^{2}+p^{2} \sin ^{2} \theta}+\frac{2 m^{2}}{m^{2}+p^{2} \sin ^{2} \theta}-\frac{2 m^{4}}{\left(m^{2}+p^{2} \sin ^{2} \theta\right)^{2}}\right] \tag{2}
\end{equation*}
$$

Figure 2: Parametrisation of the momenta in the com system.

c) (5 points)

What is the high energy limit $\left(E^{2} \gg m^{2}\right)$ of the differential cross section?
d) (5 points)

Explain the origin of the divergence of the differential cross section in the high energy limit!

