problem sheet 3 to be handed by Friday 20.5.2016 (12:00) to the letterbox 37 (foyer of Staudingerweg 7)

1. Renormalisation of the fermion propagator (5 P.)

In the second exercise we derived the amplitude $\Sigma_{2}(p)$, the one-loop level correction to the fermion propagator. Use the result we obtained to define the counterterms $Z_{\psi}-1$ and $Z_{m}-1$ (see figure 1) such that they cancel the divergence. Use the $\overline{M S}$ scheme to do so.

$$
\begin{aligned}
& =i\left(\not p\left(Z_{\psi}-1\right)-m\left(Z_{m}-1\right)\right)
\end{aligned}
$$

Figure 1: Feynman rules for the counterterms of the fermion and photon propagators.

2. Renormalisation of the photon propagator (60 P.)

Figure 2: Loop correction to the photon propagator at one-loop level.
(a) (50 P.) Calculate the diagram sketched in figure 2:

- Write down the amplitude using Feynman rules, do not include the external photon lines.
- Introduce Feynman parameters to combine the denominator.
- Complete the square in the denominator, shifting $k \rightarrow \ell$. The denominator should become

$$
\begin{equation*}
\left[\ell^{2}-\Delta+i \epsilon\right]^{2} \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
\ell=k+q x \quad \text { and } \quad \Delta=m^{2}-q^{2} x(1-x) . \tag{2}
\end{equation*}
$$

- Rewrite the numerator in terms of ℓ, remember you can drop odd powers.
- Solve the momentum integral using Wick rotation and dimensional regularisation. You do not have to solve the Feynman parameter integral! (Hint: Take a look at part (b).)
(b) (5 P.) The amplitude can be written as

$$
\begin{equation*}
i \Pi_{2}^{\mu \nu}(q)=\left(q^{2} g^{\mu \nu}-q^{\mu} q^{\nu}\right) i \Pi_{2}\left(q^{2}\right) \tag{3}
\end{equation*}
$$

thus extracting the dependence on the Lorentz indices. The counterterm has the same form (see figure 1). What dictates the structure of $\Pi^{\mu \nu}$?
(c) (5 P.) Now define the counterterm $Z_{A}-1$ such that it cancels the divergence. Use again the $\overline{M S}$ scheme to do so.

3. Regularisation of the ϕ^{4} Tadpole Diagram (35 P.)

In chapter 4 of last years lecture you can find the ϕ^{4} theory with its Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4} . \tag{4}
\end{equation*}
$$

It gives rise to a so-called tadpole diagram shown in figure 3.

Figure 3: Tadpole diagram in ϕ^{4} theory.
Calculate the divergent amplitude of the tadpole diagram (as before omit the external lines) and regularise the integral using
(a) an UV cutoff Λ,
(b) Pauli-Villars regularisation, thus introducing a heavy partner particle,
(c) dimensional regularisation, shifting the spacetime dimensions from 4 to $d=4-\varepsilon$.

