Quantum Field Theory Exercise 8

December 15, 2016
-to be handed in by $22.12 .2016(12: 00 \mathrm{~h})$ to the letterbox No. 37 ("relativistische QFT") in the foyer of Staudingerweg 7.

1. Two-Loop Corrections to the Fermion Propagator (20 points)

Given a Yukawa theory

$$
\mathcal{L}=\bar{\psi}\left(i \not \partial-m_{\psi}\right) \psi+\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m_{\phi}^{2} \phi^{2}-g \bar{\psi} \psi \phi-v \phi^{3}
$$

with a Dirac fermion ψ and a scalar field ϕ, draw the Feynman diagram of all two-loop corrections to the fermion propagator.
2. Fermion-Scalar Scattering (80 points)

Using the Yukawa theory of the lecture,

$$
\mathcal{L}=\bar{\psi}\left(i \not \partial-m_{\psi}\right) \psi+\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m_{\phi}^{2} \phi^{2}-g \bar{\psi} \psi \phi,
$$

the aim of this exercise is to compute the fermion-scalar scattering process. Let the incoming and outgoing momenta of the fermion be p and p^{\prime}, and k and k^{\prime} for the scalar, respectively.
a)(6 points) Draw all tree-level Feynman diagrams of such a fermion-scalar scattering.
b)(30 points) Compute the matrix element $i \mathcal{M}$ for the sum of diagrams in a).
c)(30 points) Using the result of part b) compute now the spin summed matrix element squared $\sum_{s}|\mathcal{M}|^{2}$. Remember that $\sum_{s} u^{s}(p) \bar{u}^{s}(p)=\not p+m$.
Hint: The results of exercise 3.4 will probably come in handy.
d)(14 points) Express the result of part c) in the three so-called Mandelstam variables

$$
\begin{aligned}
s & =(p+k)^{2}, \\
t & =\left(p-p^{\prime}\right)^{2}, \text { and } \\
u & =\left(p-k^{\prime}\right)^{2} .
\end{aligned}
$$

