## problem sheet 2

to be handed by Friday 6.5.2016 (12:00) to the letterbox 37 (foyer of Staudingerweg 7)

## 1. Renormalisation of the fermion propagator (70 P.)



Figure 1: Loop correction to the fermion propagator on one-loop level.

Calculate the diagram scetched in figure 1:

- Write down the amplitude using Feynman rules, do not include the propagators of the external fermion lines.
- Introduce Feynman parameters to combine the denominator.
- Complete the square in the denominator, shifting  $k \to \ell$ . The denominator should become

$$[\ell^2 - \Delta + i\epsilon]^2, \qquad (1)$$

with

$$\ell = k - xp$$
 and  $\Delta = -x(1-x)p^2 + (1-x)m^2$ . (2)

- Rewrite the numerator in terms of  $\ell$ , remember you can drop odd powers.
- Solve the momentum integral using Wick rotation and dimensional regularisation. You do not have to solve the Feynman parameter integral!

## 2. Gordon identity (30 P.)

In the lecture you used the Gordon identity

$$\bar{u}(p')\gamma^{\mu}u(p) = \bar{u}(p')\left[\frac{p'^{\mu} + p^{\mu}}{2m} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m}\right]u(p), \qquad (3)$$

where q = p - p', to determine the structure of the electron vertex function  $\Gamma^{\mu}$  (see section 8.1).

Use the anticommutation relations of the gamma matrices and the Dirac equation to proof this identity.