A. Klenke, W-Theorie, 2. Auflage, Errata, 14.01.2023

S. 6, Zeile 6ff	Ersetze \mathcal{A} durch \mathcal{A}_I (sechs mal).
S. 8, Zeile 21f	Ersetze $\tau \subset \Omega$ durch $\tau \subset 2^{\Omega}$.
S. 11, Zeile 9	Ersetze "1.10" durch "1.9".
S. 15, Zeile 10	Man muss $\mu(A_1 \cup \ldots \cup A_n) < \infty$ voraussetzen.
S. 18, Zeile 11	Ersetze $a < b$ durch $a \le b$.
S. 19, Zeile 3vu	Ersetze den Satz durch: Es gebe $\Omega_1, \Omega_2, \ldots \in \mathcal{E}$ mit $\bigcup_{n=1}^{\infty} \Omega_n = \Omega$ und $\mu(\Omega_n) < \infty$ für jedes $n \in \mathbb{N}$.
S. 20, Zeile 8vu	Ersetze diesen einen Satz durch: Seien nun $\Omega_1, \Omega_2, \ldots \in \mathcal{E}$ mit $\bigcup_{n=1}^{\infty} \Omega_n = \Omega$ und $\mu(\Omega_n) < \infty$ für jedes $n \in \mathbb{N}$. Setze $E_n := \bigcup_{i=1}^n \Omega_i$, $n \in \mathbb{N}$, und $E_0 = \emptyset$. Dann ist $E_n = \biguplus_{i=1}^n (E_{i-1}^c \cap \Omega_i)$. Für jedes $A \in \mathcal{A}$ und $n \in \mathbb{N}$ bekommen wir also
	$\mu(A \cap E_n) = \sum_{i=1}^n \mu((A \cap E_{i-1}^c) \cap \Omega_i) = \sum_{i=1}^n \nu((A \cap E_{i-1}^c) \cap \Omega_i) = \nu(A \cap E_n).$
S. 25, Zeile 1	Lösche die rechte Seite der ersten Formelzeile.
S. 25, Zeile 9	Ersetze $a < b$ durch $a \le b$.
S. 27, Zeile 7	Ersetze $[x,0)$ durch $(x,0)$. Ergänze "im Fall $x<0$ ".
S. 27, Zeile 19f	Ersetze F durch F_{μ} (zwei Mal).
S. 31, Zeile 2v.u.	Anfügen " $A \subset \bigcup_{i=1}^{\infty} A_i$ und"
S. 54, Zeile 13	Ersetze "Beispiel 1.14" durch "Bemerkung 1.14".
S. 57, Zeile 9	Ersetze Formelzeile durch $\mathbf{P}\Big[\bigcap_{j\in J}\{X_j\in A_j\}\Big]=\prod_{j\in J}\mathbf{P}[X_j\in A_j].$
S. 61, Zeile 3	Ersetze "Ring" durch "Semiring".
S. 77, Zeile 3	Ersetze = durch \geq .
S. 79, Zeile 2vu	Ersetze rechte Seite durch $\sum_{k=n}^{\infty} \mathbf{P}[X=k] \cdot k(k-1) \cdots (k-n+1)$.
S. 80, Zeile 2	Die x_i müssen einen Häufungspunkt in $(0,1)$ haben, falls nicht $\psi(z)<\infty$ für ein $z>1$ gilt.

	S.	91,	Zeilen	12,	13
--	----	-----	--------	-----	----

Ersetze diese zwei Zeilen durch:

Es gilt $f^+ \leq g^+$ f.ü., also $(f^+ - g^+)^+ = 0$ f.ü. Nach Satz 4.8 folgt $\int (f^+ - g^+)^+ d\mu = 0$. Wegen $f^+ \leq g^+ + (f^+ - g^+)^+$ (nicht nur fast überall), folgt mit Lemma 4.6(i) und (iii)

$$\int f^+ d\mu \le \int (g^+ + (f^+ - g^+)^+) d\mu = \int g^+ d\mu.$$

Analog folgern wir aus $f^- \geq g^-$ f.ü., dass

$$\int f^- d\mu \ge \int g^- d\mu.$$

S. 100, Zeile 17,20

Ersetze $\int_{\varepsilon}^{\infty} g(t) dt$ durch $\int_{0}^{\infty} (g(\varepsilon) \wedge g(t)) dt$.

S. 107, Zeile 14

Ersetze c = 0 durch $c = -\mathbf{E}[Y]$.

S. 110, Zeile 9

Lösche \limsup .

S. 111, Zeile 5vu

Ersetze S_n durch \widetilde{S}_n .

S. 117, Zeile 21

Ersetze Y_i durch $Y_i(x)$.

S. 117, Zeile 23

Ersetze Z_i durch $Z_i(x)$.

S. 119, Zeile 7v.u.

Ersetze $\ell(k)$ durch $\ell(e_k)$.

S. 119, Zeile 6v.u.

Ersetze l > k durch l > k.

S. 120, Zeile 2

Einfügen: Minuszeichen auf beiden Seiten der Gleichung.

S. 125, Zeile 23ff

Damit in dieser Formel Gleichheit gilt (und nicht nur \leq), muss man sich noch überlegen, dass $2^n\mathbf{P}[N_{2^{-n}}\geq 2] \stackrel{n\to\infty}{\longrightarrow} \lambda$ gilt. Man erhält dies etwa durch die Tatsache, dass für alle $n\in\mathbb{N}$ und $\varepsilon>0$

$$\mathbf{P}[N_{2^{-n}} \ge 2] \ge \lfloor 2^{-n}/\varepsilon \rfloor \mathbf{P}[N_{\varepsilon} \ge 2] - \lfloor 2^{-n}/\varepsilon \rfloor^2 \mathbf{P}[N_{\varepsilon} \ge 2]^2$$

gilt, woraus man (indem man ε in geeigneter Weise nach 0 gehen lässt) folgert, dass $2^n \mathbf{P}[N_{2^{-n}} \geq 2] \geq \lambda - 2^{-n} \lambda^2 \stackrel{n \to \infty}{\longrightarrow} \lambda$.

S. 134, Zeile 9

Ersetze $||f_n - f||_p$ durch $||f_n - f||_p^p$.

S. 142, Zeile 9/10

Ersetze $\{|f - f_{n'_k}| > g_k\} = \{|f - f_{n'_k}| > g\}$ durch

$$|f - f_{n'_k}| = (|f - f_{n'_k}| - g)^+ + g_k$$

und $\int_{\{|f-f_{n_k'}|>g\}} |f-f_{n_k'}| d\mu$ durch $\int (|f-f_{n_k'}|-g)^+ d\mu$.

S. 156, Zeile 23	Ersetze Λ^2 durch L^2 .
S. 160, Übung 7.4.1	Nicht F , sondern die Inverse F^{-1} ist die stetige Verteilungsfunktion eines singulären Maßes.
S. 174, Zeile 18	Ersetze " X eine nichtnegative" durch " $X>0$ eine strikt positive".
S. 177, Zeile 22	(Z_n) ist monoton fallend, daher ist Z sogar der $Limes$ (nicht nur limsup) und Fatous Lemma kann angewandt werden. In Zeile 26 ersetze $\mathbf{E}[Z_n]$ durch $\mathbf{E}[Z_n \mathcal{F}]$.
S. 178, Zeile 4	Ersetze (vii) durch (vi).
S. 183, Zeile 3	füge vor "zu fordern" ein: "und so, dass $\kappa(\omega_1, E) < \infty$ für alle $\omega_1 \in \Omega_1$ und $E \in \mathcal{E}$ gilt,"
S. 186, Zeile 6	Ersetze μ_1 durch μ_2 und μ_2 durch μ_1
S. 195, Zeile 1	Man muss voraussetzen, dass $I\subset [0,\infty)$ und abgeschlossen unter Addition (jedenfalls für (ii) und (iii)).
S. 198, Zeile 27	Ersetze $\mathbf{E}[X_s]$ durch X_s .
S. 215, Zeile 3	Ersetze $\langle X \rangle$ durch $\langle X \rangle_{\tau}$.
S. 230, Zeile 2	Ersetze "Ereignisse" durch "Ereignisse mit $A_n \in \mathcal{F}_n$ für jedes $n \in \mathbb{N}$ ".
S. 231, Zeile 5	Ersetze Z^n durch Z_n .
S. 234, Zeile 15	Ersetze $i < k$ durch $i \le k$.
S. 236, Zeile 6	Ersetze " $\mathcal{E}_n =$ " durch " $\mathcal{E}_n \supset$ ".
S. 236, Zeile 10	Um triviale Fälle auszuschließen, kann man etwa $E=\{0,1\}$ und X_1,X_2,\ldots unabhängig mit $\mathbf{P}[X_n]\in(0,1)$ für alle $n\in\mathbb{N}$ wählen, sowie $B=\{1\}$.
S. 236, Zeile 17	Zu $A \in \mathcal{E}_n$ gibt es ein messbares $B \subset E^{\mathbb{N}}$ mit $B^{\varrho} = B$ für alle $\varrho \in S_n$. Setze $F = 1_B$.
S. 237 (12.5)	Ersetze $\prod_{l=1}^n$ durch $\prod_{l=1}^k$.
S. 237, (12.4)	Ersetze $(N\Xi_N(A_l))^{m_l}$ durch $(N\Xi_N(A_l))_{m_l}$.
S. 238, Zeile 17ff	Ersetze Y_{-n} durch Y_n .
S. 246	Wir nehmen auch stets an, dass (E, τ) ein Hausdorffraum ist.

S. 248, Zeile 18ff	Da τ kein Semiring ist, ist Thm 1.65 nicht direkt anwendbar. Das etwas subtilere Argument geht so: Sei zunächst $B \subset E$ abgeschlossen und $\varepsilon > 0$. Sei $B_{\delta} := \{x \in E : d(x,B) < \delta\}$ die offene δ -Umgebung von B . Da B abgeschlossen ist,
	gilt $\bigcap_{\delta>0} B_{\delta} = B$. Da μ stetig von oben ist, gibt es ein $\delta>0$ mit
	$\mu(B_{\delta}) \leq \mu(B) + \varepsilon$. Sei nun $B \in \mathcal{E}$ und $\varepsilon > 0$. Betrachte das Mengensystem $\mathcal{A} := \{V \cap C : v \in \mathcal{E} \mid v \in \mathcal{E} \}$
	$V \subset E$ offen, $C \subset E$ abgeschlossen $\}$. \mathcal{A} ist ein Semiring ist, und es gilt $\mathcal{E} = \sigma(\mathcal{A})$. Nach Satz 1.65 gibt es paarweise disjunkte Mengen $A_n = V_n \cap C_n \in \mathcal{A}$, $n \in \mathbb{N}$, mit $B \subset A := \bigcup_{n=1}^{\infty} A_n$ und $\mu(A) \leq \mu(B) + \varepsilon/2$. Wie oben gezeigt existiert für jedes $n \in \mathbb{N}$ ein offenes $W_n \supset C_n$ mit $\mu(W_n) \leq \mu(C_n) + \varepsilon 2^{-n-1}$. Es ist also $U_n := V_n \cap W_n$ offen, $B \subset U := \bigcup_{n=1}^{\infty} U_n$ und $\mu(U) \leq \mu(A) + \sum_{n=1}^{\infty} \varepsilon 2^{-n-1} \leq \mu(B) + \varepsilon$.
S. 264, Zeile 4	Man muss natürlich auch noch zeigen, dass $F(-\infty) = 0$ ist, damit F eine Verteilungsfunktion ist. Das Argument dafür benutzt die Straffheit, genau wie in den Zeilen 5ff.
S. 266, Zeile 15	Ersetze \mathcal{E} durch \mathcal{U} .
S. 268, Zeile 10	Lösche $\alpha(\bigcup_{i=1}^n A_i) =$.
S. 276, Zeile 15f	Lösche "beziehungsweise ein Semiring" (zweimal).
S. 276, Zeile 19	Ersetze $E_j \in \mathcal{E}_j$ durch $E_j \in \mathcal{E}_j \cup \{\Omega_j\}$.
S. 276, Zeile 2v.u.	Ersetze $E_j \in \mathcal{E}_j$ durch $E_j \in \mathcal{E}_j \cup \{\Omega_j\}$.
S. 283, Zeile 12	Ersetze $\left(\underset{k=0}{\overset{i}{\times}} \Omega_k, \underset{k=0}{\overset{i}{\otimes}} \mathcal{A}_k \right)$ durch $\left(\underset{k=1}{\overset{i}{\times}} \Omega_k, \underset{k=1}{\overset{i}{\otimes}} \mathcal{A}_k \right)$
S. 284, Zeile 16	Ersetze φ_k durch φ_n .
S. 291, Zeile 10	$\omega \in E \text{ statt } \omega \in \Omega.$
S. 292, Zeile 8	Ersetze $\bigotimes_{k=i}^n$ durch $\bigotimes_{k=i}^{n-1}$.
S. 292, Zeile 10f	Ersetze A_{l+1} durch $A_{j_{l+1}}$ (zweimal).
S. 292, Zeile 13	$f_{l-1}(\omega_{l-1})$ statt $f_{l+1}(\omega_{l+1})$
S. 292, Zeile 14	$f_{l+1}(\omega_{l+1})$ statt $f(\omega_{l+1})$
S. 293, Zeile 1	Ersetze $\mu \otimes \kappa$ durch $\int \mu(dx) \kappa(x, \cdot)$.
S. 296, Zeile 7v.u.	Ersetze $H(x)$ durch $H_z(x)$.
S. 296, Zeile 3v.u.	Ersetze $h(y)$ durch $h_z(y)$.
S. 300, Zeile 4 v.u.	$ f _2 = \varphi _2/(2\pi)^{d/2}.$
S. 303, Zeile 24	Ersetze (t/a) durch (t/θ) .
S. 304, Zeile 4	Faktor $1/\sqrt{2\pi}$ vor dem Integral fehlt.
S. 306, Zeile 15	Ersetze $\varphi(t)$ durch $\varphi_X(t)$.

S. 315, Zeilen 1, 2	Ersetze h^n durch $ h ^n$ (zwei Mal).
S. 315, Zeilen 10, 11	Ersetze $\sqrt{2\pi n}$ durch $1/\sqrt{2\pi n}$ (zwei Mal).
S. 316, Zeile 6vu	$\mathbf{E}[X^{2k}] = (-1)^k u^{(2k)}(0).$
S. 318, Zeile 24	Ersetze $\mathbf{E}[X_1^2]$ durch $\mathbf{E}[X_1^2]^k$.
S. 321, Zeile 4vu	Ersetze $L_n(\varepsilon)$ durch $\varepsilon^{-2}L_n(\varepsilon)$.
S. 322, Zeile 7vu	Ersetze εt durch $\varepsilon t $.
S. 330, Zeile 26	Ersetze $\theta^{-1} = r = k$ durch $\theta = r = k/2$.
S. 331, Zeile 2v.u.	Ersetze die Formelzeile durch
	$\varphi_{r\nu}(t) = \exp\left(r\sum_{k=1}^{\infty} \frac{((1-p)e^{it})^k - (1-p)^k}{k}\right) = p^r \left(1 - (1-p)e^{it}\right)^{-r}.$
S. 334, Zeilen 3, 4	Ersetze μ_n durch ν_n .
S. 334, Zeile 4	Ersetze ν durch μ .
S. 335, Zeile 6v.u.	Ersetze $u(1)$ durch $2u(1)$.
S. 335, Zeile 3v.u.	Ersetze $t \wedge 1$ durch $t \vee 1$.
S. 338, Zeile 14	Ersetze $h(t)$ durch $h(x)$.
S. 338, Zeile 6v.u.	Hier und im Rest des Beweises ist das Vorzeichen von $\overline{\psi}(0)$ verkehrt. Schreibe also hier: $\overline{\psi}(0) \geq 0$.
S. 338, Zeile 3v.u.	$\overline{\psi}(0) > 0.$
S. 339, Zeile 8	$\overline{\psi}_n(0) > 0 \text{ und } \tilde{\nu}_n(dx) = (h(x)/\overline{\psi}_n(0))\nu_n(dx).$
S. 339, Zeile 9	Ersetze $-\overline{\psi}(t)/\overline{\psi}(0)$ durch $\overline{\psi}(t)/\overline{\psi}(0)$.
S. 339, Zeile 12, 14	Lösche das Minuszeichen.
S. 339, Zeile 17	Die Funktion f_t ist nicht stetig. Man muss an dieser Stelle mit $g_{t,\varepsilon}(x)=e^{-itx}-1-itx1_{\{ x <1-\varepsilon\}}$ arbeiten, statt mit $g_t(x)=e^{itx}-1-itx1_{\{ x <1-\varepsilon\}}$ arbeiten, statt mit $g_t(x)=e^{itx}-1-itx1_{ x <1}$. $\varepsilon>0$ wird so gewählt, dass die Unstetigkeitsstelle nicht auf einem Atom von ν liegt. Danach liefert das Portemanteau Theorem (Satz 13.16(iii)) die notwendige Behauptung. Schließlich lässt man ε nach 0 gehen.

Ersetze $\int f_t(x) \, \tilde{\nu}_n(dx) \, \mathrm{durch} \, \overline{\psi}_n(0) \int f_t(x) \, \tilde{\nu}_n(dx).$

S. 339, Zeile 5v.u.

S. 340, (16.16)	Ersetze $(0,\infty)$ durch $\mathbb{R}\setminus\{0\}$.	
S. 342, Zeile 10	Die Relation $nb=n^{1/\alpha}b$ ist falsch, denn sie berücksichtigt nicht die Änderung, die durch den Wechsel von ν zu $\nu\circ m_{n^{1/\alpha}}^{-1}$ auftritt. Man muss erst die explizite Form von ν ausrechnen und kann dann die korrekte Skalierungsrelation angeben (hier ohne die Rechnung):	
	$nb = bn^{1/\alpha} - (c^{+} - c^{-}) \begin{cases} (1 - \alpha)^{-1} (n^{1/\alpha} - n), & \text{falls } \alpha \neq 1, \\ n \log(n), & \text{falls } \alpha = 1. \end{cases}$	
	Entsprechend folgt $b=(c^+-c^-)/(1-\alpha)$ im Fall $\alpha\neq 1$. Für den Fall $\alpha=1$ ändert sich nichts.	
S. 342, (16.18)	Ersetze $i(c^+ - c^-)$ durch $-i \operatorname{sign}(t)(c^+ - c^-)$.	
S. 349, Zeile 5	Ersetze $\kappa_{t_{n+1}-t_n}$ durch $\kappa_{t_{i+1}-t_i}$.	
S. 352, Zeile 12	Ersetze $t \in \mathbb{N}_0$ durch $t \in I$ (zwei Mal).	
S. 354, Zeile 18	Ersetze I durch E .	
S. 358, Zeile 2v.u.	Ersetze "Mit dieser Festsetzung gilt" durch: "Schließlich fordern wir (was zusammen mit 17.14 äquivalent zur Vertauschung von Limes uns Summation über $y \neq x$ in der Zeile über 17.13 ist)"	
S. 359, Zeile 14	Definiere $p = I$, falls $\lambda = 0$.	
S. 365, Zeile 4vu	Wir vereinbaren zusätzlich $0/0 = 0$ und $0 \cdot \infty = 0$.	
S. 366, Zeile 7	Wir nehmen an, dass $x \neq y$ gilt.	
S. 368, Zeile 17	beim rechten Term fehlt der Faktor 4^n .	
S. 375, Zeile 4	Ersetze "Ist X " durch "Ist jeder Zustand".	
S. 375, Zeile 6f	Ersetze $\mu p^n(x)$ durch $\mu p^n(\{x\})$ (zweimal) und $\mu(x)$ durch $\mu(\{x\})$.	
S. 377, Zeile 13f	Ersetze p durch \widetilde{p} (vier mal).	
S. 379, Zeile 11	$\mathbf{E}_8[\tau_8] = \frac{17}{8}$	

S. 386, Zeile 1	Nur für $d=1$ ist die stochastische Ordnung gleichwertig zur Anordnung der Verteilungsfunktionen. Ebenfalls nur für $d=1$ ist F eine Verteilungsfunktion. Die Aussage von Seite 385, Zeile 5 v.u. bleibt dennoch für alle d richtig (siehe Thm. 3.3.5 in [124]).
S. 389, Zeile 6	Ersetze $p(x, \hat{y}^k)$ durch $p_k(x, \hat{y}^k)$.
S. 389, Zeile 15	"Wir nehmen an, dass L groß genug": Das geht in der Allgemeinheit leider nicht. Ein einfacher Ausweg ist der folgende: Da X irreduzibel und aperiodisch ist, gibt es ein $N \in \mathbb{N}$, so dass $p^N(0,x) > 0$ ist für alle $x \in \{-1,0,1\}$. Für die Irrfahrt $X_n' := X_{nN}, n \in \mathbb{N}$, kann $L=1$ gewählt werden und der Beweis geht durch. Wir erhalten so eine Kopplung der Kette X nur zu den Zeiten $0,N,2N,\ldots$ Die Lücken werden nun durch Zufallsvariablen so gefüllt, dass die ursprüngliche Irrfahrt entsteht. Der Nachteil der so gewonnenen Kopplung (X,Y) ist, dass sie keine Markovkette ist. Dies ist allerdings auch nicht nötig, wenn man Definition 18.10 etwas weiter fasst. In Korollar 18.15 wird die Markoveigenschaft der Kopplung nicht benötigt.
S. 390, Zeile 6	Erste zwei Terme: Betragstriche fehlen.
S. 393, Zeile 10	In Satz 18.20 müssen weitere Annahmen an q gemacht werden, etwa, dass $q(x,y)>0$ genau dann gilt, wenn $q(y,x)>0$. Die Bedingung, dass π nicht die Gleichverteilung ist, muss ersetzt werden dadurch, dass q nicht reversibel bezüglich π ist. (Für symmetrische q ändert sich in diesem Satz nichts.)
S. 402, Zeile 14f	Ersetze p durch r (drei Mal).
S. 402, Zeile 17	Ersetze ϱ^k durch ρ^k .
S. 409, Zeile 1	Statt $F'_{A'}(x,y) > 0$ für alle x gilt nur $F'_{A'}(x_0,y) > 0$. Der Beweis des Maximumprinzips liefert aber die etwas stärkere Aussage: Gilt $f(x_0) = \sup f(B_{x_0})$, so ist $f(x_0) = f(y)$ für alle $y \in B_{x_0}$. Dies ist hier aber gerade die Formel in Zeile 3.
S. 413, Zeile 7	$\sum_{l=k}^{n-1} \operatorname{statt} \sum_{l=k-1}^{n-1}.$
S. 415, Zeile 3vu	Ersetze $2D(A_1)$ durch $4D(A_1)$.
S. 421,	Lösche Beispiel 19.32 (ist das Gleiche wie Beispiel 19.31).
S. 423 (19.11),	Statt der effektiven Widerstände müssen hier die Widerstände des auf drei Punkte $0,1$ und x reduzierten Netzwerks stehen.
S. 423, Zeile 4vu	Übung 19.5.1 statt 17.5.1.

S. 431, Zeile 4	Ersetze = lim durch \leq lim sup. Aus Symmetriegründen und weil X transient ist, folgt die andere Ungleichung: $\mathbf{P}_0[X_n \xrightarrow{n \to \infty} -\infty] = 1 - \mathbf{P}_0[X_n \xrightarrow{n \to \infty} \infty] \geq 1 - \frac{R_w^-}{R_w^- + R_w^+} = \frac{R_w^+}{R_w^- + R_w^+}.$
S. 432, Zeile 4	Ersetze ϱ_i durch ϱ_k .
S. 435, Zeile 10	Ersetze $c > 0$ durch $c \in \mathbb{R}$.

S. 442, Zeile 8 Ersetze
$$\stackrel{n\to\infty}{\longrightarrow}$$
 durch $\stackrel{m\to\infty}{\longrightarrow}$.
S. 444, Zeile 2 Die Konvergenz $A_n^{\varepsilon} \uparrow A_n^0$ gilt natürlich nur auf der Menge $\{S_n \to \infty\}$, die aber Wahrscheinlichkeit 1 hat.

S. 444, Zeilen 4,5 | Ersetze
$$A_n^{\varepsilon}$$
 durch A_i^{ε} (zwei Mal).

S. 444, Zeile 5 Ersetze
$$S_n \ge \frac{pn\varepsilon}{2}$$
 durch $S_n \ge S^- + \frac{pn\varepsilon}{2}$.
S. 444, Zeile 6 Ersetze $\frac{pn\varepsilon}{2}$ durch $\frac{p\varepsilon}{2}$.

S. 444, Zeile 7ff. Das Argument könnte etwas detaillierter ausgeführt werden. Zum Beispiel so: Wir wählen ein
$$\varepsilon > 0$$
 so, dass $\mathbf{P}[X_1 < -2\varepsilon] > \varepsilon$ ist. Sei $L :=$

Wir wählen ein $\varepsilon > 0$ so, dass $\mathbf{P}[X_1 < -2\varepsilon] > \varepsilon$ ist. Sei $L := \lim \inf_{n \to \infty} S_n$. Nach dem bereits Gezeigten gilt $\mathbf{P}[L = \infty] = 0$. Das Ereignis $\{L > -\infty\}$ ist offenbar invariant und hat daher die Wahrscheinlichkeit 0 oder 1. Wir nehmen an, dass $\mathbf{P}[L > -\infty] = 1$ gilt und führen dies zum Widerspruch. Definiere induktiv die Stoppzeiten $\tau_1 := \inf\{k \in \mathbb{N} : S_k < L + \varepsilon\}$ und

$$\tau_{n+1} := \inf \left\{ k > \tau_n : \, S_k < L + \varepsilon \right\} \quad \text{ für } \, n \in \mathbb{N}.$$

Nach Voraussetzung ist $\tau_n < \infty$ fast sicher für jedes n. Sei $\mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}_0} = \sigma((X_n)_{n \in \mathbb{N}})$ die von $X = (X_n)_{n \in \mathbb{N}}$ erzeugte Filtration und \mathcal{F}_{τ_n} die σ -Algebra der τ_n -Vergangenheit. Sei $A_n := \{X_{\tau_n+1} < -2\varepsilon\}$. Auf A_n gilt $S_{\tau_n+1} < L - \varepsilon$. Offenbar ist A_n unabhängig von \mathcal{F}_{τ_n} und daher

$$\mathbf{P}[A_n | \mathcal{F}_{\tau_n}] = \mathbf{P}[A_n] > \varepsilon.$$

Nach dem bedingten Borel-Cantelli Lemma (siehe Übung 11.2.7) gilt daher

$$\mathbf{P}\Big[\limsup_{n\to\infty}A_n\Big]=1.$$

Daher gilt für unendlich viele n, dass $S_{\tau_n+1} < L - \varepsilon$ ist. Dies steht im Widerspruch dazu, dass L fast sicher endlich ist.

Es folgt $\mathbf{P}[\liminf S_n = -\infty] = 1$. Die Aussage für $\limsup S_n$ folgt analog.

S. 445, Zeile 12	Ersetze τ^{-n} durch τ^{-i} .
S. 450, Zeile 1v.u.	Ersetze ϱ^{γ} durch $\varrho^{-\gamma}$.
S. 452, Zeile 2v.u.	Ersetze Chebyshev durch Markov.
S. 454, Zeile 13	Ersetze $(n+1)(1-\gamma)$ durch $n_0(1-\gamma)$.
S. 459, Zeile 5vu	Ersetze $A_N = \bigcap_{n \geq n_0} A_{N,n}$ durch $A_N = \liminf_{n \to \infty} A_{N,n}$. In der ersten abgesetzten Formel auf der folgenden Seite ist dann das erste "≤" durch "=" zu ersetzen.
S. 460, Zeile 11	Lösche das zweite Integralzeichen.
S. 461, Zeile 25	Ersetze τ_n durch τ^n .
S. 461, Zeile 4v.u.	Ersetze $B_{\tau^n} + t$ durch $B_{\tau^n + t}$.
S. 465, Zeile 2	Ersetze X_t durch \widetilde{X}_t .
S. 468, Zeile 17ff	Ersetze 2^n durch 2^{n-1} . In der Formel darunter: Ersetze $2^{n/2}$ durch $2^{(n-1)/2}$ (zweimal) und 2^{n+1} durch 2^n (viermal). Definiere X^n durch $\xi_{0,1}B_{0,1} + \sum_{m=1}^n \sum_{k=1}^{2^{m-1}} \xi_{m,k} B_{m,k}$ und ändere im Beweis von Satz $21.28 , k = 1, \ldots 2^n$ in $, k = 1, \ldots, 2^{n-1}$.
S. 469, Zeile 2ff	Ersetze X_t durch \tilde{X} (zweimal). Füge in Satz 21.28 als ersten Satz ein: "Es existiert eine stetige Version X von \tilde{X} ."
S. 470, Zeile 2	Ersetze I^2 durch $I(f)^2$.
S. 477, Zeile 4v.u.	Ersetze $T_{\lfloor nt \rfloor}^{K,n}$ und $U_{\lfloor nt \rfloor}^{K,n}$ durch $T_{\lfloor nt \rfloor}^{K}$ und $U_{\lfloor nt \rfloor}^{K}$.
S. 478, Zeile 5	Ersetze $\frac{N}{\varepsilon^2}$ durch $\frac{N}{\varepsilon^2 \sigma^2}$
S. 478, (21.35)	Ersetze $\frac{n(n-1)}{2}$ durch $3n(n-1)$ (zweimal).
S. 479, Zeile 3	Ersetze " $a = \lceil (t+s)n \rceil - (t+s)n$ und $a = sn - \lfloor sn \rfloor$ " durch " $a = \lfloor (t+s)n - \lfloor (t+s)n \rfloor$ und $a = \lceil sn \rceil - sn$ ".
S. 479, (21.36)	Ersetze $3t^2$ durch $18t^2$ (dreimal) und $3\sqrt{N}$ durch $18\sqrt{N}$.
S. 489, Zeile 6	Ersetze $V_T^1(\langle F, G \rangle_T)$ durch $V_T^1(\langle F, G \rangle)$.
S. 489, Zeile 1v.u.	Vor der zweiten Summe muss eine 2 eingefügt werden.

S. 491, Zeile 20	Ersetze \mathbb{R}^d durch \mathbb{R}^3 .
S. 493, Zeile 9	Ersetze $(a_{k+1} - a_0)$ durch $(a_{k+1} - a_k)$.
S. 494, Zeile 3	Ersetze $\sum_{t \in \mathcal{P}_{s,T}^n} \operatorname{durch} \sum_{t \in \mathcal{P}_{s',T}^n}$.
S. 494, Zeile 7	Ersetze $\sum_{t \in \mathcal{P}_{s,T}^n}$ durch $\sum_{t \in \mathcal{P}_{s',T}^n}$ und \mathcal{F}_s durch $\mathcal{F}_{s'}$.
S. 494, Zeile 8	Ersetze $M_T - M_s$ durch $M_T - M_{s'}$ und \mathcal{F}_s durch $\mathcal{F}_{s'}$.
S. 495, Zeile 2	Ersetze M_T durch M_T^2 .
S. 496, Zeile 11	Ersetze $M_{\tau_{\tau_0 \wedge \tau_n \wedge t}}^2$ durch $M_{\tau_0 \wedge \tau_n \wedge t}^2$.
S. 501, Zeile 11	Im trivialen Fall $m=0$ kann $\theta=\delta_{(-1,0)}$ gewählt werden. Für den Rest des Beweises wird $m>0$ angenommen.
S. 502, Zeile 11	$\{\tau \le t\} = \left\{ \sup_{s \in [0,t]} B_s \ge \Xi_v \right\} \cup \left\{ \inf_{s \in [0,t]} B_s \le \Xi_u \right\} \in \mathcal{F}_t.$
S. 504, Zeile 5	Ersetze $\mathbf{E}[X_n^2] \lim \mathbf{E}[X_\infty^2]$ durch $\mathbf{E}[X_n^2] \stackrel{n \to \infty}{\longrightarrow} \mathbf{E}[X_\infty^2]$.
S. 504, Zeile 7	Ersetze $\mathbf{E}[X_{\infty}]$ durch $\mathbf{E}[X_{\infty}^2]$.
S. 508, Zeile 3	Ersetze $\frac{1}{\sqrt{2\pi n}}$ durch $\frac{1}{x\sqrt{2\pi n}}$.
S. 514, Zeile 14ff	Die Ratenfunktion ist nur dann endlich, wenn die Zufallsvariable X_1 beliebig große und kleine Werte annehmen kann. Andernfalls kann I etwa wie in (23.6) aussehen und ist dann auch nicht notwendigerweise stetig. Konkret zu ändern sind:
S. 514, Zeile 18f	Ersetze lim durch lim inf.
S. 514, Zeile 19	letzen Ausdruck "= $-I(x)$ " löschen.
S. 514, Zeile 20	Ersetze lim durch lim inf und = durch \geq .

S. 515, Zeile 6	$x \ge 0, x \in U$, so dass $I(x) < \infty$.
S. 515, Zeile 7	$,(x-\varepsilon,x+\varepsilon)\subset U$ ".
S. 515, Zeile 8	Ersetze lim durch liminf und "= $I(x - \varepsilon)$ " durch " $\geq I(x)$ ". (Die strikte Ungleichung ist richtig, weil I konvex ist und $I(x) < \infty$.)
S. 515, Zeile 11,12,13	Ersetze lim durch lim inf.
S. 515, Zeile 15	Ersetze Formelzeile und die zwei Textzeilen danach durch
	$ \liminf_{n \to \infty} \frac{1}{n} \log P_n(U) \ge -\inf I(U). $
	Damit ist die untere Schranke (LDP 1) gezeigt. \diamond
S. 519, Zeile 1vu	Ersetze $\inf_{\mu} I$ durch $\inf_{\mu} I_{\mu}$.
S. 520, Zeile 2	Ersetze \geq durch \leq .
S. 522, Zeile 9	Ersetze $\lim_{\varepsilon \to 0}$ durch $\limsup_{\varepsilon \to 0}$
S. 522, Zeile 12f	Ersetze $x \in I$ durch $x \in E$ und $\phi(x) - \delta$ durch $\phi(x) + \delta$.
S. 524, Zeile 7	$I^{\beta}(x) = \beta \cdot \left(F^{\beta}(x) - \inf_{y \in \mathcal{M}_1(\Sigma)} F^{\beta}(y) \right).$
S. 528, Zeile 5	Man kann sich überlegen, dass $\mathcal{M}(E) \in \widetilde{\mathbb{M}}$ gilt. Daher sind im folgenden alle Wahrscheinlichkeiten etc. wohldefiniert.
S. 531, Zeile 21ff	Ersetze zweimal $2^{-n}\mu(A)$ durch $1 - \exp(2^{-n}\mu(A))$.
S. 535, Zeile 12	$(Y_x)_{x\in E}$ soll unabhängig von X sein.
S. 536, Zeile 2	Im Ausdruck $X^{\kappa}(A)$: lösche (A) .
S. 536, Zeile 11vu	Ersetze $\nu \in E$ durch $\nu \in \mathcal{M}_1(E)$.
S. 537, Zeile 5vu	Ersetze $[0,1]$ durch $[0,1]^n$.
S. 538, Zeile 14	Definiere Δ'_n als $\Delta'_n := \{(x_1, \dots, x_{n-1}) \in (0, 1)^{n-1} : \sum_{i=1}^{n-1} x_i < 1\}.$
S. 538, Zeile 17	Ersetze Δ'_{n-1} durch Δ'_n .
S. 538, Zeile 7vu	Ersetze (s_j/s) durch s_j .
S. 539, Zeile 6	Ersetze V_1, V_2, \ldots durch V_1, \ldots, V_{n-1} .
S. 539, Zeile 8	Ersetze $n-2$ durch $n-1$.

```
Ersetze X^{n,1} = (X_{I_1^n}^n, X_2, \dots \text{ durch } \hat{X}^{n,1} = (X_{I_1^n}^n, X_1^n, X_2^n, \dots)
S. 541, Zeile 4
                          Ersetze X^{n,1} durch \hat{X}^{n,1}.
S. 541, Zeile 8
S. 542, Zeile 3v.u.
                          Ersetze PD durch GEM.
S. 542, Zeile 2v.u.
                           Ersetze Theorem 25 durch Theorem 3.2.
                          Lösche "f.s."
S. 548, Satz 25.8
                          Ersetze I^W(H^{(t)}) durch I^W_{\infty}(H^{(t)}).
S. 550, Zeilen 3,6
                          Ersetze \mathcal{P}_T durch \mathcal{P}_T^n.
S. 557, Zeile 24
                          Ersetze F(X_t) - F(X_0) durch F(X_T) - F(X_0).
S. 558, Zeile 3v.u.
                          Ersetze \langle X \rangle_t durch \langle X \rangle_T.
S. 558, Zeile 1v.u.
                          Ergänze "und M_0 = 0".
S. 560, Zeile 4 v.u.
                          Ersetze "= T" durch "\leq T".
S. 561, Zeile 6
                          Ersetze \sigma_s^{i,l} durch \sigma_s^{l,i}.
S. 562, Zeile 3 v.u.
                          Ersetze \int_0^t \text{durch } \int_0^T \text{(drei Mal)}.
S. 563, (25.16)
                          Ersetze F durch (F(W_t))_{t>0}.
S. 563, Zeile 12
S. 568, Zeile 9
                          Ersetze d=2 durch d\leq 2.
S. 568, Zeile 13
                          Ersetze auf der rechten Seite ||W_t|| < r durch ||W_t|| \le s.
S. 578, Zeile 16
                          In der rechten Ungleichung fehlt rechts der Faktor K.
S. 581, Zeile 15
                          Ersetze \mathbf{1}_{(0,\infty)} durch \mathbf{1}_{[0,\infty)}.
                          Ersetze \int_0^1 durch \int_0^t.
S. 581, Zeile 7v.u.
```