Quantum Field Theory
 Exercise 1

October 27, 2016
-to be handed in by 3.11.2016 (12:00 h) to the letterbox No. 37 ("relativistische QFT") in the foyer of Staudingerweg 7 .

Remember: In the case of n independent fields,

- the Hamiltonian of the system is given by $H=\int d^{3} x\left(\sum_{i=1}^{n} \pi_{\phi_{i}} \dot{\phi}_{i}-\mathcal{L}\right)$ where $\pi_{\phi_{i}}=$ $\frac{\partial \mathcal{L}}{\partial \dot{\phi}_{i}}$ is the conjugate momentum associated with i-th degree of freedom ϕ_{i}
- the Noether current of the system is given by $j^{\mu}=\sum_{i=1}^{n} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{i}\right)} \Delta \phi_{i}-\mathcal{J}^{\mu}$

1. Scalar Theory with $S O(2)$ Invariance (50 points)

Consider the following Lagrangian density for two real scalar fields $\phi_{1}(x), \phi_{2}(x)$:

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial^{\mu} \phi_{1}\right)\left(\partial_{\mu} \phi_{1}\right)+\frac{1}{2}\left(\partial^{\mu} \phi_{2}\right)\left(\partial_{\mu} \phi_{2}\right)-\frac{m^{2}}{2}\left(\phi_{1}^{2}+\phi_{2}^{2}\right)-\frac{\lambda}{4!}\left(\phi_{1}^{2}+\phi_{2}^{2}\right)^{2} \tag{1}
\end{equation*}
$$

(a) (20 points) Identify the equations of motion and construct the Hamilton density \mathcal{H}.
(b) (15 points) Show that the above Lagrangian is invariant under the transformations

$$
\begin{align*}
& \phi_{1} \rightarrow \phi_{1}^{\prime}=\phi_{1} \cos \theta-\phi_{2} \sin \theta, \tag{2}\\
& \phi_{2} \rightarrow \phi_{2}^{\prime}=\phi_{1} \sin \theta+\phi_{2} \cos \theta . \tag{3}
\end{align*}
$$

(c) (15 points) Calculate the Noether current j^{μ} and show explicitly, using equations of motion, that its divergence vanishes. Note that \mathcal{J}^{μ} equals zero in this particular case as the transformation in (b) does not generate any new term containing the total derivative.

2. Real Scalar Field in 1+1 Dimensions (50 points)

Consider the following Lagrangian for a real scalar field ϕ in $1+1$ (one spatial and one time) dimensions

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial^{\mu} \phi\right)\left(\partial_{\mu} \phi\right)-\frac{\lambda}{4}\left(\phi^{2}-v^{2}\right)^{2}, \tag{4}
\end{equation*}
$$

where v is a constant.
(a) (20 points) Construct the corresponding Hamiltonian and find the condition on classical field configurations $\phi_{0}(x)$ which minimize the energy.
(b) (10 points) Find the equations of motion for the field ϕ.
(c) (20 points) The static solution (that is $\dot{\phi}=0$) which interpolates between two vacuum states is called the kink solution. Prove that the kink solution

$$
\begin{equation*}
\phi_{\text {kink }}(x)=v \tanh \left(\sqrt{\frac{\lambda}{2}} v x\right) \tag{5}
\end{equation*}
$$

is indeed a solution of the equations of motion.

