Quantum Field Theory Exercise 5

November 24, 2016

-to be handed in by 01.12.2016 (12:00 h) to the letterbox No. 37 ("relativistische QFT") in the foyer of Staudingerweg 7.

1. Axial Current (30 points)

For a Dirac field, the transformations,

$$\psi(x) \to \psi'(x) = e^{i\alpha\gamma_5}\psi(x), \qquad \qquad \psi^{\dagger}(x) \to \psi^{\dagger}'(x) = \psi^{\dagger}(x)e^{-i\alpha\gamma_5},$$

where α is here an arbitrary real parameter, are called chiral phase transformations.

a)(15 points) Show that the Lagrangian density $\mathcal{L} = \bar{\psi}(i\partial - m)\psi$ is invariant under chiral phase transformations in the zero-mass limit m = 0 only, and that the corresponding conserved current in this limit is the axial vector current $J_A^{\mu} = \bar{\psi}(x)\gamma^{\mu}\gamma_5\psi(x)$.

b)(15 points) Derive the equations of motions for the fields

$$\psi_L(x) = \frac{1}{2} \left(\mathbb{1} - \gamma_5 \right) \psi(x), \qquad \qquad \psi_R(x) = \frac{1}{2} \left(\mathbb{1} + \gamma_5 \right) \psi(x),$$

for non-vanishing mass, and show that they decouple in the limit m = 0.

2. Fierz Transformations (35 points)

a) (10 points) Normalize the 16 matrices Γ^A (scalar 1, pseudoscalar γ_5 , vector γ^{μ} , axial vector $\gamma^{\mu}\gamma_5$ and tensor $\sigma^{\mu\nu}$) to the convention

$$\operatorname{Tr}\left[\Gamma^{A}\Gamma^{B}\right] = 4\delta^{AB}$$

b) (10 points) We can define the so called *Fierz identity* as an equation

$$(\bar{u}_1 \Gamma^A u_2)(\bar{u}_3 \Gamma^B u_4) = \sum_{C,D} C^{AB}{}_{CD} (\bar{u}_1 \Gamma^C u_4)(\bar{u}_3 \Gamma^D u_2),$$

with unknown coefficients $C^{AB}{}_{CD}$. Show that

$$C^{AB}{}_{CD} = \frac{1}{16} \operatorname{Tr} \left[\Gamma^C \Gamma^A \Gamma^D \Gamma^B \right].$$

c) (15 points) Work out explicitly the Fierz transformation laws for the product $(\bar{u}_1\gamma^{\mu}P_Lu_2)(\bar{u}_3\gamma_{\mu}P_Lu_4)$.

3. Perturbation Theory in Quantum Mechanics (35 points)

Consider a one-dimensional simple harmonic oscillator whose classical angular frequency is ω_0 . For t < 0 it is known to be in the ground state. For t > 0 there is also a time-dependent potential

$$V(t) = F_0 x \cos\left(\omega t\right),$$

where F_0 is a constant.

a) (15 points) Calculate the field operator $\Psi_I(\mathbf{x}, t)$ in the interaction picture by rewriting the Schrödinger equation as an integral equation up to first order in the interaction Hamiltion H_{int} .

b) (15 points) Determine the probability that the system after time t is in the ground state.

c) (5 points) Is this procedure valid for $\omega \simeq \omega_0$?