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Abstract. We review some results on spatial branching processes X̺ in ran-
dom media ̺. The local branching rate or law depends on the medium ̺ that
may vary in space and time and can be random.

The main emphasis lies on catalytic super-Brownian motion where ̺ gov-
erns the local branching rate and is considered as a catalytic medium. We
display the construction of X̺ and give results on absolute continuity of the
states, longtime behaviour and so on.

Introduction

In the last 15 years there has been a lot of interest in spatial branching models
– branching random walk, branching Brownian motion, super-Brownian motion
and so on – where the branching mechanism may vary in space and/or time in a
deterministic or random way. The protagonists in this field of research are Don
Dawson and Klaus Fleischmann.

This survey focuses mainly on the best-studied subclass of models where the
branching mechanism is critical with finite variance (super processes) or binary
(particle systems). It is only the local rate at which the branching occurs that
varies. The local branching rate is interpreted as the concentration of catalytic
matter that enables the branching. This catalyst is a function (or distribution) in
space and/or time and it may be random or deterministic. We even consider a case
where two branching processes catalyse each other in a symmetric way.

The ambition of this article is to serve as a quick guide to the subject and to
give a survey of the main results. It is by no means comprehensive and the author
wishes to apologise to everyone whose work is not considered here. We do not aim
at rigour in the exposition but appeal to the intuition of the reader. Some notions
are explained loosely to give non-specialists a vague idea and enable them to go on
reading.

1. Varying Branching Law

Galton–Watson processes in random environments have been studied for over
30 years. Since we shall focus on spatial models we refer only briefly to the books
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of Athreya and Ney (1972) and Jagers (1975), and for some more recent sources to
d’Souza (1994), Fleischmann and Vatutin (1999).

We tried to keep the notation consistent throughout this article. The reader
should be warned that this entails incongruencies with the notation in the original
articles.

1.1. The Starting Point. Spatial catalytic branching processes in a random
medium were considered first by Dawson and Fleischmann (1983) and (1985). They
study discrete time branching random walk on Zd where the branching law is crit-
ical but depends on the location of the particle. More precisely, let a(i, j) be the
transition kernel of a random walk on Zd, denote by a(n) the n-step transition
probabilities, let F = (fi, i ∈ Zd) be a family of probability generating function
with f ′

i(1−) = 1, i ∈ Zd. Denote by (pi(k))k∈N0
the corresponding probability dis-

tribution on N0. The branching random walk (BRW) (Xn)n∈N0
in the environment

F is the particle system where in each time step at each site i the particles branch
according to the (critical) distribution pi. The resulting progeny moves according
to the kernel a. The number of particles at site i at time n is denoted by Xn(i).

We assume that the environment F is sampled from some probability law
P = L(F ) but is fixed for all times. For fixed F denote by PF the law of the
branching random walk X (quenched law). PF allows a random initial state
X0 whose distribution is assumed to be independent of F . Finally denote by
P = EPF =

∫
P(dF )PF the annealed distribution.

The aspiration of Dawson and Fleischmann (1985) is to obtain criteria for the
persistence ofX . Recall that (for fixed F )X is called persistent if, roughly speaking,
it maintains its spatial intensity of particles in the longtime limit. In Theorem 3.1
they obtain a Kallenberg criterion for persistence: Let gi(s) = f ′(1 − s), s ∈ [0, 1],
and let (Zn) be a random walk with kernel a. Then X is persistent iff for all
i, j ∈ Zd:

(1.1) PF

[
∞∑

n=1

g−Zn
(a(n)(−Zn, j)) <∞

∣∣∣∣Z0 = i

]
= 1.

The philosophy leading to (1.1) is simple: X is persistent if each {Xn(i), n ∈ N0}
is uniformly integrable. This is equivalent to the stochastic boundedness of the

size biased random variables {X̂n(i), n ∈ N0}. (Recall that these are defined by

PF [X̂n(i) = k] = kPF [Xn(i) = k]/EF [Xn(i)], k ∈ N0.) Now there is a nice

representation of X̂n(i) going back to Olav Kallenberg. Trace back the ancestral
line of a particle located at i (this is the random walk (−Zm)m=0,...,n). At each
time m generate a random number Ym of particles distributed according to the
size biased offspring distribution (kp−Zn

(k))k∈N0
which has probability generating

function f ′
−Zn

. Now let Ym − 1 offspring particles perform BRW and evaluate at

time n − m. Adding over m yields the distribution of X̂n(i). This explains the
quantities arising in (1.1). Some uniform integrability arguments are needed to
establish the exact form of the criterion. In fact, this makes the proof a little
involved.

If we sample F from a spatially homogeneous ergodic law P it is easily derived
that (see Proposition 4.1)

(1.2) P[X is persistent] ∈ {0, 1}.
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The main result (Theorem 5.2) of Dawson and Fleischmann (1985) is the existence
of a critical dimension for persistence. Assume that {fi, i ∈ Zd} is i.i.d. and that
there exists a β ∈ (0, 1] such that lims→0 s

−βE[gi(s)] ∈ (0,∞) exists. Further
assume that a is in the normal domain of attraction of a genuinely d-dimensional
symmetric α–stable law for some α ∈ (0, 2]. Then

(1.3) X is a.s. persistent ⇐⇒ d >
α

β
.

Under somewhat weaker assumptions (E[gi(s)] is only regularly varying, P is only
ergodic, a is only in the domain of attraction) one gets (1.3) but excluding the
case d = α/β (Theorem 5.1). Note that the result is qualitatively identical to the
classical non-random homogeneous situation. Considering the fact that the medium
is ergodic and the mean is constant a.s. this is understandable: the particles
experience a mixture of the medium and this mixture converges to a deterministic
limit. Since the branching is critical everywhere no sites are favoured and this limit
coincides with mean with respect to P.

1.2. Large Deviations for Non-critical Branching. The situation changes
drastically if we allow the mean of the offspring distribution to vary also. This
case has examined studied in Greven and den Hollander (1991), (1992) and Bail-
lon, Clément, Greven and den Hollander (1993). We sketch the model and the
result of the latter paper. The model is the same as the one introduced above
but lives only on Z. For the random walk kernel a we make the special choice
a(i, i) = 1 − h, a(i, i+ 1) = h, i ∈ Z, for some parameter h ∈ (0, 1). We allow the
mean mi =

∑
k∈N0

kpi(k) to be random. We assume that {pi, i ∈ Z} is i.i.d. and
that M := ess sup

P
mi <∞.

It is clear that the particles do not experience a P–average of the medium.
Rather they try to stay at those fertile sites i where M −mi is small. (Note that
it is the distance M −mi to the optimal value M rather than the absolute value
of mi that determines the (relative) “fertility” of a site.) On the other hand, for a
particle not to move costs a (entropy) price depending on h. We are the observers
of a thrilling interplay of two opposed tendencies. It is not too hard to guess that
we are peeking into the world of large deviations and that the best strategy for a
particle can be characterised in terms of a variational problem.

However tempting it is to give a panorama, our focus lies on critical branch-
ing. We mention only briefly that the techniques developed in the three papers
mentioned above have had a considerable spin-off to the theory of one-dimensional
random polymers (see, e.g., Greven and den Hollander (1993), Baillon, Clément,
Greven and den Hollander (1994), König (1996), van der Hofstad and den Hollander
(1997), and van der Hofstad and Klenke (1998)). As an appetiser we present part
of the result of Baillon et al. (1993) in a nutshell (cf. discussion on page 313). The
interesting quantities are the Malthusian (global) growth rate ρ(h) and the drift of
the particles θ(h).

Assume that the law L(mi) is non-trivial and that it has an atom at M . Here
the flesh pots are abundant and travelling is too strenuous. On the other hand if
L(mi) has a “thin tail at M” the flesh pots are scarce and crossing the desert might
be worthwhile. More precisely, we distinguish two cases.
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Case 1:: E[(M −mi)
−1] = ∞. Here we have

(1.4)
ρ(h) = log(M(1 − h)), h ∈ (0, 1),
θ(h) ≡ 0.

Case 2:: E[(M −mi)
−1] <∞. There exists an hc ∈ (0, 1) at which a phase

transition occurs: For h ∈ (0, hc) the values of ρ(h) and θ(h) are as in
(1.4). However for h ∈ (hc, 1) these values are strictly exceeded. The
functions ρ and θ are analytic on (hc, 1) and ρ is continuous at hc while θ
is continuous at hc iff E[(M −mi)

−2] = ∞.

1.3. Hydrodynamic Fluctuations. As a last example where the branching
law rather than the branching rate is affected by the random medium we mention a
paper by Dawson, Fleischmann and Gorostiza (1989). They investigate a branching
process in continuous time where particles move according to a symmetric α–stable
process (with generator ∆α = −(−∆)α/2)) in Rd. The particles branch at rate
one according to a critical local offspring distribution px given by the probability
generating function fx(s) = s+ h(x) · (1 − s)1+β , s ∈ [0, 1], x ∈ Rd. Here β ∈ (0, 1]
is a fixed parameter and the stationary and ergodic random function h : Rd →
[0, (1 + β)−1] is the (time homogeneous) environment.

Now we perform the hydrodynamic limit procedure. Attach to each particle
a mass εd, rescale time by ε−α and space by ε. The corresponding process Xε

t

converges as ε → 0 to the process Λt of deterministic mass flow governed by the
α–stable semigroup.

Dawson, Fleischmann and Gorostiza (1989) scrutinise the fluctuations Y εt :=
εk(Xε

t − Λt), where k := (dβ − α)/(1 + β). They show (Theorem 4.9) that (if
the initial configurations converge) the process (Y εt ) converges as ε→ 0 to a gener-
alised Ornstein-Uhlenbeck process Yt which is the solution of a generalised Langevin
equation

(1.5) dYt = ∆αYt dt+ dZt.

Here Zt is a (distribution valued) process with independent increments. It is Gauss-
ian if β = 1 and asymmetric β–stable otherwise. The method of proof is a detailed
study of the (random) cumulant equation of the Laplace functionals.

2. Catalytic Super-Brownian Motion

We come to the main object of the discussion. It is a continuous time branching
model where the offspring distribution is fixed and only the local infinitesimal rate
̺ at which branching occurs varies. We could formulate the model in terms of
(continuous time) branching random walk (BRW) on Zd or any countable Abelian
group. This has been done in some generality in Greven, Klenke and Wakolbinger
(1999). However we follow a semi-chronological route and first present the setting
where the underlying motion process (Wt) is Brownian motion in Rd.

The Dawson-Watanabe process (or super-Brownian motion (SBM)) in Rd is
the diffusion limit of (critical binary) branching Brownian motion (BBM). In order
to model the varying branching rate ̺ assume that each particle has a clock A(t)
which is an additive functional of (Wt). If {̺t(x), t ≥ 0, x ∈ Rd} is a (nonnegative)

function we can set A(t) =
∫ t
0 ̺s(Ws)ds. If ̺ is more generally a measure (on

[0,∞)×Rd) we have to be more careful with the definition. Under some regularity
assumptions A is the collision local time L[W,̺](0, t) of W with ̺, that is, ̺ is the
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Revuz measure of the time inhomogeneous additive functional A. In fact, it is a
non-trivial piece of work to check in the examples that L[W,̺] can be well-defined.
For example, this needs that the support of ̺ is not polar for Brownian motion and
this restricts us in some cases to d = 1 or d ≤ 3.

Denote by (X̺,n
t )t≥0 the catalytic BBM (CBBM) where we assign to each par-

ticle a mass n−1 and where the clock is nA(t) rather than A(t). Let µ ∈ MF (Rd)
(=space of finite measures with the vague topology) and assume that X̺,n

0 is a
Poisson point process with intensity nµ. We define catalytic SBM (CSBM) (X̺

t )
as the limit of (X̺,n

t ) as n → ∞ and denote its law by P̺
µ. Of course, it has

to be justified that the limit exists and defines a Markov process with nice path
properties. This intuitively appealing approach has been made by Delmas (1996)
for stationary catalyst ̺t ≡ σ with some additional energy assumption on σ and
by Dynkin (1991) for more general additive functionals A but with a very restric-
tive exponential moment assumption. These assumptions have been relaxed in
Dynkin (1994). Most of the recent papers rely on Dynkin’s result and try to cir-
cumvent the moment assumptions by some approximation scheme (e.g., Dawson
and Fleischmann (1997a), Fleischmann and Mueller (1995)). Due to the indepen-
dence structure (“P̺

µ+ν = P̺
µ ∗P̺

ν”) Laplace functionals are an important tool for

the investigation of CSBM. For ϕ ∈ C+
c (Rd) (=space of nonnegative continuous

functions with compact support) we define the function v̺ϕ(t;x) by

(2.1) v̺ϕ(t;x) = − logE
̺
δx

[exp(−〈X̺
t , ϕ〉)].

Note that − logE̺
µ[exp(−〈X̺

t , ϕ〉)] = 〈µ, v̺ϕ(t; •)〉. The analytical means by which
we scrutinise v̺ϕ is the cumulant equation (pt is the heat kernel)

(2.2) v̺ϕ(s, t;x) = (pt−sϕ)(x) −

∫ t

s

du

∫

R

̺u(dy)(v
̺
ϕ(u, t; y))2pu−s(x, y)

or formally

(2.3)
−
d

ds
v̺ϕ(s, t;x) =

1

2
∆v̺ϕ(s, t;x) −

̺s(dx)

dx
(v̺ϕ(s, t;x))2,

v̺ϕ(0, t) = ϕ.

As a rule we set v̺ϕ(t;x) = v̺ϕ(0, t;x). (2.3) is the Kolmogorov backward equation
of the Laplace functional. Since CSBM is in general time-inhomogeneous we work
with this formulation rather than with the forward equation. From (2.2) it is not
hard to derive a recursion scheme for the moments of 〈X̺, ϕ〉. We only mention
that the expectation and variance are given by

(2.4)

E̺
µ[〈X

̺
t , ϕ〉] = 〈ptµ, ϕ〉,

Var̺µ[〈X
̺
t , ϕ〉] =

∫ t

0

ds

∫

R

̺s(dx)(psµ)(x)(pt−sϕ)2(x).

Again it is not a priori clear that there exists a (unique) solution to (2.2)
or (2.3). Establishing this by analytical methods for a certain catalyst ̺ was the
starting point of Dawson and Fleischmann (1991). They use a smoothing procedure
for the catalyst replacing ̺t by pε̺t (recall that pε heat kernel). Letting ε → 0
they show that the cumulant equation could be uniquely solved. It is not too hard
to deduce from this the existence of a unique Markov process (X̺

t ) connected to
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v̺ϕ by (2.1). However, establishing path properties such as existence of a càdlàg or
continuous version requires more work.

2.1. Single Point Catalyst in d = 1. The simplest catalyst which is not
a function is a unit point mass ̺t ≡ δc at a point c ∈ Rd. For d ≥ 2 single
points are polar for Brownian motion, so we have to assume d = 1. This model
was studied first by Dawson and Fleischmann (1994). A remarkable insight via a
nice representation in terms of the super process with respect to a 1

2–stable sub-
ordinator (Ut)t≥0 is due to Fleischmann and Le Gall (1995) and we follow their
exposition.

The unit mass δc is the Revuz measure of (Brownian) local time L(•, c) at
c and this local time is a perfectly well understood object. On a heuristic level
the “infinitesimal particles” of (Xδc

t ) branch at a high rate while they are at c and
perform excursions from c otherwise. The length of the excursions can be described

in terms of the jumps of the inverse local time L̃(t, c) = inf{s > 0 : L(s, c) ≥ t}
which is a 1

2–stable sub-ordinator (Rt)t≥0. Associated with (Rt) is a super process
(Ut)t≥0 (derived as above from branching particles moving independently on R+

like (Rt)). Note that the former time-variable is now a space-variable. Define
V =

∫ ∞

0
Utdt. The reader might by now be willing to believe that the occupation

density

(2.5) λδc

x (t) :=
1

dx

∫ t

0

Xδc

s (dx)ds

exists at x = c and that it should equal in distribution

(2.6) {λδc

c (t), t ≥ 0}
D
= {V ([0, t]), t ≥ 0}.

This is in fact true (Theorem 1 of Fleischmann and Le Gall (1995)) if we define

(2.7) U0(dt) = −d‖Qctµ‖.

Here (Qct)t≥0 is the heat flow killed at c (note that U0({0}) = µ({c})) and Xδc

0 = µ
a.s. Let (qct (x) = −d‖Qctδx‖/dt, t > 0, x 6= c) be the density of the first hitting
time of Brownian motion at c:

qct (x) =
|x− c|

(2πt3)1/2
exp

(
−

(x− c)2

2t

)
, t > 0.

Recalling the idea of infinitesimal particles performing excursions off c and
considering the duality of excursions and Brownian motion killed at c we arrive at
the following representation formula (ℓ is the Lebesgue measure):

(2.8) Xδc

t :=

(∫ t

0

V (ds)qct−s

)
ℓ+Qctµ, t ≥ 0,

is a version of CSBM in the medium ̺ ≡ δc (Theorem 1b). From this fancy
formula one can derive a bunch of nice properties. E.g., for x 6= c the density
ξδc

t (x) = Xδc

t (dx)/dx exists, is C∞ and solves the heat equation (since qct shares

this property). Further Xδc

t contains all information about the past: Xδc
s can be

reconstructed from Xδc

t if 0 ≤ s ≤ t. Finally, if µ = δc then λδc
c (∞) is a 1

2–stable

random variable and λδc
x (∞) = λδc

c (∞) a.s. for all x ∈ Rd.

It is intriguing to know more about the behaviour of Xδc

t near c and at c. From
infinite divisibility and a Palm formula Fleischmann and Le Gall (1995) derive
that the support of V (and hence λδc

c ) has Hausdorff dimension 1. It is singular
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with respect to Lebesgue measure (Theorem 6) and diffusive: V ({t}) = 0 for all
t > 0. The singularity of λδc

c had been shown earlier with a considerable technical
effort by Dawson, Fleischmann, Li and Mueller (1995). They do not use (2.6) but

construct historical CSBM (X̃δc

t ) and derive a Kallenberg type representation for

the Palm canonical measure Qr,ωs,w of the historical occupation density λ̃δc
c . From

this they derive that ε−1λδc
c ((t − ε, t]) → ∞, ε → 0, Qr,ωs,w–a.s. (Theorem 4.2.2).

Using standard arguments this gives the claim.

2.2. Extension to d ≥ 1. As mentioned above a single point catalyst makes
sense only if d = 1. For d ≥ 1 it is however possible to construct CSBM even
for a singular catalyst ̺ if (roughly speaking) its carrying dimension is larger than
d− 2. More precisely, Delmas (1996) (Theorem 3.2 and 4.7) was able to construct
(a continuous version of) (X̺

t ) for ̺t ≡ σ, where σ fulfils his “hypothesis (H)”

(2.9) ∃β ∈ (0, 1) : sup
x∈Rd

∫

‖y−x‖≤1

σ(dy)

|x− y|d−2+2β
<∞.

For example, in d = 1 every finite measure σ ∈ Mf (R) fulfils (H) (take β = 1/2).
In any dimension the Lebesgue measure ℓ fulfils (H). Note that σ does not charge
polar sets and that the Hausdorff dimension of its support is at least d− 2 + 2β.

Delmas can show that for ϕ : Rd → R bounded and measurable the evaluation
process (〈X̺

t , ϕ〉)t≥0 is a.s. continuous (Theorem 4.9).
He also shows an extension of the result that in one dimension the occupa-

tion measure densities exist (Proposition 5.1): For a measure η fulfilling a slightly
stronger assumption than (2.9) (his “hypothesis (H’)”) there exists the weighted
occupation measure Γη(dt, dx). Formally Γη is defined by

(2.10) Γη(dt, dx) = ξ̺t (x)η(dx)dt.

For d = 1 and ν = δx we get back λ̺x. The main result (Theorem 7.1) is a
representation formula analogous to (2.8). Let D = supp(σ), and let ν be the
Revuz measure of Brownian local time in D. For x ∈ D let Hx be the excursion
measure on paths ω starting at ω(0) = x (see Maisonneuve (1975)). Denote by
L(ω) the length of the excursion and define Hx

t ∈ Mf (R
d) by Hx

t (A) = Hx({ω :
L(ω) > t, ω(t) ∈ A}). Finally let (QDt )t≥0 denote the heat flow killed at D. Then
Delmas’ formula is

(2.11) X̺
t 1Dc =

∫

[0,t]×D

Γν(ds, dx)H
x
t−s +QDt µ.

Using a refinement of the argument given above for the one-point catalyst Delmas
deduces (Theorem 8.1) that on Dc the reactant X̺

t has a density ξ̺t (x) which is
C∞ and solves the heat equation

( ∂

∂t
−

1

2
∆

)
ξ̺t = 0.

Finally we wish to mention that Delmas gives a characterisation (Proposition 9.1)
of X̺ in terms of a martingale problem where the increasing process is Γσ(dt, dx).

2.3. Multiple Point Catalyst. A natural extension of the single point cat-
alyst is the multiple point catalyst. If the points are discrete, then it fits into
the framework of Delmas (1996). If the points accumulate, the catalyst is locally
not integrable. This causes a special behaviour and we delay the discussion of an
example of a locally non-integrable catalyst.
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The example we wish to examine here is that of a catalyst concentrated on
points that are everywhere dense in R. However these points c do not carry the
unit mass δc but rather multiples that ensure local integrability. To be concrete,
let σ be sampled from a random measure Γ on R with independent increments and
with Lévy measure ν and define ̺t ≡ σ. We can define Γ in terms of Laplace
transforms by

(2.12) − log E[e−〈Γ,ϕ〉] =

∫ ∞

0

ν(dx)〈ℓ, 1 − e−xϕ〉, ϕ ∈ C+
c (R).

We assume that
∫
ν(dx)(1 ∧ x) < ∞ so that Γ is locally finite and is carried by a

countable set. One example is the stable point process with index γ ∈ (0, 1), that
is ν(dx) = c · x−(1+γ)dx, x > 0, for some c > 0. If c is chosen appropriately this
yields

(2.13) − log E[e−〈Γ,ϕ〉] = 〈ℓ, ϕγ〉, ϕ ∈ C+
c (R).

This model has been considered in Dawson, Li and Mueller (1995). They
address the question if X̺ has a compact global support

(2.14) G = closure
( ⋃

t≥0

suppX̺
t

)

P
̺
δx

–a.s. Recall that G is in fact compact a.s. for classical SBM (see Iscoe (1988)).
Dawson, Li and Mueller give complicated sufficient conditions for compactness of G
(Theorem 1) and for non-compactness (Theorem 2) in terms of ν. One example for
compactness (Corollary 1) is the γ–stable point process (recall that Pδx

= EP
̺
δx

is

the annealed law)

(2.15) Pδx
[G is compact] = 1.

On the other hand (Corollary 2) if ν is finite or if, for instance, ν(dx) = x−11(0,1](x)dx
then

(2.16) Pδx
[G is compact] = 0.

The method employed is quite similar to the original approach of Iscoe. Consider
a function ψ ∈ C+

c (R) and define

(2.17) uψ(t;x) = − logE
̺
δx

[exp(−

∫ t

0

〈X̺
s , ψ〉ds)].

Hence uψ solves the integral equation (recall that pt is the heat kernel)

(2.18) uψ(t;x) =

∫ t

0

(pt−sψ)(x)ds −

∫ t

0

ds

∫

R

Γ(dy)pt−s(x, y)u
2
ψ(s, y).

Now let t→ ∞, and let ψ ↑ 1[α1,α2]c for some reals α1 < α2. Then (by Theorem 0)
uψ approaches the solution u(x) = uα1,α2

(x) of the formal boundary value problem

(2.19)

1

2

d2

dx2
u(x) = u2(x)Γ(dx), x ∈ (α1, α2),

u(α1) = u(α2) = ∞.

Since P
̺
δx

[G ⊂ [α1, α2]] = 1 − exp(−uα1,α2
(x)), it is clear that (2.15) holds if

u−α,α(x) → 0, α → ∞. On the other hand, u−α,α ≡ ∞ for all α implies (2.16). It
is the content of Theorem 1 and 2 to give sufficient conditions on ν for either case
to hold.
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In a recent work Dawson, Fleischmann and Mueller (1998) study the question
of finite time extinction for this model: Is it true that for µ ∈ Mf(R)

(2.20) EP̺
µ[‖X

̺
t ‖ = 0 for t large enough] = 1?

Obviously, this is not the case if ̺ is supported by a non-dense set and µ((supp ̺)c) >
0. In this case X̺

t ≥ Qsupp ̺
t µ (recall that QDt is the semigroup of the heat flow

killed at D). Thus ‖X̺
t ‖ > 0 a.s. On the other hand, the γ–stable catalyst ̺ has a

dense support. The dense support alone does not guarantee finite time extinction.
However in this particular example Dawson, Fleischmann and Mueller can show
that (2.20) holds.

2.4. Moving Multiple Point Catalyst. We come to our first example where
the catalyst is not time homogeneous. Assume that Γ is the γ–stable point process,
γ ∈ (0, 1), introduced in (2.13). Consider the representation

(2.21) Γ =
∞∑

i=1

giδxi ,

where {gi} are the “action weights” of the points {xi}. Now allow the points to
perform independent Brownian motion and carry their weights with them. More
precisely, let {(xit)t≥0} be independent Brownian motions, xi0 = xi, and define

(2.22) ̺t =

∞∑

i=1

giδxi
t
.

This model has been studied by Dawson, Fleischmann and Roelly (1991) and
Dawson and Fleischmann (1991). In fact, these papers cover a moderately more
general situation, namely with the Brownian motion replaced by the fashionable
symmetric α–stable process. The finite variance branching is replaced by a certain
offspring law in the normal domain of attraction of a β-stable law, β ∈ (0, 1], (in
the cumulant equation replace u2 by u1+β). Here we no not draw a bead on these
details, the reader may think of α = 2, β = 1.

We need the following definitions. Let M(Rd) = {Radon measures on Rd} be
equipped with the vague topology. This is a Polish space (see Kallenberg (1983)).
For p > d define the space Mp(R

d) of p–tempered measures by

(2.23) Mp(R
d) :=

{
µ ∈ M(Rd) : 〈µ, φp〉 <∞

}
,

where φp(x) = (1 + ‖x‖2)−p/2. Note that ℓ ∈ Mp(R
d).

Dawson and Fleischmann construct (X̺
t ) as a Markov process with values in

Mp(R
d) (Theorem 1.8.2). However they do not make a statement on whether a

càdlàg version exists. The reason for this flaw originates in the construction. Rather
than following the currently appreciated approach via “branching functionals” they
show that the cumulant equation (2.2) could be uniquely solved. They replace ̺t
by the function pε̺t, ε > 0, and then let ε→ 0. This yields a solution, uniqueness
follows by standard arguments, and also existence of (X̺

t ). Dawson, Fleischmann
and Roelly (Theorem 1.19) show absolute continuity of the states ofX̺

t with respect
to Lebesgue measure if α = 2 or if (βγ)(1 + α) > 1. The “main result” of Dawson
and Fleischmann (1991) is a scaling limit (Theorem 1.9.4). Fix η > 0 and define
for K > 0

(2.24) KX̺
t = K−ηX̺

tK(Kη•).
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If η = ηc := ((γ(α − 1) + 1)/αβγ then for t > 0 L̺ℓ (
KX̺

t ) =⇒ Lℓ(
∞X̺

t ), K →
∞ in P–probability (note that =⇒ denotes weak convergence). Here for t > 0,
∞Xt is a homogeneous independent point process on Rd with Lévy measure ν∞t
characterised as follows. For fixed ̺ let v̺t be the Lévy measure of P

̺
δ0

[‖X̺
t ‖ ∈ •].

Then ν∞t = E[ν̺t ]. In terms of the Laplace functionals this reads

(2.25) − logE[exp(−〈X∞
t , f〉)] =

∫
dx E[v̺f(z)1(t; 0)].

If η > ηc then there holds a law of large numbers: ∞Xt = δℓ a.s. (Theorem 1.10.1).

2.5. Hyperplanes. Dawson and Fleischmann (1995) also have an example
for a time homogeneous catalyst ̺ in Rd, d > 1, whose support may be everywhere
dense. However they practically assume that ̺ factors into a function of d − 1
coordinates and a measure in one dimension. So you can keep in mind the example
where ̺ consists of “hyperplanes”: ̺ = σ ⊗ ℓd−1, where σ ∈ M(R) and ℓd−1

is the (d − 1)–dimensional Lebesgue measure. Under some conditions on ̺ they
show the existence of CSBM (Lemma 2.3.4). Further under some very restrictive
assumptions on the branching rate functional A (e.g., all moments exist and fulfil
a growth condition, see Definition 2.4.7 and 2.6.1) they show absolute continuity of
X̺
t with respect to ℓd (Theorem 2.6.2). This is proved by showing that there exists

a proper solution of the cumulant equation with terminal condition δx, x ∈ Rd.
Compare this result with SBM in d ≥ 2 which is singular with respect to the
Lebesgue measure.

2.6. Locally Infinite Catalyst. As far as the author knows there is only one
paper studying a model where the catalyst is locally not integrable. Fleischmann
and Mueller (1997) construct one-dimensional CSBM (Theorem 1) with time ho-
mogeneous catalyst ̺ whose density is given by ̺t(dx)/dx = θ|x − c|−σ, where
c ∈ R, θ ∈ (0,∞) and σ ∈ [1, 2]. In particular, 〈̺t,1[c−1,c+1]〉 = ∞. They show
that for 〈X̺

0 ,1〉 < ∞ the total mass process 〈X̺
t ,1〉 is a super martingale but not

a martingale. It has finite variance iff σ < 2 (Theorem 3).
For Brownian motion W let τ = {t > 0 : Wt = c} and recall that A(t) =

θ
∫ t
0
|Ws − c|−σds. Note that for x 6= c

Px[A(τ) = ∞] =

{
1, σ = 2,
0, σ < 2.

Since the critical Galton–Watson process dies out eventually this implies that if
σ = 2 then “no infinitesimal particle of X̺

t ever reaches c”. More precisely, there
exists an increasing sequence of stopping times (τn) of Brownian motion W such
that any τn is strictly smaller than τ and such that limn→∞ P

̺
δx

[X̺
τn

= 0] = 1

(Theorem 4). Here X̺
τn

is understood in the sense of Dynkin’s stopped measure
(see Dynkin (1991)).

3. CSBM in a SBM Medium

In an intriguing model we consider a random time-inhomogeneous catalyst ̺:
The catalyst is itself a sample path of SBM on Rd. Let Pµ denote its law with initial
condition µ ∈ Mp(R

d) (recall (2.23)). Recall that SBM is a (d ∧ 2)–dimensional
object. Hence the support is polar for Brownian motion if d ≥ 4. We thus have to
restrict ourselves to d ≤ 3.
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This CSBM can serve as a model for a biological one-way interaction between
two species (green and red, say). The green species (the catalyst) does not even
notice the red species and simply performs its migration and resampling scheme,
however influences thereby the reproduction rate of the red species. This model
has been studied by Dawson and Fleischmann (1997a), (1997b), Etheridge and
Fleischmann (1998), and Fleischmann and Klenke (1999). On a BRW level it is
treated in Greven, Klenke and Wakolbinger (1999).

A model with a symmetric interaction between two species is due to Dawson
and Perkins (1998). We discuss it briefly in Section 4.

3.1. The Construction. Dawson and Fleischmann (1997a) construct X̺ in
a somewhat more general framework. Instead of aiming at the concrete model
directly they first construct Hölder continuous versions of CSBM for a certain class
of Hölder continuous branching functionals A.

Define K to be the set of continuous additive functionals of W such that for
all t0 ≥ 0 (recall (2.23))

(3.1) sup
x∈Rd

Es,x

[∫ t

s

A(dr)φp(Wr)

]
→ 0, s, t→ t0.

Further define for ξ ∈ (0, 1] the subclass Kξ by imposing the additional requirement
that for T > 0 there exists cT > 0 such that

(3.2) Es,x

[∫ t

s

A(dr)(φp(Wr))
2

]
≤ cT |t− s|ξφp(x), 0 ≤ s ≤ t ≤ T.

They show (Proposition 1) that for A ∈ K the cumulant equation

(3.3) vϕ(s, t;x) = (pt−sϕ)(x) − Es,x

[∫ t

s

A(dr)vϕ(r, t;Wr)
2

]
, ϕ ∈ C+

c (Rd),

has a unique solution. The proof relies on an approximation of A by functionals that
fit into Dynkin’s (1994) framework. As an application (Proposition 2 (sic!), page
230) one gets the existence of a time-inhomogeneous multiplicative Mp(R

d)–valued
Markov process (XA,PA

t,µ, t ≥ 0, µ ∈ Mp(R
d)) with log-Laplace function

(3.4) vϕ(s, t;x) = − logEA
s,δx

[exp(−〈XA
t , ϕ〉)].

The moments of 〈XA
t , ϕ〉 can be expressed in terms of the derivatives of vθϕ at

θ = 0. In particular the first and second moments are

(3.5)

EA
s,µ[Xt] = pt−sµ,

CovAs,µ[〈X
A
t1 , ϕ1〉, 〈X

A
t2 , ϕ2〉] =

∫
µ(dx)EA

s,x

[ ∫ t1∧t2

s

A(dr)(pt1−sϕ1)(Wr)(pt2−sϕ2)(Wr)
]
.

Dawson and Fleischmann develop a recursion formula for the n-th derivatives of
vθϕ at θ = 0 and for the n-th centred moments EA

s,µ[|〈Z
A
t , ϕ〉|

n], where ZAt =

XA
t − EA

s,µ[X
A
t ]. These moments are finite if, for instance, A ∈ Kξ for some
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ξ ∈ (0, 1] (Lemma 5). In this case the following estimate holds (Lemma 6)

(3.6)

EA
s,µ[|〈Z

A
t+h−Zt, ϕ〉|

2n]

≤ const
(∥∥∥
phϕ− ϕ

φp

∥∥∥
2n

∞
+ hξn

∥∥∥
ϕ

φp

∥∥∥
2n

∞

)(
〈µ, φp〉 + 1

)2n
.

Using a measure-valued version of Kolmogorov’s method of moments one obtains
for every ε ∈ (0, ξ/2) a Hölder-ε-continuous version of the centred process (ZAt )
(Theorem 1). Here we assumed a certain underlying metric that generates the
vague topology on Mp(R

d) but which we do not specify here. In particular, (XA
t )

has a continuous version since t 7→ pt−sµ is continuous.
There is a simple criterion for absolute continuity of XA

t with respect to
Lebesgue measure ℓ. Formally we could define the density ξAt (x) = 〈XA

t , δx〉,
x ∈ Rd. This expression makes sense as the limit of 〈XA

t , pεδx〉 as ε → 0. If
t > s then EA

s,µ[Xt] = pt−sµ is absolutely continuous and it suffices to check that
the variances converge along some sequence εn ↓ 0

(3.7)

lim
n→∞

∫
µ(dx)EA

s,x

[∫ t

s

A(dr)pt−r+εn
(Wr , z)

2

]

=

∫
µ(dx)EA

s,x

[∫ t

s

A(dr)pt−r(Wr, z)
2

]
<∞.

If (3.7) holds then ξAt (z) exists as the L2–limit of 〈XA
t , pεn

δz)〉, n→ ∞, and is the
density of XA

t (Proposition 4). It has first and second moment

(3.8)

EA
s,µ[ξ

A
t ] = pt−sµ,

CovAs,µ[ξ
A
t1(z1), ξ

A
t2(z2)] =

∫
µ(dx)EA

s,x

[∫ t1∧t2

s

A(dr)pt1−s(Wr, z1)pt2−s(Wr , z2)

]
.

A criterion similar to the one above is derived for the absolute continuity of the

occupation time measure
∫ t
s
XA
r dr (Proposition 5).

We come back to the situation where ̺ is a sample path of SBM and A = L[W,̺]

is the collision local time of W with ̺. As above with the density of XA
t we would

like to define L[W,̺](s, t) =
∫ t
s
dr (̺r(dx)/dx)∣∣x=Wr

. If d = 1 this makes perfect

sense since ̺r is absolutely continuous. However for d ≥ 2 it is not. Hence we
define for ε > 0

(3.9) Lε[W,̺](s, t) =

∫ t

s

dr(pε̺r)(Wr).

We hope that it makes sense to define

(3.10) L[W,̺](s, t) = lim
ε→0

Lε[W,̺](s, t).

The reader might guess that this is non-trivial. However, Evans and Perkins (1994,
Theorem 4.1) show that if d ≤ 3 and if ν ∈ Mf (R

d) is absolutely continuous,
then for Pν–a.a. ̺ the limit on the r.h.s. of (3.10) makes sense in L2 and defines
a continuous additive functional. A simple approximation argument extends this
to absolutely continuous ν ∈ Mp(R

d). However we typically want singular initial
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conditions. For instance, if d = 3 and ν is a sample from the equilibrium of SBM,
then ν is singular with respect to ℓ. We outline the steps that yield in fact that
(3.10) makes sense in L2 for the examples we have in mind and that we even have
A = L[W,̺] ∈ Kξ for some ξ ∈ (0, 1/4).

Dawson and Fleischmann improve a result of Sugitani (1989) which states that
the occupation measure Y on [0,∞) × Rd defined by

Y ([s, t] ×B) =

∫ t

s

̺r(B)dr

is absolutely continuous and has a (jointly) continuous density (t, x) 7→ y(t, x).
In fact, using moment estimates and Kolmogorov’s method they get that for the
centred density y = y = Eν [y] on any set [0, T ]×Rd, T > 0, the function y(t, x)φp(x)
is Hölder-ξ-continuous, ξ ∈ (0, 1/4) (Theorem 2). Hence y(t, x)φp(x) is Hölder-ξ-
continuous iff

(3.11) (t, x) 7→

∫ t

0

(prν)(x)φp(x)dr is Hölder-ξ-continuous.

Denote by Mξ
p(R

d) the space of measures ν ∈ Mp(R
d) for which (3.11) holds.

We do not give a characterisation of Mξ
p(R

d) but only mention some examples

established by Fleischmann and Klenke (1999): In d = 1 we have Mξ
p(R) = Mp(R).

In any dimension Mξ
p(R

d) contains any ν ≪ ℓd with bounded density. If ν ∈

Mp(R
d) and δ > 0, then Pν [̺0 ∈ Mξ

p(R
d)] = 1. Note that δx 6∈ Mξ

p(R
d) if d ≥ 2.

Dawson and Fleischmann use the Hölder continuity to imitate the existence
proof for the collision local time of Evans and Perkins. They can show that for
ν ∈ Mξ

p(R
d) the limit (3.10) makes sense in L2 and that A = L[W,̺] ∈ Kξ. In

partiaular, for Pν–a.a. ̺ there exists a continuous version of (X̺
t ).

3.2. Longtime Behaviour. In this subsection we study the longtime be-
haviour of CSBM in a SBM medium.

It is well known (see Dawson (1977)) that SBM is persistent iff d > 2. More
precisely, Pℓ[̺t(B) > 0] → 0, t→ ∞, for any compact set B if d = 1, 2. However, if
d ≥ 3 then there exist equilibria νi ∈ M1(Mp(R

d)) with intensity
∫
mν(dm) = iℓ,

i ∈ [0,∞) and such that Piℓ[̺t ∈ •] ⇒ νi, t → ∞. The situation is quite different
for our CSBM X̺.

First we consider d = 3. This is the maximal dimension for which CSBM exists.
The catalyst is persistent and we assume that (̺t)t∈R is the stationary process with
intensity ic > 0. We start X̺ in irℓ for some ir > 0. Instead of starting at time 0
and evaluating at time t it is more convenient to start at time −t and evaluate at
time 0. The advantage is that we can fix ̺ and exploit monotonicity of the cumulant
equation (3.3). Recall that this is a backward equation and it is immediate that
〈irℓ, v

̺
ϕ(−t, 0)〉 is monotone decreasing in t. Hence its limit as t → ∞ exists and

so does the limit of P
̺
−t,irℓ

[X̺
0 ∈ •]. Note that the variances are monotone in t

and converge to a finite limit since Brownian motion in R3 is transient. Hence for
ϕ ∈ C+

c (R3) the random variable 〈X̺
0 , ϕ〉 is uniformly integrable under the sequence

P
̺
−t,irℓ

and thus E
̺
−∞,irℓ

[X̺
0 ] = irℓ. In other words, three-dimensional CSBM is

persistent (see Theorem 1 of Dawson and Fleischmann (1997b)).
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In dimension d = 1 the catalyst does not only die out locally in distribution
but even a.s. for any compact set B,

Picℓ[̺t(B) = 0 for t large enough] = 1.

Dawson and Fleischmann (1997a) show that (see Proposition 7) there exists a
random time τ such that

Eicℓ[P0[L[W,̺](τ,∞) = 0]] = 1.

Furthermore (Proposition 8) for all x ∈ R,

(3.12) Picℓ[Ex[L[W,̺](0,∞)2] <∞] = 1.

Note that for finite initial mass µ ∈ Mf (R) and fixed ̺ the total mass process
〈X̺

t ,1〉 is a nonnegative L2–martingale with variance

(3.13) Var̺µ[〈X
̺,1〉] = 2

∫
µ(dx)Ex[L[W,̺](0, t)].

By (3.12) this martingale is bounded in L2 and by the martingale convergence the-
orem it converges to a limit with finite variance and expectation ‖µ‖ (Theorem 5).
In other words, we have persistence even of a finite initial mass. Having in mind a
law of large numbers it is clear that for Picℓ–a.a. ̺ we have (see Theorem 6)

(3.14) P
̺
irℓ

[X̺
t ∈ •] =⇒ irℓ, t→ ∞.

For d = 2 the situation is a little more involved. Neither do we have a non-
trivial equilibrium nor a.s. extinction of the catalyst. In fact, any non-trivial open
set is visited at arbitrarily large times. The key to the long-time behaviour lies in
the self similarity (see Dawson and Fleischmann (1997b, Proposition 13))

(3.15) Picℓ[P
̺
irℓ

[K−1X̺
Kt(K

1/2•) ∈ •] ∈ •] = Picℓ[P
̺
irℓ

[X̺
t (•) ∈ •] ∈ •], K, t > 0,

and a study of the detailed behaviour for fixed time.
Fleischmann and Klenke (1999) show in their Theorem 1 that CSBM in d =

1, 2, 3 is absolutely continuous on the complement Z(̺) of the space-time support of
the catalyst and that the density ξ̺t (z) is C∞ on Z(̺) and solves the heat equation.
This is established by similar means as in Delmas (1996). In d = 2, 3 the catalyst is
singular with respect to Lebesgue measure ℓd and hence X̺

t is absolutely continuous
everywhere. Plugging this result into (3.15) they derive (Corollary 2) that for d = 2,
CSBM is in fact persistent and that

(3.16) Picℓ[P
̺
irℓ

[X̺
t ∈ •] ∈ •] =⇒ Picℓ[P

̺
irℓ

[ξ̺1 (0)ℓ ∈ •] ∈ •].

Hence the limit of X̺
t is a random multiple of the Lebesgue measure with full

expectation. The randomness reflects the catalyst as experienced by a “reactant
particle”.

Earlier Dawson and Fleischmann (1997b, Theorem 18) established that if d = 2

then the normalised occupation measures t−1
∫ t
0
X̺
s ds converge to (

∫ 1

0
ξ̺s (0)ds) · ℓ

(in the sense of (3.16)). Note however that Dawson and Fleischmann do not show

absolute continuity of X̺
t but only of

∫ t
0 X

̺
s ds.
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3.3. Catalytic Branching Random Walk. Recall that we defined CSBM as
the diffusion limit of CBBM. Here we consider a model where neither the particle
nor the spatial diffusion limit has been taken: catalytic branching random walk
(CBRW).

Greven, Klenke and Wakolbinger (1999) study CBRW in some detail. They
construct by elementary means the process in the following setting. The process
lives on a countable Abelian group G as site space. For the moment the catalyst
can be any measurable function ̺ : [0,∞) × G → [0,∞), (t, g) 7→ ̺t(g). The
reactant X̺ performs a continuous rate 1 random walk on G with q–matrix B.
Further each particle branches at the local rate ̺t(g) according to the (global)
offspring law (qk)k∈N0

with probability generating function Q. Formally the (time-
inhomogeneous) process X̺ can be defined by its Laplace functionals

(3.17) v̺ϕ(r, t; g) = E
̺
r,δg

[exp(−〈X̺
t , ϕ〉)]

that solve the backward equation, v̺ϕ(t, t) = ϕ,

(3.18) −
d

dr
vϕ̺ (r, t; g) = ̺r(g)

[
Q(v̺ϕ(r, t; g)) − v̺ϕ(r, t; g)

]
+ (Bv̺ϕ(r, t))(g).

Henceforth, let us restrict to critical binary branching q0 = q2 = 1
2 . We are in-

terested in the case where ̺ is itself a sample of critical binary branching random
walk (BRW) on G with q–matrix A. Compared with the CSBM model, there is an
enormous freedom in the choice of the system parameters. For example, one can
choose A transient while B is recurrent, or one can add a drift to one of the kernels.

Greven, Klenke and Wakolbinger investigate the longtime behaviour of (̺,X̺)
in the case where L(̺0, X

̺
0 ) ∈ Eic,ir is ergodic with intensities ic, ir ∈ (0,∞). Let

δ0 be the Dirac measure on the empty configuration. Denote by Hi the Poisson

point process on G with uniform intensity i ∈ (0,∞). Finally denote by Â and B̂

the symmetrization of A and B respectively, Â(g, h) = 1
2 (A(g, h) + A(h, g)).

Consider first the case where Â is transient so that ̺ is persistent. As discussed
earlier the particles of X̺ experience an average of the medium ̺. Thus X̺ is

persistent iff B̂ is transient (Theorem 1).

The situation is far more delicate if Â is recurrent. The catalyst goes to ex-
tinction but there is a subtle difference between a.s. extinction (as for A Bernoulli
on Z) and extinction only in probability (as for A Bernoulli on Z2). For this reason
only the special cases G = Z or G = Z2 are considered.

Assume firstG = Z and additionallyA and B have the properties
∑
x∈Z

A(0, x)x =
∑
x∈Z

B(0, x)x = 0 and

∑

x∈Z

A(0, x)|x|α <∞,
∑

x∈Z

B(0, x)|x|β <∞, for some α > 2 and β > 1.

As with CSBM in d = 1 we have (Theorem 2a)

(3.19) LHic ,Hir
(̺,X̺

t ) =⇒ δ0 ⊗Hir , t→ ∞.

If G = Z2 and A and B are Bernoulli, then the situation is similar to CSBM
in d = 2. The law of X̺

t converges to a limit with random homogeneous intensity
(Theorem 3):

(3.20) PHic
[P̺

Hir
[X̺

t ∈ •] ∈ •] =⇒ Picℓ[E
˜̺
irℓ

[Hξ̃1(0)] ∈ •],
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where ξ̃t(x) is the density of the 2-dimensional CSBM X̃ ˜̺. (The assumptions on A
and B can be weakened to finite variance isotropic random walks with the additional
requirement that

∑
x∈Z2 A(0, x)|x|α <∞ for some α > 6.) The key to this result is

a scaling limit of CBRW (Proposition 1.4) and the fact that for large T the support
of ̺t has large holes (Proposition 1.5) combined with an adaption of a result of
Harry Kesten (1995) on the range of branching random walk (Proposition 1.3).

Finally we would like to mention a situation with a striking asymmetry be-
tween the catalyst and the reactant. Consider G = Z and B Bernoulli with a drift
while A = 0 is the random walk that stands still. (Apparently Greven, Klenke and
Wakolbinger would have liked to consider A Bernoulli but could not overcome tech-
nical difficulties.) Obviously ̺ dies out locally a.s. However, the greater mobility
of the reactant particles forces them to visit lots of the scattered catalyst clumps
and, ironically enough, leads to local extinction (Theorem 2b)

(3.21) lim
t→∞

EHic
P
̺
Hir

[X̺
t (g) > 0] = 0, g ∈ Z.

4. Mutually Catalytic Branching

Dawson and Perkins (1998) study a model of two spatial branching processes
(ut)t≥0 and (vt)t≥0, where each process acts as the catalyst for the other one. In
the continuous space setting u and v can be defined on R by an SPDE. Let γ > 0

and
•

Wi(t, x) (i = 1, 2) be independent space-time white noises on R+×R. Consider
the SPDE

(4.1)

∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x) + (γu(t, x)v(t, x))1/2

•

W1(t, x); u(0, x) = u0(x),

∂v

∂t
(t, x) =

1

2

∂2v

∂x2
(t, x) + (γu(t, x)v(t, x))1/2

•

W2(t, x); v(0, x) = v0(x).

With the aid of a duality going back to Mytnik (1996) it is shown that (for
suitable u0 and v0) there exists a unique solution of (4.1). The question of a higher
dimensional analogue was left open. There is some recent work (Dawson et al.
(1999)) giving an affirmative answer, at least for two dimensions.

On Zd, however, the model has been constructed by Dawson and Perkins (1998)
for any d ≥ 1. Let Q be the q–matrix of a Markov chain on Zd with bounded jump
rate. Let (Wi(t, k), t ≥ 0, k ∈ Zd), i = 1, 2, be independent families of Brownian
motions and consider the infinite system of coupled stochastic integral equations

(4.2)

ut(k) = u0(k) +

∫ t

0

(usQ)(k)ds+

∫ t

0

(γus(k)vs(k))
1/2dW1(s, k),

vt(k) = v0(k) +

∫ t

0

(vsQ)(k)ds+

∫ t

0

(γus(k)vs(k))
1/2dW2(s, k).

Again it is established by means of Mytnik’s duality that there exists a unique weak
solution to (4.2).

Henceforth let Q be the q–matrix of a random walk on Zd. Dawson and Perkins
address the question of co-existence of types. Assume that 〈u0,1〉 + 〈v0,1〉 <
∞. Then Ut = 〈ut,1〉 and Vt = 〈vt,1〉 are nonnegative martingales and hence
converge a.s. to some limit U∞ and V∞. We say that there is co-existence of types
if Pu0,v0 [U∞ > 0 and V∞ > 0] > 0. This is the case iff Q is transient (Theorem 1.2).
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Mytnik’s duality connects finite initial conditions with infinite initial conditions and
converts Theorem 1.2 into a statement on the longtime behaviour of (ut, vt) for
constant initial condition u0 ≡ u > 0, v0 ≡ v > 0: P(u,v)[(ut, vt) ∈ •] converges to
an equilibrium P(u,v)[(u∞, v∞) ∈ •] (Theorem 1.4) and P(u,v)[u∞(k)v∞(k) > 0] = 1
if Q is transient (Theorem 1.6). If Q is recurrent then (Theorem 1.5) k 7→ u∞(k)
and k 7→ v∞(k) are a.s. constant and P(u,v)[u∞(0)v∞(0) > 0] = 0. More precisely
P(u,v)[(u∞(k), v∞(k)) ∈ •] is the hitting distribution of the setX := ({0}×[0,∞))∪

([0,∞) × {0}) of planar Brownian motion started in (u, v) ∈ R2.
Via a duality and comparison argument Cox, Klenke and Perkins (1999) gen-

eralise Theorem 1.5 and 1.6 to a class of initial states u0, v0 that is preserved under
time evolution. This result and an abstract new-start argument are employed by
Cox and Klenke (1999) to answer the question: “If Q is recurrent, there is (local)
extinction of one type. However, is it always (as time evolves) the same type that
is locally predominant?” No, it changes infinitely often! In fact for any x ∈ X , δx
is a (weak) limit point of P(u,v)[(ut(k), vt(k)) ∈ •].
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