4th problem sheet (20 points)
to be handed in on 05.01.2015 to the letterbox (foyer of Staudingerweg 7)

1. Pair annihilation $e^{+} e^{-}$into photons

$$
e^{+}\left(p_{2}\right) e^{-}\left(p_{1}\right) \rightarrow \gamma\left(k_{1}\right) \gamma\left(k_{2}\right)
$$

(a) (9P.) Show that the squared amplitude (averaged over initial spins and summed over the outgoing polarisations) is equal to

$$
\begin{equation*}
\frac{1}{4} \overline{|\mathcal{M}|^{2}}=2 e^{4}\left[\frac{p_{1} k_{2}}{p_{1} k_{1}}+\frac{p_{1} k_{1}}{p_{1} k_{2}}+2 m^{2}\left(\frac{1}{p_{1} k_{1}}+\frac{1}{p_{1} k_{2}}\right)-m^{4}\left(\frac{1}{p_{1} k_{1}}+\frac{1}{p_{1} k_{2}}\right)^{2}\right] \tag{1}
\end{equation*}
$$

(b) (6P.) Calculate the differential cross section in the center of mass frame (the kinematics are shown in Figure 1). It should give

$$
\begin{equation*}
\frac{d \sigma}{d \cos \theta}=\frac{2 \pi \alpha^{2}}{s}\left(\frac{E}{p}\right)\left[\frac{E^{2}+p^{2} \cos ^{2} \theta}{m^{2}+p^{2} \sin ^{2} \theta}+\frac{2 m^{2}}{m^{2}+p^{2} \sin ^{2} \theta}-\frac{2 m^{4}}{\left(m^{2}+p^{2} \sin ^{2} \theta\right)^{2}}\right] \tag{2}
\end{equation*}
$$

Figure 1: Parametrisation of the momenta in the com system.
(c) (2P.) What is the high energy limit $\left(E^{2} \gg m^{2}\right)$ of the differential cross section?
(d) (3P.) Explain where the divergence of the differential cross section in the high energy limit comes from. How is it regularised?

