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Abstract

Many interacting particle systems with short range inteéoas are not ergodic, but converge weakly
towards a mixture of their ergodic invariant measures. Tiestjon arises whether a.s. the process even-
tually stays close to one of these ergodic states, or if ingha between the attainable ergodic states
infinitely often (“recurrence”). Under the assumption ttiare exists a convergence—determining class
of distributions that is (strongly) preserved under theaiyits, we show that the system is in fact recur-
rent in the above sense.

We apply our method to several interacting particle systerhgaining new or improved recurrence
results. In addition, we answer a question raised by Ed Rerodncerning the change of the locally
predominant type in a model of mutually catalytic branching
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1 Introduction

We start with an example to explain the problem we addredssnatork.

Consider the (basic) voter modg});>o onZ<. This is a Markov proces&;):>o on X = {0, I}Zd,
equipped with the product topology. Think of each poinfZih as being occupied by an individual that
is capable of holding either of the opiniofisand1. After a rate-one exponential waiting time, a given
individual chooses one of hixl nearest neighbors at random and assumes its opinion. Aihgdimes
and choices of neighbors are made independently. The opifithe voter at: at timet is given by, ().

For more a detailed description and background informatiea Chapter V of Liggett (1985).

It is well known that the voter model clusters in dimensiba 2. More precisely, if we start at time 0
with independent opinions, where opinion 1 has probaflity (0, 1), then

L16] =2 (1 - 0)60 + 061 (1.1)

Here,dp andd; are the unit masses on the states where all individuals hainéoa 0, respectively 1£
denotes the law of a random variable, arg denotes weak convergence of probability measures. Note
that sinceX carries the product topology, (1.1) is equivalent to cogeace of the finite dimensional dis-
tributions. A question that arises naturally, given (1i),

Does the opinion at a given site change value infinitely &ften

The question has been answered affirmatively by means adrraffecial arguments in Cox and Griffeath
(1986).
A simple argument that works for shift ergodic initial seteas brought to our attention by Jeff Steif:
Consider the events
A={3T: &6)=1,t>T}, ez’

For|i — j| = 1isis easy to see that, = A; a.s. hence a.s4; = A := N;A,;. HoweverA is shift
invariant and by ergodicity we ha[A] € {0,1}. Sinced < 1, clearlyP[A] = 0. Now change thé in
the definition ofA; into 0 to conclude that the opinion changes infinitely often.

There are two drawbacks of this argument: (i) It works onlydtaift ergodic initial states. (ii) For many
models it is hard to check whethdy = A, a.s. or not.

The aim of this work is to give a robust and simple abstractiswgnt that can be applied to a large
variety of models and for initial states that only need toehaglobal density. We do not assume translation
invariance or even ergodicity. In particular, our arguntwes not rely on quantitative estimates that make
use of special features (or the dimension!) of the consitleredels. The basic idea is simple: (i) Find a
certain class of probability measures on the state spatéstpeeserved under the dynamics(gf), and
that ensures convergence to the limiting state in an apjatesense. (i) Starting in this class, there is a
positive probability that at a large fixed time the chain @sel to a given extremal stai& (or 6, in the case
of the voter model). If the chain is not close to that statentkince the chain is still in the given class, one
tries again using the Markov property. Eventually, sucedi®ccur, and hence will occur infinitely often.

The difficulty lies in finding the right notion of convergenfoe step (i).

For the voter model, we are able to prove a.s. alternatiogpsEfs under more general conditions than
were considered in Cox and Griffeath (1986). We also comsieeeral related models, as well as a model
of mutually catalytic branching recently introduced by Ban and Perkins (1998).

Note that our focus lies on the situation where the model iemgodic, i.e., the weak limit points are
mixturesof the ergodic invariant measures. We show that the prooetss‘glose” to any of the ergodic
states (occurring in the mixture) at arbitrarily late timékhis question has often been connected to the
qguestion of whether low-dimensional binary branching mndvalk, starting in a homogeneous Poisson
field, populates a given site at arbitrarily late times. Tikiknown to be be true fod = 2 and false
for d = 1. Note, however, that this is a fundamentally different dioesthan the one we address, since
branching random walk is ergodic. Namelyif< 2, the unit mas$o on the empty configuration is the
only invariant measure (with-finite intensity measure).
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As mentioned above the correct notion of convergence ofarmprobability measures is crucial. We
discuss the topological details and give the abstractrataiéin Section 2. In Section 3 we apply our result
to:

o the multitype voter model,

e interacting diffusions oif, 1],

e interacting Fleming Viot Processes,

e interacting Brownian motions,

e mutually catalytic branching super random walk.

We would like to close this introduction by mentioning tHatte are non—trivial examples where instead
of recurrence of both (all) types there is almost dixation

In the so—callech—type cyclic voter model, each individual is capable of lmddone of the opinions
0,...,n — 1. As above, after an exponential waiting time, the voter@tooses a nearest-neighhobut
now adopts the opinion gtonly if z(j) — z(¢) = 1 (mod n). Bramson and Griffeath (1989) show that for
d = 1, starting from a symmetric product measure, this modeldixétand only ifn > 5.

For a voter model in a certain random environment, Fontegj Bnd Newman (1999) show that recur-
rence occurs ifl = 1, and that there is a.s. fixationdf > 2. A related model is the so—called disordered
Ising model at zero temperature (see Nanda, Newman and($8£8) and also Newman and Stein (1999)).
Started from a deep quench (this is symmetric product meastine physicists’ language), the occurrence
of fixation or recurrence depends on the details of the desdqrdndom environment). For the homogeneous
model (no disorder), there is recurrence i 2. The problem is still open fof > 3.

2 Result

In this section we formulate and prove our abstract result.

Let X be a locally compact Polish space and denot@by) the space of probability measures &n
equipped with the topology of weak convergence of probigtrtieasuresP (X) is again a locally compact
Polish space (see, e.g., Kallenberg (1983)). Consider ndiacaete time Markov process,, )»en, 0N X.

(We could consider a Feller proces),>o on X instead, but we choose the discrete time setting for the
sake of generality.) Denote % (n)),.cn, its semigroup. That s, for € P(X) andn € Ny,

pS(n) = LX[En].

We want to describe the longtime behaviof©f) in terms of its possible limit pointgy, 6 € ©, where
O is an abstract set. (We do not assume thajyco necessarily exhausts the class of possible limit points.)
In the example of the voter modé), = [0, 1] andpp = (1 — 0)do + 691.

Now we make the crucial definition:

Definition 2.1 The domain of stochastic attractid(.¢) of ug is the set of measurgsce P(X) such that

for all m € No, P#[¢,,, € dx]-stochasticallyL?[¢,] = . Formally,

Dlug) = {u € P(X): PHLE[E,] € 4] "= 1V opentd 5 g andm € NO}. (2.1)

n—oo

Clearly,D(10) is a convex set but it is in general not closed. For exampléagrvoter modek,S(n) =

119, Wherer is the product measure d, 1}%* with intensityd. We will see later thatyS(n) € D(u4),

n € Ny, but obviouslyuy ¢ D(ue) if 0 € (0,1). SinceD(up) is not compact we cannot hope for a nice
description in terms of extremal elements. In spite of this,give a mild sufficient condition for a set
My C P(X) to be a subset dP(uy) that covers a wide range in the examples.
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Assumption 1. My C P(X) is invariant under the dynamics ¢f,,), i.e.,

MpS(1) C M. (A1)

Assumption 2.For allx € My, the lawsL”[¢,,] converge tqup in u(dz) probability. Thatis, ifil € P(X)
is open angy € 4, then for ally € My,

p({r € X @ L€,] € U}) == 1. (A2)

Proposition 2.2 If M fulfills the assumption (A1) and (A2) theWly C D(ug). Further,D(ug) fulfills
(A1) and (A2) and is hence the maximal set fulfilling (A1) af2i)(

Proof The proofis simple and is left as an exercise. m|

In the context of the voter model, for< 6 < 1 and withpy = (1 — 0)uop + 6u1, we would like to argue
that (A1) and (A2) guarantee that for any initial measure My, the process; gets “close” tod and tol
at arbitrarily late times. The meaning of (A1) is clear. However, condition (A2) is savhat unusual, so
we would like to discuss its interpretation and our reasonsfioosing it.

There are basically three types of convergence that we naighdse for (A2): convergence of the
means, stochastic convergence and almost sure converg8mme we consider convergence of random
probability measures, convergencelih and stochastic convergence coincide, and both are impljed b
almost sure convergence, while both imply convergenceefitkans. We illustrate the meaning of these
concepts in the example of the voter model.

By convergence of the meamnge mean the condition

uS(n) "= ug Y € M. (2.2)

That is, My is a subset of the domain of attraction;af. In the example of the voter model, we could set
My = {ue}, in which case (2.2) would certainly hold. However, in thisse we would haveg, = & a.s.,
so there would be no change of types at all. Hence, this n&titoo rough for our purposes.

By almost sure convergenc&e mean the condition

p{r e X L7[6)]) "= pe}) =1 VY e M. (2.3)

(Since (2.3) does not hold for the voter model withy = {ug}, our objection to (2.2) does not apply.)
Certainly (2.3) implies (2.2), but it is correspondingly redifficult to verify in any given example. For
the voter model, by usinduality (see Chapter V of Liggett (1985)), it is possible to verify3Rfor some
classesMy. However, verification becomes rather difficult for more gbicated models, so we do not
adopt this notion of convergence.

By stochastic convergencge mean exactly (A2), which is a weaker condition than (2uBit still
strong enough for our purposes. For the voter model, towg4i2), we only have to show that for all finite
H c 7% ande > 0,

p{z € X : PU,(i)) =1Vi€c H| >0 —¢, PPI6,(i) =0Vic H >1—-0—-¢}) =3 1.  (2.4)

This fact, foru belonging to a large clas$ty, is easily proved using duality (see the proof of Theorem 1)
below.

Now we come back to the general situation. ISet= supp(ug) be the closed support ofy. For a
sequencér, ) en in X let A((x, )nen) denote the set of accumulation pointy0f, ) nen in X.
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Proposition 2.3 For eachd € O, for all i € D(up),
PH[Sp € A((§n)nen)] = 1. (2.5)
Proof LetU C X be open, with7 N Sy £ (). We will show that there exists a sequengg oo such that
P#[&, € U infinitely often] = 1. (2.6)

Clearly, (2.6) implies (2.5).
By our choice ofU,
0:= /,LQ(U) > 0.

Choosél C P(X) open,up € 4, such that/(U) > §/2 for all v € 4. By (Al) and (A2) we can choose a
sequence, T oo such that

(uS(tn))({z € X+ L& 11—t €U}) >1—27"

Denote byA,, the event
An = {gtn S U}

and let
B,={zeX: L"&,] € U}.

If we let 7, = o(&o, &1, - .., &) be the filtration induced by, ) then by the Markov property for € N

PH[PH A, Fy, 1] < 6/2] = pS(tn—1)({z € X : P*[&, v, , € U] <3/2})

< uS(tn)({r e X+ L, 1, ] g U}) 2.7)
<27

HenceP#—almost surd@*[A,, | F;,_,] > /2 for infinitely manyn € N. In particular,

P#

i PUALF ] = oo‘| -1 (2.8)

n=1

Now according to the conditional Borel-Cantelli lemma (®eg., Durrett (1996), Corollary 4.3.2)

limsup A,, = {Z PHA|Fe, o] = oo} (mod P*). (2.9)
n—oo n—=1
Hence
pP# [limsup An] =1,
which implies (2.6). |

3 Applications

The situation we have in mind is that of a “general” intenagtparticle system where a global variable,
typically the density of particles, is preserved under thpainics. The models we consider here have a
number of features in common. The state spacé is V¢, equipped with the product topology, where the
countably infinite Abelian groug’ (we exclude expressis verbis the possibilitydfinite!) plays the role

of the site spacé\/ is the space of values that a local coordinate can assumee bontext of genealogical
models, we hav& C [0,00)” or V C M (E) (the finite measures of), whereE is a “type” space. For
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v € V we interpretv(e) as the number of particles of typec E. WhenV is compact we can, in fact, take
X = V&, but for non-compact’, we need to impose growth conditions on the coordinatesll tases,
the interaction of the coordinates will be described in ohan irreducible random walk kerng(-, -) on
G. The continuous time transition kernglis defined by

oo tn
a=e S Sam,
n!
n=0

wherea(™ is then-step transition probability of.
Forv € V, we letv denote the element € X such thatv(g) = v for all g € G. P always denotes the
space of probability measures on a locally compact Poliskhespquipped with the weak topology.

3.1 The Multitype voter model

Fix a positive integer > 1, the number of types (opinions), &t = {1,..., ¢} be the space of types, and
letV = {1y}, e € E}. LetX = V%, and define, for: € X andg, ¢’,h € G,
x(h), h ,
Lgg(h) = " 1F @3.1)
z(g"), h=g.

We define the voter modé{, ).~ to be the Markov process ofi with generatog, where forF : X — R
depending on only finitely many coordinates,

GF(x) = ) alg,h) (F(zgn) — F(x)). (3.2)
g,heG
Define the simplex
0 =P(E) = {9 . E — [0, with 3 6(e) = 1}, (3.3)
eckE

and forf € © let M, be the collection of. € P(X) such that for aly € G ande € E,

lim | p(de)((asa(g) - 0)(e))* = 0. (3.4)

5—00

In the case thaty = Z¢, the collectionM, contains all translation invariant, shift ergodice P(X)
satisfying | 1(dz)z(0) = 6 (see pp. 180-181 of Cox, Greven and Shiga (1995) for thecase). For

6 € © define
po =Y _0(e)de, (3.5)
ecE
and note thaby = {e : e € E andfd(e) > 0.}
We assume that the symmetrized kerfigiven by

alg.h) = a(g, h) J2r a(h, g)

is recurrent. It is well known that the voter model clustershiis situation. In particular, Theorem V.1.9 of
Liggett (1985) implies that for ajk € My,

£M6] =S . (3.6)

Theorem 1 Letd € © andu € My. Then for alle € E with §(e) > 0, and for all finite H C G, all the
components; (h), h € H, simultaneously assume the vallg, at arbitrarily late times with probability
one.



Recurrence and Ergodicity 7

Proof It suffices to verify that (A1) and (A2) hold, in which cagely C D(ug) is in the domain of
stochastic attraction qfs and our conclusion is justified by Proposition 2.3. To do,this make use of
duality (see Chapter V of Liggett (1985)), which we briefly describet (n], g € G);>0 be a system of
rate one continuous time coalescing random walk&omvith step distributioru(g, 2). For eacty € G,

n{ is arandom walk started gt The random walksg? run independently until two of them meet, at which
time the walks (instantly) coalesce, and after that movettogy. A special case of the duality relation (see
(V.1.7) of Liggett (1985)) connecting and¢; is: for allz € X, finite H C G andv € V,

P?[¢(h) = v, h € H) = Plz(n") = v, h € H]. (3.7)
Fix u € My andt > 0. To verify (Al), we must show that for fixeglande,
" [(as&i(g) = 0)(e)?] == 0. (3.8)
For H C G, let Ty to be the first time at which all the random walks started/ilmave coalesced,
g =inf{t>0: n! =nt Vg hecH}. (3.9
Note that
Cov™[&(g)(e), & (h)(e)] < Plrigny <t
Hence

B [(a.&(9)(€) — 0(c))%] - / () (as402(g)(€) — 0(c))?
- / (dz) Var®[a.&,(g) e)]
- / w(dz) 3 ay(g, h)as(g, K)Cov®[& (B (e), & (k) ()]

h,keG

(3.10)

< Z as(gah)as(gvk)Ft(k_h)’
h,keG

whereF;(k — h) = Py, 1y < t]. By the assumption that € My, the second term on the left side above
tends to 0 as — oo. The right side also tends to 0 as— oo, sinceG is infinite anda is irreducible, and
sinceFi(h) — 0 as|h| — oco. (That s, for any sequendér,,) of finite subsets of7 such thatz,, T G as
n — oo, sup{Fi(h) : h € G\ Gp} — 0asn — c0.)

In order to show that (A2) holds, it suffices to show thatfar 0 and finiteH C G,

tlirgo p({z: PT[&(h) =1 forallh € H] > 0(e) —cforalle € E}) = 1. (3.11)
The setE of types is finite, so it suffices to prove that for each fixed F,
tlg(r)lo p({z: PT[&(h) =14 forallh € H] > 0(e) —¢}) = 1. (3.12)
Choose an arbitrary € H. By (3.7),
P (h) = 1y, forall h € HJ >P[ () =gy, 7m0 < t]
Plz(n!) = 1(e)] — Plra > ¢]

= atx(g)(e) Plry > t].
Since we have assumed tfaais recurrentP[ry > t] — 0 ast — oo. Therefore,
p({z : PP&(h) = 1y forallh € H] < 0(e) —})
< p{z: (ar(g) — 0)(e) < —(e = Plrm > 1])})
< [ utd)((arnlg) - 6)(e))? (< ~ Plru > 1)

—0
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ast — oo, on account of (3.4). |

3.2 Interacting diffusions

Here we consider a two—type genealogical model with mignaéind resampling. We suppose that at each
siteg € G there is a large colony of individuals, and each individuakirbe one of two genealogical types,
A or B. The frequency of type A at sitgat timet is £;(¢g). HenceE = {1, 2} and we identifyP(FE) with
[0,1] and letV = [0, 1]. Further we le{&,;);>o be the Markov process with state spac€ and generator

G, where, for suitablé” : X — R,

B u o(h) — OF (x) . 0?F(x)
GF(e) = 32 alg. ) ~ 20 T + 3 o) o (313

The migration kernel is an irreducible random walk kernel @¥, and the diffusion coefficient (or resam-
pling function)e is a functiong : [0, 1] — [0, co) that satisfies

0(0) = o(1) =0,
o(r) >0, re(0,1), (3.14)
o is Lipschitz continuous.

The ergodic theory of this process has been studied by Shagda,b) (for the casg(r) = r(1 — r)),
Notahara and Shiga (1980) and Cox and Greven (1994). As gtladter model, there is either coexistence
or local extinction of one type, depending on whether theragtnized kernek defined in (3.1) is transient
or recurrent. We assume here thas recurrent. Le® = [0, 1], and forf € © let M, be the collection of
u € P(X) such that for aly € G,

lim [ u(dz)(asz(g) —0)* = 0. (3.15)

5—00

Forf € ©, let g = (1 — 6)do + 641, and note thafy = {0,1}. By Theorem 4 of Cox and Greven (1994),
if © € Mg then
L£P6] E2 (1 - 6)d0 + 664 (3.16)

We prove here a recurrence result {¢r) that extends a result of Fleischmann and Greven (1994) for a
specialG anda (see the proof of their Proposition 5.11).

Theorem 2 Letd € (0,1) andu € My. Then, for all finiteH C G,
P# |liminf sup &(h) = 0 and limsup inf &(h) =1| = 1. (3.17)
t—o0 heH t—oo heH

Proof It suffices to verify that (A1) and (A2) hold, in which cagely C D(ug) is in the domain of
stochastic attraction gfy and our conclusion is justified by Proposition 2.3. kixce My andt > 0. To
verify (A1) we must show that

lim EH[(asgt(g) - 9)(&5&(]1) - 9)] =0. (318)

55— 00

In order to compute the first and second moment we use Lemme&aoénd Greven (1994):
E*[&(9)] = arz(g) (3.19)

E*[¢(9)&(h)] = arw(g)azx(h) + Z/o at—r(h,Dag—r(k, DE"[0(&-(1))] dr. (3.20)

leG
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Now it is straightforward to check the formula

EX[(6(h) — 0)(64(k) — 0)
= [ o) ara() = O)(ara(h) = 0) + 3 [ arr(h Do (k. DB el )] . @:21)

l

It follows that
E“[(asft(g) - 6‘)(as§t(g) - 9)]

= [wanoisto) - 07+ Y [ eime e G2
l

The first term on the right side of (3.22) tends to Gas oo because. € My. The second term on the
right side of (3.22) is bounded above by

t
lelloe / Baosny (0, 9) dr,

and this also tends to 0 as— oo (recall that|G| = oo and thata is irreducible, hencé,.(g,9) — oo as
r — 00). We have thus established (3.18)
In order to show that (A2) holds, it suffices to prove that faité H C G ande > 0,

tli)nélo,u({x . P[ey(h) < eVh e H] > 1—0—candP?[&,(h) > 1 —eVh € H] > 0 —g}) — 1. (3.23)
We break the proof of (3.23) into two parts. First, we show thranyg € G ande > 0,
tlirgou({x L Ple(g) <] >1—0—c, andP?[E,(g) > 1 —¢] > 0 — a}) =1 (3.24)
Then we show that for any, h € G ande > 0,
Jim p({a: PT[[&(g) — &(h)| > €] > e}) =0. (3.25)

Itis easy to see that (3.24) and (3.25) imply (3.23)
Let H C G be finite, letd > 0, and define

I'y(0) = {z : |aww(h) — 0] < sforallh € H}.
Sinceu € My andH is finite, Chebyshev’s inequality and (3.15) imply that that
tligo w(T(8)) = 1. (3.26)
Suppose now thal = {g, h}. In the proof of Theorem 4 in Cox and Greven (1994), it is shéwat for

6 >0,
E*[(&(9) — 8°)(&(h) + 0%)] > awx(g) — @:(0,9,h) — 62, (3.27)

whereq, (9, g, h) — 0 ast — oo. (The quantityy, (4, g, h) is the probability that two random walks starting
from g andh, which move independently according to the kemgland coalesce at ratewhenever they
occupy the same site, coalesce by tiim&he constant depends om, h, ¢ andd, but is strictly positive.)
After a little rearrangement (using (3.19)), this inequalinplies that

0 <E7[&(g)(1 — & (h))] < (6,9, h) + 20%. (3.28)
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By choosingt large enough so that(d, g, h) < 62, we have

0 < E°[&(g)(1 — &(h))] < 362 (3.29)
Settingg = h, Chebyshev’s inequality implies

P& (9)(1 = &(g)) = 0] < 36. (3.30)

Assume now thab < ¢ < 1/4. Forr € [26,1 — 2], (1 — r) > §. Therefore, for large, the last
estimate implies that

P*[&(g) € [26,1 — 26]] < 3. (3.31)
Using (3.19) we get that for € T';(0), E*[£:(g)] = awz(g) > @ — J. On the other hand,
E*[&(g)] < 20P7[&(g) < 20] + P*[&(g) > 20] = 1 — (1 = 26)P7[&(9) < 24]. (3.32)
On account of these estimates,
Pl (g) < 20] < 10+ (3.33)
g ="T1-25 '
A similar argument gives the inequality
0+46
x — 2] < ) .
P[6(g) > 1 - 20) < 7= (3.34)
Combining (3.31), (3.33) and (3.34), we obtain thatfor T';(9)
0
Pelei(g) <20 > 1-35— 20
1-26
1-0+96 (3.35)

Givene > 0, we may choosé > 0 small enough, and thenlarge enough so that(, g, g) < ¢2, and for
allz € Ft(5),
PPl&(g) <e]>1—-0—¢ and P?[&(g) >1—¢]>0—c¢.

In view of (3.26), (3.24) holds.

To prove (3.25), suppose th&(g) — &(h)] > §. Then, it must be the case that at least one of
&i(g), & (h) belong to the intervdh, 1 — 6], or, one of:(g), & (k) is smaller thard and the other larger than
1 — 4. In the latter case, eithe&g(g)(1 — & (h)) > 6(1 — ) or &(h)(1 — &(g)) > &6(1 — 6). Therefore,
P*[|&(g) — & (h)| > ] is bounded above by

P [&(g) €[6,1 = 8]] + P*[&(h) € [0,1 —4]]
+ P& (g)(1 = &(h)) > 0(1 = 6)] + P& (h)(1 — & (g)) > 6(1 —5)].
Fort large enough so that(§, g, h) < 62, and allz € T'.(4), (3.29) and Chebyshev’s inequality imply
P& (g)(1 = &i(h)) > 6(1 = 0)] < 36/(1—0)
On account of this estimate, (3.31) and (3.36),
PZ[|€(g) — &(R)| > 8] < 66 +65/(1 —9). (3.37)

(3.36)

Givene > 0, we may choosé > 0 small enough so that the right side above is less thamndt large
enough so tha; (4, g, h) < §2. We therefore obtain that, for all € T';(6),

Pwngt(g) — gt(h” > E] < €. (338)
In view of (3.26), (3.25) holds. |
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3.3 Interacting Fleming Viot Processes

Here we consider a generalization of the two allele (A anddg) snodel of the last example to infinitely
many alleles. The spade of alleles (or types) is now infinite. W.l.o.g. we assufie= [0, 1]. The interval
[0,1] is understood as an arbitrary labeling of the types. Thoughneed some measurability &f and
thus equip it with the Boret-field 5 from the Euclidean metric ojd, 1].

Now & (g)(A) is the frequency at time of individuals in the colony € G having a type that is in
A € B. Hencet,(g) € Ag =V := P(E, B) (the set of probability measures ¢f, B)) and (&) is a
Markov process with values in

X =P(E,B)¢.

The procesg¢;) is a model with migration and resampling. While the migmati® just the one we intro-
duced in the previous subsection we must be more carefukigthesampling: we can defif& ) uniquely
only for the so-called Fisher-Wright cagér) = ¢ - z(1 — z), ¢ > 0.

We define(&;) in terms of its generata¥ which is defined for certain polynomiafs: X — R by

6r(a) = Y alah) [ <‘9F(“’”)<e>) (2(h)(de) — 2(g)(de))

ohec 0x(g)

PE@) 0\ Tote) des. (de’) — ala)(delala)(de’ (3.39)
+geZG/E/E ((817(9))2( ) ))[ (g)(d )6e(d ) (g)(d) (g)(d )}

We do not explain the details of this formula but refer to DamsGreven and Vaillancourt (1995), equation
(0.8), or Chapter 2.6 of Dawson (1993).
The possible limit pointg,y will now be indexed by the sé = P(E, B). We define foW € ©

My = {u e P(P(E,B)Y): lim [ u(dz)(asz(A) —0(A)*=0VAc B} : (3.40)

§— 00

Again for a recurrent we have clustering and the limit points are mesguwf the measures_ (the bold
symbol indicates the point mass on the constant éiate € F):

g = / 0(de) ds,,. (3.41)
E
See Dawson, Greven and Vaillancourt (1995), Theorem 0.paiticular,Sy = supp(pg) = {de : € €

supp()}.

Theorem 3 Letd € © andu € My. Then for every finite séf C G and every sefl € B with pg(A) > 0,
I" 1 1 = =
P {h?isololp hlg}fi &(h)(A) 1} 1. (3.42)

In particular, the locally predominant type changes infhyjtoften.

Proof For fixedA € B the proces$§t(g); g € G)i>0 = (&(9)(A); g € G)i>o is just the process of
interacting Fisher-Wright diffusions ofy, 1]. That is the process of interacting diffusions from the last
example with diffusion coefficiend(z) = (1 — x). Hence the claim follows from Theorem 2. O

3.4 Interacting Brownian motions

So far we have considered examples where the state spa@cfasite) was compact. Now we come up
with our first example of a non-compact state space.
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Here we consider only one type, i.é;, = {1}. In the notation of the last few examples we have
© =V =RandX c R is a Liggett—Spitzer space (see Liggett and Spitzer (19849ye precisely, fix
7 € (0,00)% with 3, 7(9) < oo and with the property that

sup~(g) " (va)(g) < oo. (3.43)
geG

Now define|z|l, = 3_ . |2(g)|v(g) and let
X ={zeR: |z[, < o} (3.44)

For example, il = Z? anda is the kernel of simple random walk then= (1 + ||z||2) ~? fulfills the above

assumption fop > d. Hence allz € RZ* that do not grow faster than a polynomial are possible initia
configurations.
We define linearly interacting Brownian motions as the Margmcess onX with generator

OF (x) n 1 0?F(z)
Ox(g) 2 &2 0x(g)*

GF(z) = Y a(g,h)[x(h) — 2(g)] (3.45)

g,heG

Note thaty o ((a;z)(g)) ! is the distribution of the random variahiex(g) if « is distributed according to
wu(dz). Define

M = {u e P(X): {po((ax)(g)", t > 0}istight¥ g € G}. (3.46)

We show that if the symmetrized kernels recurrent, then fon, € M
t—oo 1 1
L&) = po = 50-c0 + 50400, (3.47)

and moreover that{ C D(uo), the domain of stochastic attraction @f (Of course, other subsets of
D(uo) are conceivable). To make precise sense of this statemeRt4e R U {+occ} be the two point
compactification of the real line. The bold symbelex and+oco denote the elements iR with all
components equal te oo respectivelytoo.

Note that (3.47) is “convergence of the means” in the sen¢2.8j. Here even the stronger statement
of stochastic convergence needed for (A2) is true

t—oo

L] = po, p(dx)-stochastically (3.48)

or equivalently: for ale > 0, K > 0 andH C G finite

htIE)lOIOlf/L({,T. P [hlggﬁt(h) > K] /\ P [sgg&(h) < K] > 5 6}) =1 (3.49)
We give the simple proof of (3.49): First note th@t),>o solves a system of stochastic differential
equations

déi(9) =Y alg, W)[&(h) = &(g)] dt + dWi(g), (3.50)

heG
where{(W,(9):>0, g € G} is an independent family of standard Wiener processes.s(@dm be seen
by an approximation procedure as in Shiga and Shimizu (1$806pf of Theorem 3.2.) Hencg can be
written as

6(9) = @)(0) + [ 3 arulg. ) W), (3.51)

0 hea
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¢From (3.51) we derive far € X the first and second moment:

E6lo) = (an)(o), (352)
Covlei(9). 6(h)] = 3 Canlo,) (359

whereG, (g, h) is the Green function of the symmetrized kerdel

t
/Zis(g,h) ds
0
t
= /Zas/Q(g,l)as/g(h,l) ds.

0 e

ét(gvh)

Sinceq is irreducible and: is recurrent, the weak ratio limit theorem (see, e.g., 8piz 00k, Proposition
1.5) implies
Gi(g,h) t—oo0 1

= (3.54)
G(g9:9)
Hence asymptotically the components are perfectly cagéhlanhile
1~ oo
Var®[g(g)] = 5G(0,0) = oo, (3.55)

Since undeP” the field{{,(g), g € G} is Gaussian antl”[¢,(g)] = (a.x)(g) is tight ast — oo (w.r.t.
w) for all g € G, this implies (3.49). Hence we have shown that (A2) holds.

Assumption (A1) however is an immediate consequence of}3Bhus we can apply Proposition 2.3
to get the following result:

Theorem 4 Lety, € M. Then forH C G finite

u({:z:: P [hmsuphlnf &(h) = oo, hmlnf sup & (h) = —oo} = }) (3.56)

t—o00 =0 pheH

3.5 Mutually catalytic branching super random walk

We now come to the example that mainly motivated our work. ST a two-type “infinitesimal mass”
interacting particle system df?, i.e. G = Z¢, E = {1,2}, V = [0,00)%. Hence&(i)(c) € [0,00) is
the amount of mass of typec {1,2} at site; € Z¢ at timet > 0. The particles migrate (independently
of each other) according to a nearest neighbor random welks (i, j) = ﬁﬂ{“,ﬂ:l}. Additionally the
mass of each type fluctuates randomly according to Felleasdhing diffusion, however with a diffusion
rate proportional to the mass of the other type at that pdsticsite. The proper space of the process is a
subspace& c V¢ that fulfills a natural growth condition (see Theorem 1.1 afd3on and Perkins (1998)).
Formally we defindé;):>o as the Markov process oXi with generatog given by

GF(@) =30 | X alid)lel)(e) ~ oy s + 3 wli)elai(3 - )z | (@57)

(C i€Z4

The explicit construction of this process can be found in Bawand Perkins (1998). Uniqueness in law is
based on Mytnik’s duality (see Mytnik (1996)).

Dawson and Perkins investigate the longtime behavid€éQf They show thatifl = 1 ord = 2 and
& = 0 € (0,00)? then locally one type dies out (in probability) while the ethype is locally constant but
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random. The question that was raised by Ed Perkins at the\I&8buver Probability Meeting is whether
it is always (i.e. as time passes) the same type that is yopedidominant. From the above discussion the
reader might by now guess the right answer. Here however ratenfant to give the result of Dawson and
Perkins in detail.

Consider planar Brownian motidiB; );>o in the upper right quadrait, started i) € (0, 00)?. Define
my to be the distribution of the first hitting dB, of the boundarpV' = {0} x [0, 00) U [0,00) x {0} of
V. my is absolutely continuous w.r.t. Lebesgue measur@6randsupp(mg) = 9V for 8 € (0,00)2. In
fact, it is an exercise to compute the densityrgf. Letting

_dxy o9 2, 2 22\ "
g((E,y,Z)— 4‘T y +(Z +y z ) 2, $,y72207
™

we have

mg(dv1,{0}) = g(6(1),6(2),v1)dvr,
mg({0},dv2) = ¢(6(2),0(1),v2)dvs.

Further lety,, be the unit mass at the element X with all components equal to€ V. Finally define
o = / ma(dv)d, (3.58)
E
= / mg(dvl, {O})5(v1,0) + / me({O}, dv2)6(07V2). (359)
[0,00) [0,00)

Theorem 1.5 of Dawson and Perkins (1998) says that for thetanhstated € X with all components
equal tod,

£006] == . (3.60)

In order to apply our abstract argument we have to have amigmtalassMy C D(ug) in the domain
of stochastic attraction gfy. A large classMy with these features has been obtained by Cox, Klenke and
Perkins (1999). They show in their Theorem 2 that

Mg = {u ePX): C, < oo, tlinolo/u(d:c) (azz(i)(c) — 0(c))> =0, i € Z, c = 1,2}, (3.61)

where
C,, = sup /u(daj) z(1)(3)? + 2(2)(4), (3.62)

€24

ensures convergence in the sense of (A2). In particular,ave h

L6 =2 e, pe My, 0€0. (3.63)

It is simple to check invariance 01y (A1). In fact, for allT > 0, i € Z¢ andc = 1,2, by Theorem
2.2 of Dawson and Perkins (1998),

E'[er(i)(c)’] = E[(aré(c))(i)’] (3.64)

T
+ [ ar 3D B lar (a6 Do) 2]

kezd
Hence Jensen’s inequality yields (withy = fOT a.(0,0)dt)

C;LS(T) S (1 + GQT)C;L < 00. (365)
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On the other hand, again by Theorem 2.2 of Dawson and Perkins,
E![(ac—1&r(i)(c) = 0(c))] — / p(da)(arz)(i)(c) = 0(c))? (3.66)
T
= [ a3 B (e k) (Do () 2)

kezd

1 —00
~C t

< 5Cn (Gar — Gop—1y) — 0.

HenceuS(T') € My and My fulfills assumption (Al).
Now we present the main new result of this work which is an irdiae consequence of Proposition 2.3
and Cox, Klenke and Perkins (1999).

Theorem 5 Fix 6 € (0,00) andu € M,. For every finite seff C Z<¢ and everyp € {0} x [0,00) U
[0,00) x {0}

P* [liminf sup ||&(i) — p|]| = 0| = 1. (3.67)
t—00 jeH

In particular, P#-a.s. the locally predominant type changes infinitely often

Acknowledgment

We would like to thank Ed Perkins for bringing the questioracf. alternation of the dominant type in the
mutually catalytic branching process to our attention, ordsimplifying our original proof of Proposi-
tion 2.3. We would also like to thank the referee for helpfuienents.

References

[1] Arratia, R. (1982) Coalescing Brownian motion and the voter modelotunpublished manuscript.

[2] Bramson, M. and Griffeath, D. (1989) Flux and fixation in cyclic particle systems, Ann. Probab.,
17(1)26-45.

[3] Cox, J.T., Greven, A. (1994)Ergodic theorems for infinite systems of locally interagtdiffusions.
Ann. Probab22(2), 833-853.

[4] Cox, J.T., Griffeath, D. (1983) Occupation time limit theorems for the voter model. Ann. lizo.
11(4) 876-893.

[5] Cox, J.T., Griffeath, D. (1986) Diffusive clustering in the two dimensional voter model.rAProbab.
14(2), 347-370.

[6] Cox,J.T., Klenke, A., Perkins, E. (1999)Convergence to Equilibrium and Linear Systems. To appear
in: Proceedings of the International Conference on Stdahstdels, Conference Proceeding Series
of the Canadian Mathematical Society.

[7] Dawson, D.A., Greven, A., Vaillancourt, J. (1995)Equilibria and quasi equilibria for infinite sys-
tems of interacting Fleming-Viot processes. Trans. Am.iM&bc. Vol.347, No. 7, pp 2277-2361.

[8] Dawson, D.A., Perkins, E.A. (1998)Long-time behavior and co—existence in a mutually catalyti
branching model, Ann. Probab6(3), 1088-1138.

[9] Durrett, R.T. (1996) Probability: Theory and examples (second edition), Waddwo



Recurrence and Ergodicity 16

[10] Fleischmann, K., Greven, A. (1994) Diffusive clustering in an infinite system of hierarchigall
interacting diffusions. Probab. Th. Rel. Fiel&8, 517-566

[11] Fontes, L.R.G., Isopi, M. and Newman, C.M. (1999)Chaotic Time Dependence in a Disordered
Spin System, Probab. Th. Rel. Fields (to appear).

[12] Kallenberg, O. (1983) Random measures, Akademie Verlag and Academic Press.
[13] Liggett, T.M. (1985) Interacting particle systems. Springer, New York.

[14] Liggett, T.M. and Spitzer, F.L. (1981) Ergodic theorems for coupled random walks and other sys-
tems with locally interacting components. Z. Wahrsch. vépebiete 56, 443—468.

[15] Mytnik, L. (1996) Superprocesses in random environments and related t&id3, thesis, Techni-
con.

[16] Nanda, S., Newman, C.M. and Stein, D.L. (1999Pynamics of Ising Spin Systems at Zero Temper-
ature, “On Dobrushin’s Way (from Probability Theory to $&ttal Physics)”, R. Minlos, S. Shlosman
and Y. Suhov, eds., Amer. Math. Soc., Providence, to appear.

[17] Newman, C.M. and Stein, D.L. (1999)Equilibrium Pure States and Nonequilibrium Chaos, J. Stat.
Phys. (to appear).

[18] Shiga, T. and Shimizu, A. (1980) Infinite-dimensional stochastic differential equatiomsl aheir
applications. J. Math. Kyoto Uni20, 395-416.

[19] Spitzer, F. (1973) Principles of random walk, 2nd ed., Van Nostrand, Princeltth



