# Quantum Field Theory Exercise 4 

November 17, 2016
-to be handed in by 24.11 .2016 (12:00 h) to the letterbox No. 37 ("relativistische QFT") in the foyer of Staudingerweg 7.

1. Dirac Bilinears ( 60 points)

Since a spinor turns into minus itself after a rotation over $2 \pi$, physical quantities must be bilinears in $\psi$, so that physical quantities turn into themselves after a rotation over $2 \pi$. These bilinears have the general form $\bar{\psi} \Gamma \psi$. There are 16 independent covariant ones related to 16 complex $4 \times 4$ matrices:

- $\Gamma_{S}=\mathbb{1}$ (scalar);
- $\Gamma_{P}=\gamma_{5}$ (pseudoscalar);
- $\Gamma_{V}^{\mu}=\gamma^{\mu}$ (vector);
- $\Gamma_{A}^{\mu}=\gamma^{\mu} \gamma_{5}$ (axial vector);
- $\Gamma_{T}^{\mu \nu}=\sigma^{\mu \nu} \equiv \frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]$ (tensor).

Without referring to any explicit representation for the $\Gamma$ matrices,
(a) (5 points) show that $\Gamma^{2}= \pm \mathbb{1}$.
(b) (5 points) show that for any $\Gamma$ except $\Gamma_{S}$, we have $\operatorname{Tr}[\Gamma]=0$.
(c) (10 points) check that the product of 2 different $\Gamma$ 's is proportional to some $\Gamma$ different from $\Gamma_{S}$;
(d) (20 points) using the Lorentz transformation of the Dirac spinor $\psi^{\prime}\left(x^{\prime}\right)=$ $S(a) \psi(x)$ with $x^{\mu}=a^{\mu}{ }_{\nu} x^{\nu}$, check that the bilinears transform according to their name, i.e. $\bar{\psi}^{\prime} \psi^{\prime}=\bar{\psi} \psi, \bar{\psi}^{\prime} \gamma_{5} \psi^{\prime}=\operatorname{det}(a) \bar{\psi} \gamma_{5} \psi, \bar{\psi}^{\prime} \gamma^{\mu} \psi^{\prime}=a^{\mu}{ }_{\nu} \bar{\psi} \gamma^{\nu} \psi$, $\bar{\psi}^{\prime} \gamma^{\mu} \gamma_{5} \psi^{\prime}=\operatorname{det}(a) a^{\mu}{ }_{\nu} \bar{\psi} \gamma^{\nu} \gamma_{5} \psi$ and $\bar{\psi} \sigma^{\mu \nu} \psi^{\prime}=a^{\mu}{ }_{\rho} a^{\nu}{ }_{\sigma} \bar{\psi} \sigma^{\rho \sigma} \psi$.
(e) (20 points) Calculate the following transformations:

- $P \bar{\psi} \Gamma_{T}^{\mu \nu} \psi P$,
- $C \bar{\psi} \Gamma_{A}^{\mu} \psi C$
- $T \bar{\psi} \Gamma_{V}^{\mu} \psi T$

2. The Quantized Dirac Field (40 points)

Express the following quantities in terms of creation and annihilation operators:
(a) (15 points) momentum $\mathbf{P}=-i \int d^{3} x \psi^{\dagger} \nabla \psi$,
(b) (15 points) charge $Q=\int d^{3} x \psi^{\dagger} \psi$.

In addition, calculate:
(c) (10 points) $\left[\mathbf{P}, a^{\dagger}\left(\mathbf{p}^{\prime}, s^{\prime}\right) a\left(\mathbf{p}^{\prime}, s^{\prime}\right)\right]$.

