
The Basics of Vacuum Technology

Grolik Benno, Kopp Joachim

January 2, 2003

1 Basics

Many scientific and industrial processes are so sensitive that is is necessary to omit the
disturbing influence of air. For example a particle accellerator could never reach ener-
gies of several GeV if the particles would be decellerated by colliding with molecules
of the air. Therefore vacuum technology is a basic tool in modern science and engi-
neering.

The experiments described in this report were designed to study some basic con-
cepts of vacuum technology: different methods of pressure measurement, the charac-
teristics of a rotary slide valve vacuum pump and the influence of tubes and pipes on
the overall efficiency of the system.

We are not going to give a detailed explanation of the experimental assembly and
the theoretical backgrounds (please refer to the description of the experiment or to
appropriate literature for these), but will be concentrating on the discussion of our
results.

2 Pressure Measurement

At very low pressures it is difficult to use conventional U-Tube manometers because
they would be too inaccurate. Two possible alternatives are the McLeod manometer
which performs its measurements on a compressed sample of the gas and the Pirani
manometer, which measures the heat conductivity of the gas, which is proportional
to its pressure in the orders of magnitude that are of interest here. Therefore, a thin
tungsten wire is brought into the recipient. Its temperature (which is proportional to
its electrical resistance) is kept constant by varying the current flux through it. The
electrical power that is needed for this is a measure for the heat conductivity of the gas.

2.1 Calibration of a Pirani Manometer

The disadvantage of a Pirani manometer is the fact that it needs to be calibrated before
use. In our case the calibration was done with a McLeod manometer and and ordinary
U-Tube manometer. The calibration curves are shown in figure (1). The red curve
shows the electrical current through the Pirani, the black one visualizes the electrical
power calculated from the current measurements. Note the bilogarithmic scale.
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Figure 1: The calibration curve of the Pirani manometer

From around10−1 mbar to 1 mbar the electrical power and (therefore the mea-
sured heat conductivity) are approximately proportional to the pressure. In this range
a straight line can be fitted to the data points which simplifies the conversion from
electrical currents to pressure a lot in the following experiments..

For higher pressures the heat conductivity does not depend on the gas pressure so
much any more. This is in good agreement with the kinetic gas theory, which states
that heat conductivity is independant of pressure as long as the mean free pathλ of
the gas particles is some orders of magnitude smaller than the dimensions of the gas
volume, while it is proportional to pressure ifλ gets greater than these dimensions.

For very low pressures, the calibration curves in figure (1) get flat again. This is
due to the non-vanishing heat conductivity of the Manometer itself: In this area the
heat flux through the metal wires of the Pirani becomes relevant.

Therefore, a straight line approximation is valid only for pressure between10−1

and 1 mbar respectively currents between 6 mA and 15 mA. For higher and lower
currents the conversion needs to be done manually.

2.2 Discussion of Errors and Inaccuracies

In figure (1), error bars are given for both pressure and electrical power. As you can
see, the pressure measurement was quiet accurate in the low pressure area, where the
McLeod could be used to perform good measurements.

For high pressures (above 10 mbar) however, the U-Tube manometer had to be used
instead of the McLeod which is why the measurements are much more inaccurate in
this area (errors of up to±5 mbar).
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The accuracy of the current measurement is quiet good because a digital multimeter
was used for it.

What is astonishing however is the sharp bend in the curve which appears between
1 mbar and 10 mbar. The reason for this seems to be that the digital multimeter au-
tomatically switched to a different measurement mode here because the currents grew
too big. This change of the multimeters inner resistor affects our calibration curve here.
However it cannot be treated as an error because this kind of non-linearities is why the
manometer is calibrated before use.

3 The Pumping speed of the Rotary Slide Valve Pump

3.1 Experimental setup and results

In order to measure the pumping speed of our vacuum pump, a piston probing unit was
evacuated at a constant pressure which was regulated at the pump inlet. A simple clock
was used to measure the overall pumping time at several remaining volumes (100 ml
to 10 ml) This measurement was performed three times to get enough information for
a statistical analysis.

This measurement led to an average volume throughput ofdV
dt = 3.96 ·10−7 m3/h

The pumping speedS can now be calculated by using the equation

p0
dV
dt

= S · p (1)

wherep0 is the atmospheric pressure of aroung 1000 mbar±20 mbar against which
the pump has to work, andp is the pressure at the inlet of the pump, which was ad-
justed to 0.4 mbar±0.025 mbar (corresponding to a current flow of 8 mA in the Pirani
manometer) in our experiment. The error ofp is due to the inaccurate graphical con-
version of the Pirani current into pressure by using the calibration curve recorded in
the first experiment.

The pumping speed calculated with the above formula is

S = 3.57± 0.24
m3

h

This value is in very good agreement with the manufacturers specification of 3.7m3/h
. It is a little smaller, however, because the conditions (tube sizes etc.) were probably
not optimal in our experiments..

3.2 Statistical error analysis

Some explications must be given on the error ofS which is composed of the errors of
the constantsp0 andp (see above) and the statistical standard deviation of the average
dV
dt . This is the result of applying the student function to the standard deviation of the

measurement results. Its numerical value is∆dV
dt = 5.150 · 10−9 m3/h . By applying
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the Gaussian error propagation function

∆S
S

=

√(
∆p0

p0

)2

+
(

∆dV/dt
dV/dt

)2

+
(

∆p
p

)2

(2)

one obtains∆SS = 6.7 % which is equivalent to the absolute value given above:∆S =
0.24 m3/h .

4 Effective pumping speed

4.1 Experimental setup and graphical analysis

The final part of our experiments consisted of a study of the effective pumping speed,
a quantity which depends on the efficiency of the pump, which was discussed in the
previous section, and on the conductance of tubes and pipes. The experimental setup
consisted of a brass recipient (V = 3 l) which was connected to the pump over differ-
ently sized tubes: One with a diameter of 25 mm which is appropriate for our pump
and two capillaries with diameter of 2 mm respectively 3 mm.

During the evacuation process pressure was measured at fixed time intervals with
the Pirani manometer. The results are shown in figure (2). Note the semilogarithmic
scale. For the 25 mm tube the measurement was performed three times. As the results
are reproducable very well, only one curve is shown in the diagram. As one might
expect, the evacuation takes significantly longer for the thin capillaries than for the
large tube.

This experiment demonstrates that tube size is essential to the effinciency of a vac-
uum system. This means one does not only need a powerful pump to create good vacua
but also a system of tubes and pipes with very low resistances to the gas flow.

4.2 Mathematical analysis

From the definition ofS

V
dp
dt

= −Sp (3)

one can derive a formula for the pressure at a given timep(t):

p(t) = p0 exp
(
− S
V
t

)
(4)

Seff = −V · ∆ ln p
∆t

(5)

Although figure (2) shows that this formula is only valid for low pressures (ideally, the
curves should be straight lines because of the semilogarithmic scale), the gradient of
the curve should be equal to the exponent−S/V · t in equation (4).

4



0 50 100 150 200 250 300 350 400 450 500
e-7

e-6

e-5

e-4

e-3

e-2

e-1

e0

e1

e2

e3

e4

e5

e6

Capillary 2 mm

Capillary 3 mm

Tube 25 mm

p [mbar]

t [s]

Figure 2: Evacuation time of a 3 l brass recipient at different tube setups

Consider for example the curve for the 25 mm tube at a pressure of 0.7 mbar. Its
gradient at this point is

∆ ln p
∆t

=
ln p1 − ln p2

t1 − t2
= 0.3352

Forp1, p2, t1, t2 the values from two neigbouring measurements were used. Applying
equation 5 gives

Seff = 3.62
m3

h

Performing similar calculations for the 2 mm capillary gives the following results:

Seff (5mbar) = 0.791
m3

h

Seff (0.3mbar) = 0.057
m3

h
These values are quiet inaccurate because of the inaccurate determination of∆ ln p/∆t
from only two neighbouring measurements. If the curves in figure (2) were straight
lines, one could calculate the gradient with a regression algorithm which would be
much more accurate.

The conductances of the capillary can be calculated theoretically as well. At 5 mbar
the gas flow is viscous, so the capillary’s conductance is given by the formula

L =
πd4

128ηl
· p1 − p2

2
(6)
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whered is the diameter of the tube,η is the viscosity of air,l is the length of the
tube (9.5 cm in our case) andp1 andp2 are the pressures at both ends of the tube.
Here the pressure in the recipient isp1 = 5 mbar; forp2 we took the lowest pressure
that is achievable with our pump:p2 = 0.001 mbar. This results in a conductivity of
Lviscous = 0.204m3

h . Finally, there is the following theorem about series of conduc-
tances:

1
Seff

=
1
S

+
1
L

(7)

Here,S is the pumping speed of the vacuum pump. Using the value given by the
manufacturer forS (3.7 m3/h ) we obtained the resulting effective pumping speed:

Seff (5mbar) = 0.194
m3

h

For very low pressures, equation (6) is no more valid and has to be replaced by

L =
√

πkT

18ma
· d

3

l
(8)

wherek is the Boltzmann constant,T is the absolute gas temperatur andma is the
molecular mass of the gas particles. For our 2 mm capillary, one obtains:

Lmolecular = 0.037
m3

h
≈ Seff

Here,Seff is approximated byLmolecular because the resistance of the capillary is
much greater than that of the pump.

The calculated values forSeff differ greatly from the experimental results. This
might be due to inaccuracies in the given capillary diameter which will affect the results
greatly becaused is raised to the fourth respectively third power in equations (6) and
(8). Additionally there is a great inaccuracy in the experimental values because they
were derived from the gradient of the curves in figure (2) (see above).

Finally, for Seff (5mbar) the efficiency of the pump is possibly greater than we
assumed in the theoretical calculations, because the difference between the gas pressure
and the atmospheric pressure (against which the pump has to work) is not so great.

5 Minimum pressure

At the end of our experiments we wanted to know the minimum gas pressure that was
achievable with our vacuum pump. With a configuration similar to the one we used
to measure the effective pumping speed for the 25 mm tube we achieved a current of
only 3.6 mA at the Pirani manometer. Although our calibration curve does not go that
far down, one can extrapolate that gas pressure at this point should have been around
0.0005 mbar.

It was interesting to observe that, as soon as the pump was switched off, the Pirani
current immediately went up to about 4 mA, which corresponds to a gas pressure of
0.001 mbar. This is because of the inevitable leakings in the system.
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6 Questions

6.1 Definition of the ideal gas

A gas is called “ideal” if forces between its particles and the volume of the molecules
are both neglectable. In vacuum experiments this approximation is valid because the
density of the gas is very small.

6.2 Explanation of heat conductivity

The best explanation for the heat conductivity of a gas is given by the kinetic theory:
Gas particles collide with the molecules of the hot reservoir and gain kinetic energy.
This energy is propagated through the gas volume by collisions of gas particles. Finally
accelerated particles will collide with the cold reservoir and give energy to it.

6.3 Vacuum flask

The heat conductivity of a gas is independant of its pressure only as long as the mean
free path is smaller than the dimensions of the gas volume. If one evacuates the enve-
lope of a vaccum flask pressure will be low enough that this condition is no more met.
Then heat conductivity becomes proportional to gas pressure.

6.4 Heat conductivities of several materials

The following table lists the heat conductivities of some materials inWK−1m−1:

Copper 4.01
Water 0.60
Air 0.02
Stone 2.30
Fat 0.18

Copper is a very good heat conductor. Therefore it should be an excellent material
for passive cooling systems as they are used for computer CPUs etc. However it is very
expensive, so it has no practical importance as a heat conductor.

Water is not as good a heat conductor as copper because it is a liquid. However, in
comparison to other liquids its heat conductivity is relatively large. This is made use of
in cooling systems for car engines.

Air has a very poor heat conductivity. This is for example why textile clothes can
keep you warm: The air that is contained between them and your body acts as an
isolator. However, if air is flowing fast enough, it can be used for cooling systems as
well. For example formula 1 car engines are cooled by air.

The heat conductance of stone is quiet good, and it has a high heat capacity. There-
fore it has been used for centuries in ovens.

The low heat conductance of fat makes it nature’s first choice for warming living
beings.
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6.5 Blaise Pascal’s brother-in-law

Blaise Pascal’s brother-in-law lived in Clermont-Ferrand which is 400 m above sea
level. As Pascal hat no exact measurement devices for the height of a mountain, he
might have estimates the height difference between Clermont-Ferrand and the Puy de
Dôme as 1000 m. The mercury level in the U-Tube-manometer will fall around 10 cm
over this height difference. Pascal will have concluded that mercury is 10,000 times
heavier than air.

6.6 Definition of molecular flow

The range of molecular flow is the pressure range in which the mean free path of the
gas molecules is as large as or lager than the dimensions of the gas volume. Under
these circumstances, many queation of the kinetic theory are no more valid.

6.7 Pumping time for a 1 mm capillary

For a capillary that has a diameter of only 1 mm the effective pumping speed will
be very low, so the pressure will fall very slowly. The conductivity of the capillary
is therefore given by equation (6), the equation for viscous gas flow. Beginning with
equation (3) one can derive:

V
dp

dt
≈ −Lp = − πd4

128ηl︸ ︷︷ ︸
=:2κ

·p
2
· p

1
p2
dp = − κ

V
dt

1
p0
− 1
p

= − κ
V
t

p =
1

1
p0

+ κ
V t

Acoording to this formula, one can expect a pressure of 351 mbar after 10 minutes if a
1 mm capillary is used.

6.8 Mean free path in ultra high vacuums

In ultra high vacuums — that is at pressures around4 ·10−11 mbar — one can expect a
great mean free path of the gas molecules. A numerical value can be derived from the
kinetic gas theory, which provides us with the following formula:

λ =
1√

32 · ρ · F
(9)
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Hereλ is the mean free path andF = 1.3 · 10−19m2 is the cross section of the air
molecules. The particle densityρ in ultra high vacuums is given by

ρ =
3p
mac2

(10)

As 1/2mac2 = 3/2kBT this is equivalent to

ρ =
p

kBT
(11)

At a pressure of4 · 10−11 mbar and a temperature of 300 K the particle density is
ρ = 9.657 · 1011 1

m3 . Now we cann apply equation (9) and obtain the result:

λ = 1.41 · 106m
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