Quantum Field Theory Exercise 5

November 24, 2016
-to be handed in by 01.12.2016 (12:00 h) to the letterbox No. 37 ("relativistische QFT") in the foyer of Staudingerweg 7.

1. Axial Current (30 points)

For a Dirac field, the transformations,

$$
\psi(x) \rightarrow \psi^{\prime}(x)=e^{i \alpha \gamma_{5}} \psi(x), \quad \psi^{\dagger}(x) \rightarrow \psi^{\dagger}(x)=\psi^{\dagger}(x) e^{-i \alpha \gamma_{5}},
$$

where α is here an arbitrary real parameter, are called chiral phase transformations.
a)(15 points) Show that the Lagrangian density $\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi$ is invariant under chiral phase transformations in the zero-mass limit $m=0$ only, and that the corresponding conserved current in this limit is the axial vector current $J_{A}^{\mu}=$ $\bar{\psi}(x) \gamma^{\mu} \gamma_{5} \psi(x)$.
b)(15 points) Derive the equations of motions for the fields

$$
\psi_{L}(x)=\frac{1}{2}\left(\mathbb{1}-\gamma_{5}\right) \psi(x), \quad \quad \psi_{R}(x)=\frac{1}{2}\left(\mathbb{1}+\gamma_{5}\right) \psi(x),
$$

for non-vanishing mass, and show that they decouple in the limit $m=0$.

2. Fierz Transformations (35 points)

a) (10 points) Normalize the 16 matrices Γ^{A} (scalar $\mathbb{1}$, pseudoscalar γ_{5}, vector γ^{μ}, axial vector $\gamma^{\mu} \gamma_{5}$ and tensor $\sigma^{\mu \nu}$) to the convention

$$
\operatorname{Tr}\left[\Gamma^{A} \Gamma^{B}\right]=4 \delta^{A B} .
$$

b) (10 points) We can define the so called Fierz identity as an equation

$$
\left(\bar{u}_{1} \Gamma^{A} u_{2}\right)\left(\bar{u}_{3} \Gamma^{B} u_{4}\right)=\sum_{C, D} C^{A B}{ }_{C D}\left(\bar{u}_{1} \Gamma^{C} u_{4}\right)\left(\bar{u}_{3} \Gamma^{D} u_{2}\right),
$$

with unknown coefficients $C^{A B}{ }_{C D}$. Show that

$$
C^{A B}{ }_{C D}=\frac{1}{16} \operatorname{Tr}\left[\Gamma^{C} \Gamma^{A} \Gamma^{D} \Gamma^{B}\right] .
$$

c) (15 points) Work out explicitly the Fierz transformation laws for the product $\left(\bar{u}_{1} \gamma^{\mu} P_{L} u_{2}\right)\left(\bar{u}_{3} \gamma_{\mu} P_{L} u_{4}\right)$.
3. Perturbation Theory in Quantum Mechanics (35 points)

Consider a one-dimensional simple harmonic oscillator whose classical angular frequency is ω_{0}. For $t<0$ it is known to be in the ground state. For $t>0$ there is also a time-dependent potential

$$
V(t)=F_{0} x \cos (\omega t)
$$

where F_{0} is a constant.
a) (15 points) Calculate the field operator $\Psi_{I}(\mathrm{x}, t)$ in the interaction picture by rewriting the Schrödinger equation as an integral equation up to first order in the interaction Hamiltion $H_{\text {int }}$.
b) (15 points) Determine the probability that the system after time t is in the ground state.
c) (5 points) Is this procedure valid for $\omega \simeq \omega_{0}$?

