Quantum Field Theory Exercise 3

November 10, 2016
-to be handed in by 17.11.2016 (12:00 h) to the letterbox No. 37 ("relativistische QFT") in the foyer of Staudingerweg 7.

1. Relativistic particle in a homogeneous magnetic field (35 points)

The coupling of the Dirac equation to an electromagnetic field is accomplished by the substitution $\mathrm{i} \partial_{\mu} \rightarrow \mathrm{i} \partial_{\mu}-\mathrm{e} \mathrm{A}_{\mu}$, where $A^{\mu}=(\Phi, \mathbf{A})$ is the electromagnetic 4 -potential. The Dirac equation in presence of an electromagnetic field then reads:

$$
\begin{equation*}
((\mathrm{i} \not \partial-\mathrm{e} \not \subset A)-\mathrm{m}) \psi=0 \tag{1}
\end{equation*}
$$

(a) (5 points) Show that eq. 1 can be written as

$$
\begin{equation*}
\hat{E} \psi=\boldsymbol{\alpha}(\hat{\boldsymbol{p}}-e \mathbf{A}) \psi+e \Phi \psi+m \gamma^{0} \psi \tag{2}
\end{equation*}
$$

with $\alpha^{i}=\gamma^{0} \gamma^{i}=\left(\begin{array}{cc}0 & \sigma^{i} \\ \sigma^{i} & 0\end{array}\right)$ and the usual quantum-mechanical replacements $\hat{p}^{0}=\hat{p}_{0}=\hat{E}=\mathrm{i} \partial_{\mathrm{t}}$ and $\hat{\boldsymbol{p}}=-i \nabla$. Note that here we use the Dirac basis, where $\gamma_{0}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)=\beta$.

Consider now a particle in a homogeneous magnetic field \mathbf{B}. Use the gauge $A^{0}=$ $A^{2}=A^{3}=0, A^{1}=B y$.
(b) (5 points) Show that eq. 2 now reads

$$
\begin{align*}
(\hat{E}-m) \phi & =\boldsymbol{\sigma}\left(\hat{\boldsymbol{p}}-e B y \hat{\boldsymbol{e}}_{\mathbf{1}}\right) \chi \tag{3}\\
(\hat{E}+m) \chi & =\boldsymbol{\sigma}\left(\hat{\boldsymbol{p}}-e B y \hat{\boldsymbol{e}}_{\mathbf{1}}\right) \phi \tag{4}
\end{align*}
$$

for the two components ϕ, χ of $\psi=\binom{\phi}{\chi}$.
(c) (15 points) Derive the following equation for ϕ :

$$
\begin{align*}
\left(\hat{E}^{2}-m^{2}\right) \phi & =\left(\hat{p}_{y}^{2}+\hat{p}_{z}^{2}+\left(\hat{p}_{x}-e B \hat{y}\right)^{2}+e B \sigma^{3}\right) \phi \tag{5}\\
& =\left(\hat{p}_{y}^{2}+\hat{p}_{z}^{2}+\left(\hat{p}_{x}-e B \hat{y}\right)^{2}+2 e B \hat{s}_{z}\right) \phi \tag{6}
\end{align*}
$$

Since the right hand sight of eq. 5 commutes with \hat{p}_{x}, \hat{p}_{z} and \hat{s}_{z}, one can use the ansatz $\phi=\mathrm{e}^{\mathrm{i}\left(\mathrm{p}_{x} \times+\mathrm{p}_{z} \mathrm{z}\right)} \omega\left(\mathrm{p}_{\mathrm{y}}, \mathrm{y}\right) \rho\left(\mathrm{s}_{\mathrm{z}}\right)$ for the stationary solution.
(d) (10 points) Derive a differential equation for $\omega\left(p_{y}, y\right)$. What does it remind you of? Deduce the corresponding energy levels for a relativistic particle in a homogeneous magnetic field.

2. Gordon Identity (25 points)

Derive the so-called Gordon identity

$$
\bar{u}\left(p^{\prime}\right) \gamma^{\mu} u(p)=\bar{u}\left(p^{\prime}\right)\left[\frac{P^{\mu}}{2 M}+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M}\right] u(p)
$$

where $P=p^{\prime}+p, q=p^{\prime}-p$ and $\sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]$.

3. Projection Operators (20 points)

Show that $P_{ \pm}= \pm \frac{p \pm m}{2 m}$ represent a complete sets of projection operators, i.e. satisfy the conditions

$$
P_{i} P_{j}=\delta_{i, j} P_{i}, \quad \sum_{i} P_{i}=1 .
$$

In addition, show that $P_{ \pm}$are the projection operators on positive and negative energy solutions (u and v spinors) for arbitrary particle momentum.
4. γ Matrices (maximum 20 points): you are welcome to do as many as you like, but only the first to give 20 points will be marked.
Without using an explicit representation for the γ matrices show that:
(a) (2.5 points) $\gamma_{\mu} \gamma^{\mu}=4$
(b) (2.5 points) $\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu}\right]=4 g^{\mu \nu}$
(c) (5 points) $\operatorname{Tr}[d b \not \subset d]=4[(a \cdot b)(c \cdot d)-(a \cdot c)(b \cdot d)+(a \cdot d)(b \cdot c)]$
(d) $\left(5\right.$ points) $\gamma_{5}=\frac{i}{4!} \varepsilon_{\mu \nu \rho \sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}$
(e) (5 points) $\gamma_{5}^{2}=\mathbb{1}$
(f) (5 points) $\left\{\gamma_{5}, \gamma^{\mu}\right\}=0$
(g) (5 points) $\operatorname{Tr}\left[\gamma_{5}\right]=0$
(h) (5 points) $\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma_{5}\right]=0$
(i) (5 points) $\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma_{5}\right]=4 i \varepsilon^{\mu \nu \rho \sigma}$
(j) (5 points) $\operatorname{Tr}\left[\gamma^{\mu_{1}} \cdots \gamma^{\mu_{n}}\right]=0$ if n is odd
where $\not \phi \equiv \gamma^{\mu} a_{\mu}, \gamma_{5} \equiv i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$ and $\varepsilon_{0123}=+1$

