Theoretical Elementary Particle Physics Problems

problem sheet 4
to be handed by Tuesday 7.6.2016 (12:00) to the letterbox 37 (foyer of Staudingerweg 7)

Renormalisation of Yukawa theory

1. Divergent Amplitudes of the Yukawa theory (30 P.)

The pseudoscalar Yukawa Lagrangian is given by

1 = - A
£ = S(0u0) = m26* + §(id) = M)y — igh ™06 — So" 1)
where ¢ is a real scalar field and v a Dirac fermion.

(a) (10 P.) Show that the Lagrangian is invariant under the parity transformation,
where

w(tv X) — 70¢(t7 _X) (2)
(b(t» X) — _¢(t’ _X) : (3)

(b) (20 P.) Deduce the equation for the superficial degree of divergence D in terms
of the external legs of the scalars and the Dirac fermions. (Compare Peskin-
Schroeder chapter 10.1 and lecture notes online.) From this equation deduce the
four at one-loop level divergent diagrams in this theory (diagrams with D > 0).
Note that the one-point function of the scalar would be divergent (D = 3), but
it vanishes because of the parity invariance of £. The same is true for the scalar
three-point function with D = 1.

2. Renormalisation of Yukawa theory (70 P.)

Now we want to renormalise the theory at one-loop level and therefore determine
the counterterms for the above identified divergent diagrams. In order to keep the
calculations simple we choose the following renormalisation conditions, called zero-
momentum substraction:

Corrections to the two-point functions are supposed to vanish for both, the scalar
and the fermion, and their derivatives vanish at zero momentum, too.

For the amputated fermion-fermion-scalar three point function and the scalar four-
point function we also demand the correction to vanish at zero external momenta.
Note that when calculating the amplitudes for these processes, first set the exter-
nal momenta to zero before solving the loop integral, this simplifies the calculation
enormously.

The calculation of the scalar and fermion two-point functions are similar to the
calculations in the last two exercise sheets and we will therefore spare you the work
and give you the final results:

Scalar two-point function

The scalar two-point function has two contributions, one from the fermion loop
(I, (p?)), and another from the scalar loop (II) that is independent from the ex-
ternal momentum p.
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Figure 1: Scalar two-point function I, (p?) and IL,.

The contribution from the fermion loop is

o o Ak T (R M) (p+k+ M)
—ilu(p) =g / 2m)t (k2 — M2 +ig)((k + p)2 — M + i)’

When introducing Feynman parameters we get
(=k+ap and A=—z(l—2)p*+ M>. (5)
This makes the trace in the numerator become (dropping odd powers of )
A= +z(1—2)p* + M?) (6)

and we get

d*¢ —€2+$ 1—x)p? + M?
—illy(p?) = 4g / / ( A+)Z€) . (7)

Wick rotation and dimensional regularisation give us

il = i / d”:/ = {fz? LAY +I(1(;%I>+pl;M2] )
= é i d {( 2A) F—logA 7—|—10g(47r)+1+0( )] (9)

b1 —2)p? + M) E “log A —  + log(4r) + C’)(e)} }

The contribution from the scalar loop is independent of the external momentum:

| iAo
—ills = 7/(27?)4 k% —m? +ic (10
. d
_ A "
> | CriiE +m?
_ T2 o(dn) — log(m?) + 1+ O(e) (12)
T T3op2 |2 7TO8 &
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Thus the scalar two-point function is given by the sum of the two contributions:

—ill,(p*) —ill, = ig” /01 dx {(—2A) E —log A — v+ log(4m) + % + O(a)ilS)

472
+ (z(1 —2)p* + M?) E —log A — v + log(4m) + O(e)} }

. 2 2
?27:2 [E — v+ log(47) — log(m?) + 1 + 0(6)] ,

where A = —2(1 — 2)p* + M2

The counterterm is defined in Figure 3. The zero-momentum substraction scheme
gives us the following renormalisation conditions:

[TL(p) + s + (Zy = Vp* + (Z = 1)m?] ,_ =0 (14)
d
d—pg[ﬂ¢(P2) +1y+ (Zs = 1)p* + (Zon — )m®]| ,_y =0 (15)
making
-1
(Zn=1) = (07 =0)+11,) (16)
2772
—g"M* |2 2
= W {g -7 +10g(47‘(’) — log(M ) + 1:|
A + log(4n) — log(m?) + 1 (17)
3om2 e 8 &
2772
—g° M= |2 ) 2 _
= 45 L + ﬁmte} ~ 59 L + ﬁmte} (18)
Zo—1) = L [% Z10g(ar2) — 5 + log(dm) + . (19)
— = —|-—-1o — og(4m) + =
¢ gn2 |z ° Tres 3
2
g~ |2 :
= @ L:_ Jrﬁnlt()} . (20)
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Figure 2: Fermion two-point function —i3(p).

The fermion two-point function (see Figure 2) is given by:

o [ d% i s i(k+p+ M)
—iX(p) = (ig) / (27?)47 k2 —m2+ i (k+p)2— M?+ic

(21)
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Figure 3: Counterterms for the fermion and scalar two-point functions.
After introducing Feynman parameters and shifting k& — ¢ we get

, [ d U (I—a)p+ M
—iS(p) =g / o /0 dx((p_ A)p:@g)z’ (22)

with £ = k+ ap and A = —z(1 — z)p* + (1 — x)m? + xM?. Wick rotation and
dimensional regularisation give us

_ g’
1672

—i%(p) /o dz(p(l —x) + M) E —log A — vy +log(4m) + O(e)| . (23)

In Figure 3 the counterterm for the fermion two-point function is defined. The
renormalisation conditions we want to impose give us

S(0) + (Zy — )M =0 (24)
d
d—pz(p)}pzo —(Zy—1)=0 (25)

Therefore we get for the counterterms

(Zy—1) = 1_6?:2 /01 dx E —log A —v+ log(47)] (26)
. 1_652 [i + ﬁnite} (27)
and
(Zy—1) = g /1 dz(1 — z) F —log A — v+ log(4ﬁ)] (28)
1672 J, €
— 3;’; [i + ﬁnite} (29)

with A = (1 —z)m? + zM? .

(a) (35 P.) Write down the amplitude of the fermion-fermion-scalar vertex
correction and calculate the counterterm in the zero-momentum substraction
scheme.

(b) (35 P.) Write down the scalar four-point function correction and also calcu-
late the counterterm in the zero-momentum substraction scheme.

(Remember you can set the external momenta to zero before solving the loop
integral.)



