Quantum Field Theory
 Exercise 9

January 12, 2017
-to be handed in by 19.01.2017 (12:00 h) to the letterbox No. 37 ("relativistische QFT") in the foyer of Staudingerweg 7.
(1) The Scalar Electrodynamics Lagrangian from Symmetry Arguments (20 points)
Start from the free complex Klein-Gordon field Lagrangian

$$
\begin{equation*}
\mathcal{L}_{\text {free }}=\left(\partial^{\mu} \phi\right)\left(\partial_{\mu} \phi^{*}\right)-m \phi \phi^{*} . \tag{1}
\end{equation*}
$$

Check that this Lagrangian is not invariant under $U(1)$ gauge transformations of the form $\phi(x) \rightarrow \phi^{\prime}(x)=\mathrm{e}^{i \alpha(x)} \phi(x)$. By knowing the transformation property of the photon field $A^{\mu} \rightarrow A^{\mu}=A^{\mu}+\frac{1}{e}\left(\partial^{\mu} \alpha(x)\right)$, supplement the starting Lagrangian with additional interaction terms ($\mathcal{L}_{\text {int }}$) which would help to restore the gauge invariance of the total Lagrangian $\mathcal{L}_{\text {free }}+\mathcal{L}_{\text {int }}$. Finally, express the Lagrangian in the form

$$
\begin{equation*}
\mathcal{L}=\left(\mathrm{D}^{\mu} \phi\right)\left(\mathrm{D}_{\mu} \phi\right)^{*}-m \phi \phi^{*}-\frac{1}{4} \mathrm{~F}_{\mu \nu} \mathrm{F}^{\mu \nu} \tag{2}
\end{equation*}
$$

with a suitably defined covariant derivative D_{μ}.
(2) Electron-positron annihilation into charged scalar mesons, $e^{+} e^{-} \rightarrow J \bar{J}$ (30 points)
Consider electron-positron annihilation into a meson-antimeson pair, $e^{+}\left(k_{2}\right) e^{-}\left(k_{1}\right) \rightarrow$ $J\left(p_{2}\right) \bar{J}\left(p_{1}\right)$. The process is represented by the Feynman diagram in fig. 1. Treat the electron as a massless Dirac particle and the meson as a massless Klein-Gordon particle. For the definition of the kinematic variables, refer to fig. 2 .

Figure 1: Electron-positron annihilation into a scalar meson-antimeson pair
(a) (10 points) The squared matrix element, obtained as an average over electron and positron spin configurations, can be expressed as

$$
\begin{equation*}
|\mathcal{M}|^{2}=\frac{e^{4} e_{J}^{2}}{s} L^{\mu \nu} J_{\mu \nu} \tag{3}
\end{equation*}
$$

with the meson charge e_{J} and the Mandelstam variable $s=\left(k_{1}+k_{2}\right)^{2}$. Find the expressions for the meson tensor $J_{\mu \nu}$ and the lepton tensor $L_{\mu \nu}$ in terms of momenta $k_{1}, k_{2}, p_{1}, p_{2}$. The Feynman rule for the meson-antimeson-photon vertex is $i e_{J} e\left(p_{2}-p_{1}\right)^{\mu}$.
(b) (5 points) Express the result for $L^{\mu \nu} J_{\mu \nu}$ in terms of the Mandelstam variable $s=\left(k_{1}+k_{2}\right)^{2}$ and $t=\left(k_{1}-p_{1}\right)^{2}$.
(c) (10 points) The general expression for the differential cross-section in the center-of-mass frame for a $2 \rightarrow 2$ process is

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{|\mathcal{M}|^{2}}{64 \pi^{2} E_{\mathrm{COM}}^{2}} \frac{\left|\mathbf{p}_{\mathrm{fin}}\right|}{\left|\mathbf{p}_{\mathrm{in}}\right|}, \tag{4}
\end{equation*}
$$

where $\left|\mathbf{p}_{\text {in }}\right|$ and $\left|\mathbf{p}_{\text {fin }}\right|$ are the absolute values of the momentum in the center-of-mass system in the initial and final state, respectively.
Express it in terms of the energy squared in the center-of-mass frame, $s=$ $\left(k_{1}+k_{2}\right)^{2}$, and the angle θ between k_{1} and p_{2}.

Figure 2: Parametrisation of the kinematic variables for electron-positron annihilation into a scalar meson-antimeson pair.

(3) Cross section of electron - muon scattering (50 points)

(a) (5 points) Use the Feynman rules to write down the amplitude for the process $e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$shown in fig. 3
(b) (40 points) Show that the corresponding squared amplitude, averaged and summed over spins, is equal to

$$
\begin{equation*}
\frac{1}{4} \sum_{\text {spins }}|\mathcal{M}|^{2}=\frac{8 e^{4}}{q^{4}}\left[\left(p_{1} \cdot p_{2}^{\prime}\right)\left(p_{1}^{\prime} \cdot p_{2}\right)+\left(p_{1} \cdot p_{2}\right)\left(p_{1}^{\prime} \cdot p_{2}^{\prime}\right)-m_{\mu}^{2}\left(p_{1} \cdot p_{1}^{\prime}\right)\right], \tag{5}
\end{equation*}
$$

when neglecting the electron mass $m_{e}=0$.

Figure 3: Feynman diagram for electron - muon scattering.
(c) (5 points) Assume to be in the center-of-mass system and calculate the differential cross section $\frac{d \sigma}{d \Omega}$ (again for vanishing electron mass, $m_{e}=0$). What is the high energy limit of the differential cross section? Compare to the most general formula for the differential cross section for a $2 \rightarrow 2$ process (massive particles), given in exercise (2 c)). (refer to fig. 4 for definition of the variables)

Figure 4: Parametrisation of the momenta of the in- and outgoing electron and muon in the center-of-mass system.

