3rd problem sheet (20 points)
to be handed in on 08.12.2014 to the letterbox (foyer of Staudingerweg 7)

1. Grassmann Numbers

In the lecture you showed that for the Grassmann numbers $\theta_{1}, \ldots, \theta_{n}$

$$
\begin{equation*}
\left(\prod_{i} \int d \theta_{i}^{*} d \theta_{i}\right) e^{-\theta_{i}^{*} B_{i j} \theta_{j}}=\operatorname{det}(B) . \tag{1}
\end{equation*}
$$

(a) (2P.) Show the following relation, proceeding in a similar way as in the lecture:

$$
\begin{equation*}
\left(\prod_{i} \int d \theta_{i}^{*} d \theta_{i}\right) \theta_{k} \theta_{l}^{*} e^{-\theta_{i}^{*} B_{i j} \theta_{j}}=\operatorname{det}(B) \cdot\left(B^{-1}\right)_{k l} \tag{2}
\end{equation*}
$$

(b) (2P.) Then verify the equality

$$
\begin{equation*}
\left(\prod_{i} \int d \theta_{i}^{*} d \theta_{i}\right) e^{-\theta_{i}^{*} \theta_{j}-\eta_{i}^{*} \theta_{i}+\theta_{i}^{*} \eta_{i}}=e^{-\eta_{i}^{*} \eta_{i}} \tag{3}
\end{equation*}
$$

by induction.
(c) (2P.) Use the result from the lecture, equation (1), and equation (3) to show that

$$
\begin{equation*}
\left(\prod_{i} \int d \theta_{i}^{*} d \theta_{i}\right) e^{-\theta_{i}^{*} B_{i j} \theta_{j}-\eta_{i}^{*} \theta_{i}+\theta_{i}^{*} \eta_{i}}=\operatorname{det}(B) \cdot e^{-\eta_{i}^{*}\left(B^{-1}\right)_{i j} \eta_{j}} \tag{4}
\end{equation*}
$$

2. (6P.) Fermionic Path Integral

For a free Dirac field with

$$
\begin{equation*}
\mathcal{L}_{0}=\bar{\psi}(i \not \partial-m) \psi+\bar{\eta} \psi+\bar{\psi} \eta \tag{5}
\end{equation*}
$$

show that the path integral

$$
\begin{equation*}
Z_{0}[\eta, \bar{\eta}]=\int D \psi D \bar{\psi} e^{i \int d^{4} x \mathcal{L}_{0}} \tag{6}
\end{equation*}
$$

gives

$$
\begin{equation*}
Z_{0}[\eta, \bar{\eta}]=\exp \left[-\int d^{4} x d^{4} x^{\prime} \bar{\eta}(x) S_{F}\left(x-x^{\prime}\right) \eta\left(x^{\prime}\right)\right] \tag{7}
\end{equation*}
$$

with the Feynman propagator for Dirac fermions

$$
\begin{equation*}
S_{F}\left(x-x^{\prime}\right)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{(\not k+m) i e^{-i k\left(x-x^{\prime}\right)}}{k^{2}-m^{2}+i \epsilon} . \tag{8}
\end{equation*}
$$

3. Propagator corrections to ϕ^{3}-Theory

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} Z_{\phi} \partial^{\mu} \phi \partial_{\mu} \phi-\frac{1}{2} Z_{m} m^{2} \phi^{2}+\frac{1}{3!} Z_{g} g \phi^{3}+Y \phi^{3}+\phi J \tag{9}
\end{equation*}
$$

(a) (2P.) Order g^{2}

Sketch the Feynman diagrams that give corrections to the propagator at order g^{2}. There should be one loop diagram and one counterterm diagram. Use the Feynman rules to write down the amplitude of the process.
(b) (2P.) Order g^{4}

At order g^{4} sketch the three one- and two-loop diagrams and the two diagrams containing counterterms that give corrections to the propagator. Again write down the amplitude.

4. Yukawa Theory

$$
\begin{equation*}
\mathcal{L}=\bar{\psi}\left(i Z_{\psi} \not \partial-Z_{m} m\right) \psi+\frac{1}{2} Z_{\phi} \partial^{\mu} \phi \partial_{\mu} \phi-\frac{1}{2} Z_{M} M^{2} \phi^{2}+Z_{g} g \phi \bar{\psi} \psi+\phi J+\bar{\eta} \psi+\bar{\psi} \eta \tag{10}
\end{equation*}
$$

(a) (2P.) $\bar{\psi} \psi \rightarrow \phi \phi$

Sketch the Feynman diagrams for the process of two fermions annihilating to two bosons on tree level and again give the amplitude.
(b) (2P.) Scalar propagator

At order g^{2} sketch the loop diagram and the counterterm that give corrections to the propagator. Again write down the amplitude.

