problem sheet 3

to be handed by Friday 20.5.2016 (12:00) to the letterbox 37 (foyer of Staudingerweg 7)

1. Renormalisation of the fermion propagator (5 P.)

In the second exercise we derived the amplitude $\Sigma_2(p)$, the one-loop level correction to the fermion propagator. Use the result we obtained to define the counterterms $Z_{\psi} - 1$ and $Z_m - 1$ (see figure 1) such that they cancel the divergence. Use the \overline{MS} scheme to do so.

$$\mu \swarrow \nu = -i(g^{\mu\nu}q^2 - q^{\nu}q^{\nu})(Z_A - 1)$$
$$= i(p(Z_{\psi} - 1) - m(Z_m - 1))$$

Figure 1: Feynman rules for the counterterms of the fermion and photon propagators.

2. Renormalisation of the photon propagator (60 P.)

Figure 2: Loop correction to the photon propagator at one-loop level.

- (a) (50 P.) Calculate the diagram sketched in figure 2:
 - Write down the amplitude using Feynman rules, do not include the external photon lines.
 - Introduce Feynman parameters to combine the denominator.
 - Complete the square in the denominator, shifting $k \to \ell$. The denominator should become

$$\left[\ell^2 - \Delta + i\epsilon\right]^2,\tag{1}$$

with

$$\ell = k + qx$$
 and $\Delta = m^2 - q^2 x (1 - x)$. (2)

- Rewrite the numerator in terms of ℓ , remember you can drop odd powers.
- Solve the momentum integral using Wick rotation and dimensional regularisation. You do not have to solve the Feynman parameter integral! (Hint: Take a look at part (b).)

(b) (5 P.) The amplitude can be written as

$$i\Pi_2^{\mu\nu}(q) = (q^2 g^{\mu\nu} - q^{\mu} q^{\nu}) i\Pi_2(q^2), \qquad (3)$$

thus extracting the dependence on the Lorentz indices. The counterterm has the same form (see figure 1). What dictates the structure of $\Pi^{\mu\nu}$?

(c) (5 P.) Now define the counterterm $Z_A - 1$ such that it cancels the divergence. Use again the \overline{MS} scheme to do so.

3. Regularisation of the ϕ^4 Tadpole Diagram (35 P.)

In chapter 4 of last years lecture you can find the ϕ^4 theory with its Lagrangian

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{4!} \phi^4 \,. \tag{4}$$

It gives rise to a so-called tadpole diagram shown in figure 3.

Figure 3: Tadpole diagram in ϕ^4 theory.

Calculate the divergent amplitude of the tadpole diagram (as before omit the external lines) and regularise the integral using

- (a) an UV cutoff Λ ,
- (b) Pauli-Villars regularisation, thus introducing a heavy partner particle,
- (c) dimensional regularisation, shifting the spacetime dimensions from 4 to $d = 4 \varepsilon$.