
Theoretical Elementary Particle Physics Problems

problem sheet 4
to be handed by Tuesday 7.6.2016 (12:00) to the letterbox 37 (foyer of Staudingerweg 7)

Renormalisation of Yukawa theory

1. Divergent Amplitudes of the Yukawa theory (30 P.)

The pseudoscalar Yukawa Lagrangian is given by

L =
1

2
(∂µφ)2 −m2φ2 + ψ̄(i/∂ −M)ψ − igψ̄γ5ψφ− λ

4!
φ4 (1)

where φ is a real scalar field and ψ a Dirac fermion.

(a) (10 P.) Show that the Lagrangian is invariant under the parity transformation,
where

ψ(t,x) → γ0ψ(t,−x) (2)

φ(t,x) → −φ(t,−x) . (3)

(b) (20 P.) Deduce the equation for the superficial degree of divergence D in terms
of the external legs of the scalars and the Dirac fermions. (Compare Peskin-
Schroeder chapter 10.1 and lecture notes online.) From this equation deduce the
four at one-loop level divergent diagrams in this theory (diagrams with D ≥ 0).
Note that the one-point function of the scalar would be divergent (D = 3), but
it vanishes because of the parity invariance of L. The same is true for the scalar
three-point function with D = 1.

2. Renormalisation of Yukawa theory (70 P.)

Now we want to renormalise the theory at one-loop level and therefore determine
the counterterms for the above identified divergent diagrams. In order to keep the
calculations simple we choose the following renormalisation conditions, called zero-
momentum substraction:

Corrections to the two-point functions are supposed to vanish for both, the scalar
and the fermion, and their derivatives vanish at zero momentum, too.

For the amputated fermion-fermion-scalar three point function and the scalar four-
point function we also demand the correction to vanish at zero external momenta.
Note that when calculating the amplitudes for these processes, first set the exter-
nal momenta to zero before solving the loop integral, this simplifies the calculation
enormously.

The calculation of the scalar and fermion two-point functions are similar to the
calculations in the last two exercise sheets and we will therefore spare you the work
and give you the final results:

Scalar two-point function

The scalar two-point function has two contributions, one from the fermion loop
(Πψ(p2)), and another from the scalar loop (Πφ) that is independent from the ex-
ternal momentum p.
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Figure 1: Scalar two-point function Πψ(p2) and Πφ.

The contribution from the fermion loop is

−iΠψ(p2) = g2
∫

d4k

(2π)4
Tr[γ5(/k +M)γ5(/p+ /k +M)]

(k2 −M2 + iε)((k + p)2 −M2 + iε)
. (4)

When introducing Feynman parameters we get

` = k + xp and ∆ = −x(1− x)p2 +M2 . (5)

This makes the trace in the numerator become (dropping odd powers of `)

4(−`2 + x(1− x)p2 +M2) (6)

and we get

−iΠψ(p2) = 4g2
∫ 1

0

dx

∫
d4`

(2π)4
−`2 + x(1− x)p2 +M2

(`2 −∆ + iε)2
. (7)

Wick rotation and dimensional regularisation give us

−iΠψ(p2) = 4ig2
∫ 1

0

dx

∫
dd`E
(2π)d

[
`2E

(`2E + ∆)2
+
x(1− x)p2 +M2

(`2E + ∆)2

]
(8)

=
ig2

4π2

∫ 1

0

dx

{
(−2∆)

[
2

ε
− log ∆− γ + log(4π) +

1

2
+O(ε)

]
(9)

+ (x(1− x)p2 +M2)

[
2

ε
− log ∆− γ + log(4π) +O(ε)

]}
The contribution from the scalar loop is independent of the external momentum:

−iΠφ =
iλ

2

∫
d4k

(2π)4
i

k2 −m2 + iε
(10)

=
iλ

2

∫
ddEk

(2π)d
1

k2E +m2
(11)

=
−iλm2

32π2

[
2

ε
− γ + log(4π)− log(m2) + 1 +O(ε)

]
(12)
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Thus the scalar two-point function is given by the sum of the two contributions:

−iΠψ(p2)− iΠφ =
ig2

4π2

∫ 1

0

dx

{
(−2∆)

[
2

ε
− log ∆− γ + log(4π) +

1

2
+O(ε)

]
(13)

+ (x(1− x)p2 +M2)

[
2

ε
− log ∆− γ + log(4π) +O(ε)

]}
− iλm2

32π2

[
2

ε
− γ + log(4π)− log(m2) + 1 +O(ε)

]
,

where ∆ = −x(1− x)p2 +M2.

The counterterm is defined in Figure 3. The zero-momentum substraction scheme
gives us the following renormalisation conditions:[

Πψ(p2) + Πφ + (Zφ − 1)p2 + (Zm − 1)m2
]
p2=0

= 0 (14)

d

dp2
[Πψ(p2) + Πφ + (Zφ − 1)p2 + (Zm − 1)m2]

∣∣
p2=0

= 0 (15)

making

(Zm − 1) =
−1

m2
(Πψ(p2 = 0) + Πφ) (16)

=
−g2M2

4m2π2

[
2

ε
− γ + log(4π)− log(M2) + 1

]
− λ

32π2

[
2

ε
− γ + log(4π)− log(m2) + 1

]
(17)

=
−g2M2

4m2π2

[
2

ε
+ finite

]
− λ

32π2

[
2

ε
+ finite

]
(18)

(Zφ − 1) =
g2

8π2

[
2

ε
− log(M2)− γ + log(4π) +

1

3

]
(19)

=
g2

8π2

[
2

ε
+ finite

]
. (20)

Fermion two-point function

p p

k

p + k

Figure 2: Fermion two-point function −iΣ(/p).

The fermion two-point function (see Figure 2) is given by:

−iΣ(/p) = (ig)2
∫

d4k

(2π)4
γ5

i

k2 −m2 + iε
γ5

i(/k + /p+M)

(k + p)2 −M2 + iε
. (21)
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p p = i((Zψ − 1) 6 p− (ZM − 1)M )

= i[(Zφ − 1)p2 + (Zm − 1)m2]
p p

Figure 3: Counterterms for the fermion and scalar two-point functions.

After introducing Feynman parameters and shifting k → ` we get

−iΣ(/p) = g2
∫

d4`

(2π)4

∫ 1

0

dx
(1− x)/p+M

(`2 −∆ + iε)2
, (22)

with ` = k + xp and ∆ = −x(1 − x)p2 + (1 − x)m2 + xM2. Wick rotation and
dimensional regularisation give us

−iΣ(/p) =
−ig2
16π2

∫ 1

0

dx(/p(1− x) +M)

[
2

ε
− log ∆− γ + log(4π) +O(ε)

]
. (23)

In Figure 3 the counterterm for the fermion two-point function is defined. The
renormalisation conditions we want to impose give us

Σ(0) + (ZM − 1)M = 0 (24)

d

d/p
Σ(/p)

∣∣
/p=0
− (Zψ − 1) = 0 (25)

Therefore we get for the counterterms

(ZM − 1) =
−g2
16π2

∫ 1

0

dx

[
2

ε
− log ∆− γ + log(4π)

]
(26)

=
−g2
16π2

[
2

ε
+ finite

]
(27)

and

(Zψ − 1) =
g2

16π2

∫ 1

0

dx(1− x)

[
2

ε
− log ∆− γ + log(4π)

]
(28)

=
g2

32π2

[
2

ε
+ finite

]
(29)

with ∆ = (1− x)m2 + xM2 .

(a) (35 P.) Write down the amplitude of the fermion-fermion-scalar vertex
correction and calculate the counterterm in the zero-momentum substraction
scheme.

(b) (35 P.) Write down the scalar four-point function correction and also calcu-
late the counterterm in the zero-momentum substraction scheme.

(Remember you can set the external momenta to zero before solving the loop
integral.)
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