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Abstract. Consider the one-dimensional catalytic super-Brownian motion X

(called the reactant) in the catalytic medium % which is an autonomous clas-
sical super-Brownian motion.

We characterize (%, X) both in terms of a martingale problem and (in di-

mension one) as solution of a certain stochastic partial differential equation.
The focus of this paper is for dimension one the analysis of the longtime

behavior via a mass-time-space rescaling. When scaling time by a factor of K,

space is scaled by Kη and mass by K−η . We show that for every parameter
value η ≥ 0 the rescaled processes converge as K →∞ in path space. While the

catalyst’s limiting process exhibits a phase transition at η = 1, the reactant’s

limit is always the same degenerate process.
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1. Introduction and main results

1.1. Background and sketch of results. Super-Brownian motion % is a measure-
valued process in Rd where, loosely speaking, infinitesimal particles undergo Brow-
nian motion and critical branching (at a constant rate γc > 0). Rigorous definitions
have been given by three different means:

(i) as a multiplicative measure-valued Markov process whose log-Laplace tran-
sition functionals solve a certain integral equation (see, e.g., [Daw93, Chap-
ter 4]),

(ii) as the solution of a martingale problem (MP) (see, e.g., [Daw93, Chapter
6] or [Eth00, Chapter 1.5]),

(iii) in the case d = 1, the states of % have Lebesgue densities that can be char-
acterized as the weak solution of a stochastic partial differential equation
(SPDE) (see, e.g., [KS88] or [Rei89]).

In this paper we consider catalytic super-Brownian motion X, called the reactant,
which is a process in the random medium %, henceforth called the catalyst. Given a
realization of %, the infinitesimal X-particles undergo Brownian motion and critical
binary branching with the only difference that the local branching rate is now
nonconstant and is proportional to “the local density of %”. The latter can be
made precise in terms of the collision local time of a Brownian motion with %
(see [BEP91]). For d ≤ 3, this collision local time is not identically 0 and is a
continuous additive functional of Brownian motion. Using the collision local time,
Dawson and Fleischmann constructed X in [DF97a], where it was characterized by
its log-Laplace functionals.

For surveys on catalytic branching models we refer to [DF00, DF02] or [Kle00].
The first aim of this paper is to give a characterization of X in terms of a

martingale problem and, for d = 1, by an SPDE. Uniqueness in the martingale
problem will be obtained by an approximate duality in the spirit of [Myt98] and
[Wan98]. For the SPDE we rely on recent results of [Zäh05].

The main goal of this work, however, is to investigate in d = 1 the longtime
behavior of the bivariate process (%,X) via a mass-time-space rescaling procedure.
Assume that the initial states are chosen as %0 = ic ` and X0 = ir ` (with ` the
normalized Lebesgue measure and ic, ir > 0 constants). It is well known that (see
[DF97a], see also the appendix of this paper) that

(1.1) (%t, Xt) −→
t→∞

(0, ir `) in probability

(based on the topology of vague convergence of measures). Now we try to catch a
richer structure on a larger scale. For this purpose, for a fixed scaling index η ≥ 0,
we rescale a measure-valued path µ = {µt : t ≥ 0} on R by

(1.2) Kµt(B) := K−η µKt(KηB), t ≥ 0, Borel B ⊆ R, K ≥ 1.

By a result of Dawson and Fleischmann (see [DF88, Theorem 3.1]) the inter-
esting scale for % is η = 1. Here the limit of the K% is non-trivial and can be
considered as “super-Brownian without motion”. More precisely, the limit is the
measure-valued process where the mass in each interval evolves as Feller’s continu-
ous state branching diffusion (the solution Z of the stochastic differential equation
dZt =

√
γcZt dBt) and the evolutions in disjoint intervals are independent. For

any positive time t the state of the limiting process is a random measure whose
distribution is compound Poisson. More precisely, the states have a representation
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as
∫

R×(0,∞)
Y (d(x, α))α δx, where Y is a Poisson point process on R× (0,∞) with

intensity measure ic(γct)−2 e−α/(γct) dxdα. In particular, for t > 0 the states of
this process are purely atomic and the positions of the atoms form a Poisson point
process with intensity proportional to t−1. Clearly this implies that for η < 1 any
possible limit of K% is constantly 0 while a law of large numbers implies that for
η > 1 that the limit must be constantly ic `. For the reactant X, a similar averag-
ing argument yields convergence of KX to a process constantly ir ` for any η ≥ 0.
The main point of this paper is thus to show that for both processes convergence
happens not only in finite dimensional distributions but also in path space.

1.2. Notation. For λ ∈ R let φλ(x) := e−λ|x|, x ∈ Rd, and define for f : Rd → R
the norm |f |λ := ‖f/φλ‖∞, where ‖ · ‖∞ is the supremum norm. Denote by Cλ the
(separable) Banach space of all continuous functions f : Rd → R with |f |λ < ∞
and such that f(x)/φλ(x) has a finite limit as |x| → ∞. Introduce the spaces

(1.3) Cexp :=
⋃
λ>0

Cλ and Ctem :=
⋂
λ>0

C−λ

of exponentially decreasing and tempered continuous functions on Rd, respectively.
We also need the space Ccom of all continuous functions on Rd with compact support.

Write C(m)
λ , C(m)

exp , and C(m)
com if we additionally require that all partial derivatives

up to the order m ≥ 1 exist and belong to Cλ, Cexp and Ccom, respectively.
Note that Ctem equipped with the metric

(1.4) d(f, g) :=
∞∑

n=1

2−n
(
|f − g|−1/n ∧ 1

)
, f, g ∈ Ctem ,

is a Polish space.
Let M denote the set of all (non-negative) Radon measures µ on Rd and let d0

a complete metric on M which induces the vague topology. If µ has a Lebesgue
density we denote also this density by µ. Write 〈µ, f〉 for the integral of the function
f with respect to the measure µ. Further equip the space

Mtem :=
{
µ ∈M : 〈µ, φλ〉 <∞ for all λ > 0

}
with the metric

(1.5) dtem(µ, ν) := d0(µ, ν) +
∞∑

n=1

2−n
(
|µ− ν|1/n ∧ 1

)
, µ, ν ∈Mtem .

Here |µ − ν|λ is an abbreviation for
∣∣〈µ, φλ〉 − 〈ν, φλ〉

∣∣. Note that (Mtem , dtem) is
a Polish space, and that µn → µ in Mtem if and only if

(1.6) 〈µn , ϕ〉 −→
n→∞

〈µ, ϕ〉 for all ϕ ∈ Cexp .

Let C([0,∞),M) be the space of continuous functions [0,∞) →M, topologized
in the canonical way, and define C((0,∞),M), C([0,∞),Mtem) and so on similarly.

Random objects are always thought of as being defined over a large enough
stochastic basis (Ω,F ,F·,P) satisfying the usual hypotheses. If Y = {Yt : t ≥ 0}
is a random process, then as a rule the law of Y is denoted by PY . We use FY

t to
denote the completion of the σ–field

⋂
ε>0 σ {Ys : s ≤ t+ ε}, t ≥ 0. Sometimes we

write L(Y ) and L(Y | ·) for the law and conditional law of Y , respectively.
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Define the heat kernel pt(x) := (2πt)−d/2 exp
(
− |x|2

2t

)
for t > 0 and x ∈ Rd.

Finally, for any x ∈ R we denote by bxc = max{n ∈ Z : n ≤ x} the integer part of
x.

1.3. The Model. Super-Brownian motion (with branching rate γc > 0 and diffu-
sion constant σc > 0) is an Mtem–valued Markov process % that is multiplicative
in the sense

P %
µ+νe

−〈%t,ϕ〉 = (P %
µe

−〈%t,ϕ〉)× (P %
ν e

−〈%t,ϕ〉), µ, ν ∈Mtem, t ≥ 0.

Here ϕ ∈ Ccom, ϕ ≥ 0, is a test function and P %
µ refers to % started in %0 = µ ∈

Mtem. Further it has continuous paths and the finite-dimensional distributions are
characterized by the log-Laplace transforms

v%(0, t, ϕ;x) := − logP %
δx
e−〈%t,ϕ〉, t ≥ 0,

which are the unique non-negative solutions of the integral equation

v%(s, t, ϕ;x) = (pσc(t−s) ∗ ϕ)(x)− γc

2

∫ t

s

dr
∫

R
dy pσc(t−r)(y − x)v%(r, t, ϕ; y)2,

for 0 ≤ s ≤ t. We use the time-inhomogeneous notation here as it is more trans-
parent when it comes to the reactant process.

An alternative description is via a martingale problem. The process % is the
unique process such that (for suitably smooth test functions ϕ) the process

M c
t (ϕ) := 〈%t, ϕ〉 − 〈%0, ϕ〉 −

∫ t

0

ds
〈
%s ,

σ2
c

2
∆ϕ

〉
, t ≥ 0,

is a square-integrable continuous F%
· –martingale with square function〈〈

M c(ϕ)
〉〉

t
= γc

∫ t

0

ds
〈
%s, ϕ

2
〉
, t ≥ 0.

See [Daw93], [LG99], [Eth00] or [Per02] for reference for super-Brownian motion.
In dimension d = 1 the states %t of super-Brownian motion have a Lebesgue

density that will also be denoted by %t. The third characterization of % (see [KS88,
Rei89]) is as the unique (weak) solution of the SPDE

∂

∂t
%t(x) =

σ2
c

2
∆%t(x) +

√
γc %t(x) Ẇ c

t (x),

t > 0, x ∈ R, where Ẇ c is a (standard) time-space white noise.

We come now to the description of the reactant process X in terms of log-
Laplace transforms. Fix a diffusion constant σr > 0 and a proportionality constant
γr > 0 for the branching rate. Assume that d ≤ 3. Fix a realization % of the
catalyst process. Write PX|% for the conditional probability of the X-process given
%. Since all spaces are Polish, we can consider PX|% as the regular conditional
probabilities P( · |%) of some probability measure P. We write PX|%

s,µ if X is started
at time s in the state µ and abbreviate PX|%

µ = P
X|%
0,µ . Given the realization %, X

is a multiplicative Mtem–valued time-inhomogeneous Markov process, i.e. for any
t ≥ s ≥ 0 and any µ, ν ∈Mtem

P
X|%
s,µ+ν(e−〈Xt,ϕ〉

∣∣ %) =
(
PX|%

s,µ (e−〈Xt,ϕ〉
∣∣ %))× (

PX|%
s,ν e−〈Xt,ϕ〉

∣∣ %).
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For initial states Xs = δx, its log-Laplace transforms

vX|%(s, t, ϕ;x) := − logPX|%
s,δx

(e−〈%t,ϕ〉
∣∣ %), t ≥ s ≥ 0

are the unique non-negative solutions of the integral equation

(1.7)
vX|%(s, t, ϕ;x) = (pσr(t−s) ∗ ϕ)(x)

− γr

2

∫ t

s

dr
∫

R
%r(dy) pσr(t−r)(x− y)vX|%(r, t, ϕ; y)2,

for 0 ≤ s ≤ t. For %0 with a continuous density which is in Ctem and for X0 ∈Mtem

the processes % and X are well-defined (see [FK99, Proposition 5] for even slightly
weaker conditions).

Definition 1.1. Under these conditions, the pair (%,X) defined above is called the
catalyst-reactant process.

Our first task is now to give a description of the bivariate process (%,X) as
the solution of a martingale problem and as the solution of an SPDE. In order to
describe the quadratic variation process we will need the so-called collision local
time of the reactant X with the catalyst %. To this end we recall the notion of
collision local time in a broader context from [BEP91].

Definition 1.2 (Collision local time). Let Y =
(
Y 1, Y 2

)
be an (Mtem)2–valued

continuous process. A continuous non-decreasing Mtem–valued stochastic process
t 7→ LY(t) = LY(t, · ) is called collision local time of Y, if for all t > 0 and
ϕ ∈ Cexp

(1.8)
〈
Lε

Y(t), ϕ
〉
−→ 〈LY(t), ϕ〉 as ε ↓ 0 in P–probability.

Here the approximating collision local times Lε
Y are defined by

(1.9) 〈Lε
Y(t), ϕ〉 :=

∫ t

0

ds
∫

Rd

Y 1
s (dx)

∫
Rd

Y 2
s (dy) pε(x− y)ϕ

(
x+y

2

)
.

The collision local time LY will also be considered as a (locally finite) measure
LY(d(s, x)) on [0,∞)× Rd. 3

Note that uniqueness of the collision local time is clear while showing the exis-
tence can be a problem. In fact, existence may even fail.

Definition 1.3 (Martingale problem). A random element (%,X) in C
(
[0,∞),M2

tem

)
is a solution of the martingale problem (MP) with diffusion constants σc , σr > 0
and branching rates γc, γr > 0, if for any ϕc, ϕr ∈ C(2)

exp, the processes

(1.10) M c
t (ϕc) := 〈%t , ϕ

c〉 − 〈%0 , ϕ
c〉 −

∫ t

0

ds
〈
%s ,

σ2
c

2
∆ϕc

〉
, t ≥ 0,

and

(1.11) M r
t (ϕ

r) := 〈Xt , ϕ
r〉 − 〈X0 , ϕ

r〉 −
∫ t

0

ds
〈
Xs ,

σ2
r

2
∆ϕr

〉
, t ≥ 0,

are orthogonal square-integrable continuous martingales with square functions

(1.12)
〈〈
M c(ϕc)

〉〉
t
= γc

∫ t

0

ds
〈
%s , (ϕc)2

〉
, t ≥ 0,
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and

(1.13)
〈〈
M r(ϕr)

〉〉
t
= γr

〈
L(%,X)(t), (ϕr)2

〉
, t ≥ 0.

Here L(%,X) is the collision local time of % and X and we assume that the conver-
gence (1.8) even holds P–almost surely. 3

Consider now the situation d = 1.

Definition 1.4 (SPDE). A pair (%,X) of random time-dependent non-negative
functions on R is said to be a weak solution of the stochastic partial differential
equation (SPDE)

(1.14)

∂

∂t
%t(x) =

σ2
c

2
∆%t(x) +

√
γc %t(x) Ẇ c

t (x),

∂

∂t
Xt(x) =

σ2
r

2
∆Xt(x) +

√
γr %t(x)Xt(x) Ẇ r

t (x),

t > 0, x ∈ R, if on some probability space there exists a pair of independent time-
space white noises (Ẇ c, Ẇ r) such that for any ϕc, ϕr ∈ Cexp and t ≥ 0,

〈%t, ϕ
c〉 = 〈%0, ϕ

c〉+
∫ t

0

ds
〈
%s,

σ2
c

2
ϕc

〉
+

∫
[0,t]×R

dW c
s (x)

√
γc %s(x),

〈Xt, ϕ
r〉 = 〈X0, ϕ

r〉+
∫ t

0

ds
〈
Xs,

σ2
r

2
ϕr

〉
+

∫
[0,t]×R

dW r
s (x)

√
γr %s(x)Xs(x)

almost surely. 3

Theorem 1.5 (Description by MP and SPDE). Assume that X0 ∈Mtem and that
%0 has a density that is in Ctem. Let (%,X) be the catalyst-reactant process defined
in Definition 1.1.

(i) The pair (%,X) is the unique solution of the martingale problem (MP).
(ii) If d = 1 and if X0 has a density that is in Ctem, then % and X have jointly

(time-space) continuous density fields that are the unique weak solutions
of (SPDE).

1.4. Scaling limits. For η > 1 define ∞% by ∞%t := ic `, t ≥ 0. For 0 ≤ η < 1
let ∞%t := 0, t > 0, ∞%0 := ic `. However, for η = 1 let ∞% denote the continuous
Mtem-valued process with the following properties:

• For A ⊂ R bounded and Borel, ∞%(A) is Feller’s branching diffusion with
rate γc and initial value ∞%0(A) = ic `(A).

• For disjoint measurable setsA1, A2, . . . ⊂ R, the processes ∞%(A1),∞%(A2), . . .
are independent.

Clearly, ∞%t is atomic for t > 0, and for ε > 0 the following processes coincide in
law:

(1.15) {∞%t : t ≥ ε} D=
{∫

R
πε(dx) ζε

t (x)δx : t ≥ ε

}
,

where πε is a Poissonian point field on R with intensity ε−1ic and ζε = {ζε(x) :
x ∈ R} is a family of independent Feller’s branching diffusions (with rate γc) start-
ing at time t = ε from independent identically exponentially distributed variables
{ζε

ε (x) : x ∈ R} with mean ε.
For all η ≥ 0, define ∞Xt := ir `, t ≥ 0. We can now formulate the main result

of this paper. Recall the notation from (1.2).
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Theorem 1.6 (Scaling limit). Assume (%0, X0) = (ic `, ir `). For all η ≥ 0,

(1.16) (K%,KX) −→
K→∞

(∞%,∞X) in law on C
(
(0,∞),M2

tem

)
.

For η ≥ 1, (1.16) also holds on C([0,∞),M2
tem).

Remark 1.7. Clearly, for η < 1 the limiting catalyst is discontinuous at 0 and
thus convergence holds only in C

(
(0,∞),Mtem

)
. 3

1.5. Outline. The structure of the paper is as follows. In Section 2 we show
Theorem 1.5.

In Section 3, Theorem 1.6 is proved. A key step for the case η < 1 is to show
that the catalyst % dies out in any bounded region when K is large enough. Then
tightness of the reactant can be shown by a suitable decomposition. In the case
η ≥ 1 (Section 3.5), the catalyst will not die in a bounded region. The crux in
proving the tightness for the reactant here is to divide a bounded region into many
subregions and to show that for large K the catalyst dies out in “most” of them.

2. Martingale problem and SPDE

The purpose of this section is to prove Theorem 1.5. For notational simplicity
we will assume throughout the rest of the paper that

γc = γr = σc = σr = 1.

2.1. Existence of a catalyst reactant pair. For the case d = 1 both (i) and (ii)
have been shown by [Zäh05] (see Proposition 2.5 and Theorem 1.3 and 1.4). The
fact that, for d ≤ 3, (%,X) is a solution of (MP) follows from standard calculations
just as in the case d = 1. We omit the details.

It remains to show uniqueness of the solution of (MP). Here we rely on a method
of approximate duality (see [Myt98] or [Wan98]). Consider a catalyst reactant pair
(%,X). Recall that F% (respectively FX) are the natural right-continuous complete
filtration induced by % (respectively X). Let F%

∞ = σ(F%
t , t ≥ 0) and

Gt := FX
t ∨ F%

∞.

Clearly, for any ϕ ∈ C(2)
exp, the process M r(ϕ) is a P-martingale with respect to G

and is thus for any % a PX|%–martingale. By standard arguments, for given % this
family extends to a square-integrable martingale measure M r(d(s, x)) and to the
usual class of predictable integrands (see [Wal86]). In particular, for ψ ∈ C(1,2)

T,exp ,
T > 0,

(2.1)

〈M r, ψ〉t :=
∫

[0,t]×Rd

M r (d(s, x))ψs(x)

= 〈Xt , ψt〉 − 〈X0 , ψ0〉 −
∫ t

0

ds
〈
Xs ,

∂

∂s
ψs +

1
2
∆ψs

〉
is a continuous martingale with square function

(2.2) 〈〈M r, ψ〉〉t =
∫

[0,t]×Rd

L(%,X)(d(s, x))ψ2
s(x) =:

〈
L(%,X), ψ

2
〉

t ,

0 ≤ t ≤ T . Here C(1,2)
T,exp :=

⋃
λ>0 C

(1,2)
T,λ with C(1,2)

T,λ = C(1,2)
T,λ

(
[0, T ]× Rd

)
the set of all

(real-valued) functions ψ defined on [0, T ]×Rd such that t 7→ ψ(t, ·), t 7→ ∂

∂t
ψ(t, ·),

and t 7→ ∆ψ(t, ·) are continuous Cλ–valued functions.
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For s ∈ [0, T ] let vs(x) := vX|%(s, T, ϕ;x). For ε ∈ (0, 1] introduce the smoothed
catalyst %ε

s := pε ∗ %s and denote by vε
s(x) := vX|%ε

(s, T, ϕ;x) the unique solu-
tion to (1.7) with %s(dy) replaced by %ε

s(y) dy. Assuming additionally ϕ ∈ C(2)
exp ,

then vε belongs to C(1,2)
T,exp and is the unique non-negative solution to the partial

differential equation related to (1.7),

(2.3) − ∂

∂s
vε

s(x) =
1
2
∆ vε

s(x)−
1
2
%ε

s(x) (vε
s)

2(x), 0 ≤ s ≤ T, x ∈ Rd,

with terminal condition vε
T = ϕ. Trivially, we have the uniform domination

(2.4) 0 ≤ vε
s(x) ≤ pT−s ∗ ϕ (x), 0 ≤ s ≤ T, x ∈ Rd.

Note that %ε
t → %t vaguely as ε → 0. Hence, at least formally, vε should converge

to the solution of (2.3) with %ε formally replaced by %, which, by (1.7) is v. (A
rigorous proof can be found in [DF97a], see Theorem 4 (page 259) and Proposition
1(b) (page 225).) Hence, we get

(2.5) vε
s(x) −→

ε↓0
vs(x), 0 ≤ s ≤ T, x ∈ Rd.

Entering vε into (2.1) and (2.2) in place of ψ, and using (2.3) gives

(2.6) d〈M r, vε〉s = d〈Xs , v
ε
s〉 −

1
2

〈
Xs , %

ε
s (vε

s)
2
〉
ds

with square function

(2.7) d〈〈M r, vε〉〉s = d
〈
L(%,X), (vε)2

〉
s .

By Itô’s formula, this implies

de−〈Xs ,vε
s〉 = e−〈Xs ,vε

s〉
[
− d〈M r, vε〉s −

1
2
〈
Xs , %

ε
s (vε

s)
2
〉
ds+

1
2

d
〈
L(%,X), (vε)2

〉
s

]
.

Hence, for each ε ∈ (0, 1],

PX|% e−〈XT ,ϕ〉 = PX|% e−〈X0 ,vε
0〉 − 1

2
PX|%

∫ T

0

ds e−〈Xs ,vε
s〉

〈
Xs , %

ε
s (vε

s)
2
〉

(2.8)

+
1
2
PX|%

∫
[0,T ]×Rd

L(%,X)(d(s, x)) (vε
s)

2(x) e−〈Xs ,vε
s〉.

Since we assumed almost sure convergence of the sequence approaching L(%,X), for
each f ∈ Cexp we have

(2.9)
∫ T

0

ds
〈
Xs , %

ε
s f

〉
−→
ε↓0

〈
L(%,X)(T ), f

〉
, P–almost surely,

hence PX|%–almost surely, for P %–almost all %. Thus, by the pointwise convergence
of approximate solutions as in (2.5) and domination (2.4), the second and third
term at the right hand side of (2.8) cancel each other as ε ↓ 0. Therefore

(2.10) PX|% e−〈XT ,ϕ〉 = lim
ε↓0

PX|% e−〈X0 ,vε
0〉, 0 ≤ ϕ ∈ C(2)

exp ,

(which is in fact PX|% e−〈X0 ,v0〉 ).
Summarizing, the Laplace functional of XT with respect to PX|% applied to all

non-negative ϕ ∈ C(2)
exp is uniquely determined, hence the law of XT , consequently

the law of X with respect to PX|% is uniquely determined ([EK86, 4.4.2]). Thus,
(%,X) coincides in law with the catalyst reactant pair (%,X) of the previous sub-
section. This finishes the proof of Theorem 1.5.
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3. Scaling limits

Here we prove Theorem 1.6. After adapting the martingale problems to the
scaled processes, with Lemma 3.1 we prove tightness of the K% under η ≥ 1. With
Corollary 3.3 we get extinction of K% under η < 1 in a functional limit setting. The
convergence in law KXt → ∞Xt for fixed t and all η ≥ 0 will be shown in Section 3.3
by a modification of the proof in the η = 0 case from [DF97a]. Tightness questions
of the KX for η < 1 are dealt with in Lemma 3.6, whereas the most difficult case
η ≥ 1 is established by Lemma 3.7. Finally in Section 3.6 we assemble the previous
results to complete the proof of Theorem 1.6.

3.1. Tightness of the K% in the case η ≥ 1. We start by observing that a simple
calculation yields (for all η ≥ 0) that for ϕc, ϕr ∈ C(2)

exp, the processes defined by

(3.1)

M c,K
t (ϕc) =

〈
K%t , ϕ

c
〉
−

〈
K%0 , ϕ

c
〉
−K1−2η

∫ t

0

ds
〈

K%s ,
1
2
∆ϕc

〉

M r,K
t (ϕr) =

〈
KXt , ϕ

r
〉
−

〈
KX0 , ϕ

r
〉
−K1−2η

∫ t

0

ds
〈

KXs ,
1
2
∆ϕr

〉
,

are square-integrable continuous martingales with square functions

(3.2)

〈〈
M c,K(ϕc)

〉〉
t
= K1−η

∫ t

0

ds
〈

K%s , (ϕ
c)2

〉
, t ≥ 0,

〈〈
M r,K(ϕr)

〉〉
t
= K1−η

〈
L(K%,KX)(t), (ϕ

r)2
〉
, t ≥ 0.

Recall that K%0 ≡ ic `. As usual, we say that a family of random processes is
tight, if their laws form a tight family.

Lemma 3.1 (Tightness of the K% under η ≥ 1). Under η ≥ 1, the processes{
K% : K ≥ 1

}
are tight in C([0,∞), Mtem).

Proof. There exists a smoothed version φ̃λ of φλ such that to each λ ∈ R and m ≥ 0
there is a positive constant c = c(λ,m) with the property

(3.3) c−1φλ(x) ≤
∣∣∣ dm

dxm
φ̃λ (x)

∣∣∣ ≤ cφλ(x), x ∈ R,

(see, for instance, [Mit85, (2.1)]).
For the moment, fix T, λ > 0 and q > 2. Consider

fK(t) := P sup
0≤s≤t

[
1 +

〈
K%s , φ̃λ

〉]q

, K ≥ 1, 0 ≤ t ≤ T.

Using the martingale (3.1), the estimate (3.3) in the case m = 2, the fact that
(a+ b)q ≤ 2q−1(aq + bq) for a, b ≥ 0, and assuming η ≥ 1, we get (with a different
c)

(3.4) fK(t) ≤ c

[
fK(0) + P

( ∫ t

0

ds
〈

K%s , φ̃λ

〉)q

+ P sup
0≤s≤t

∣∣M c,K
s (φ̃λ)

∣∣q],
0 ≤ t ≤ T , K ≥ 1. By Burkholder’s inequality, from (3.2) and by η ≥ 1 we get for
some cq <∞

P sup
0≤s≤t

∣∣M c,K
s (φ̃λ)

∣∣q ≤ cq P
( ∫ t

0

ds
〈

K%s , (φ̃λ)2
〉)q/2

.
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Using φ̃λ ≤ c(λ) and the simple inequality |a| ≤ 2−1/2 (1 + a2), a ∈ R, we may
continue inequality (3.4) with

(3.5) fK(t) ≤ c fK(0) + c′
∫ t

0

ds fK(s)

0 ≤ t ≤ T , K ≥ 1, with a constant c′ = c′(λ, q, T ). Then Gronwall’s inequality
gives

(3.6) sup
K≥1

P sup
0≤s≤T

〈
K%s , φ̃λ

〉q ≤ c′′

with a constant c′′ = c′′(λ, q, T ). Again from the martingale (3.1), for ϕ ∈ C(2)
λ ,

λ > 0, and 0 ≤ t′ ≤ t ≤ T ,

P
∣∣〈K%t − K%t′ , ϕ〉

∣∣q ≤ c′′′ P
( ∫ t

t′
ds

〈
K%s , φ̃λ

〉)q

+ c′′′ P
( ∫ t

t′
ds

〈
K%s , (φ̃λ)2

〉)q/2

with c′′′ = c′′′(q, λ). By (3.6) we may continue with

(3.7) sup
K≥1

P
∣∣〈K%t − K%t′ , ϕ〉

∣∣q ≤ c′′′′ |t− t′|q/2, 0 ≤ t, t′ ≤ T,

with c′′′′ = c′′′′(λ, q, T ).
It is easy to finish the tightness proof by taking a q > 2 and exploiting [EK86,

Theorem 3.9.1]. In fact, we use the relatively compact subsets

K((cn)n≥1) :=
{
µ ∈Mtem : 〈µ, φ̃1/n〉 ≤ cn , n ≥ 1

}
⊆ Mtem

with (cn)n≥1 a sequence of positive numbers. Given 0 < ε ≤ 1, by (3.6), we can
find (cn)n≥1 such that

P
(
K%t ∈ K((cn)n≥1) for all t ∈ [0, T ]

)
≥ 1− ε.

Then by (3.7), for ϕ ∈ C(2)
exp , the families of random processes t 7→ 〈K%t , ϕ〉 restricted

to [0, T ] are tight in C([0, T ],R). Then by [EK86, Theorem 3.9.1] the tightness
claim follows. (Note that all of our processes are continuous, thus the tightness in
Skorohod space implies the tightness in our C–space.) This finishes the proof. �

3.2. Extinction of K% under η < 1. This extinction will follow from the follow-
ing strong local extinction property of one-dimensional super-Brownian motion %
starting from a Lebesgue measure.

Proposition 3.2 (Almost sure local finite time extinction of %). For all bounded
Borel sets B ⊂ R, and 0 ≤ η < 1, P %

` –almost surely,

(3.8) %T (T ηB) = 0, for all sufficiently large T.

Consequently almost surely, at all late times there will be no catalytic mass in a
given “parabola”, which is also consistent with the picture from the η = 1 scaling
limit in Theorem 1.6, saying that at late times T clusters are of order T apart.

Proof. We adapt a method occurring in [DF97a, Section 6.2] and in [GKW99,
Lemma 4.2] for the corresponding particle system. We may assume that B is a
centered “ball” of radius r ≥ 1, say. Using the branching property, we decompose
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% =
∑

i∈Z %
i in independent copies %i of %, but where %i starts from %i

0 = 1[i,i+1) `,
i.e. from the Lebesgue measure restricted to [i, i+ 1), i ∈ Z.

For the moment, fix i such that |i| ≥ 2r. Consider the event

(3.9) %i
t(t

ηB) > 0, for some t ≥ 1,

which we denote by Ei. Under Ei there are two cases: Such a t satisfies t ≤ ti :=
(|i|/2r) 1/η, or t > ti . If t ≤ ti , then %i gives mass to the centered ball with radius
|i|/2 at some time after 1 (note that |i|/2 = tηi r ). Call this event Ei

1 . On the other
hand, if t > ti , then %i has to survive by time ti . Call this event Ei

2 . Consequently,
Ei ⊆ Ei

1 ∪ Ei
2 .

Now the event Ei
1 has a probability bounded by c |i|−2, see [Isc88, Theorem 1].

On the other hand, Ei
2 has probability bounded by c t−1

i = c |i|−1/η, since the total
mass process of %i is Feller’s branching diffusion (see, for instance, [DFM00, formula
(73)]).

Consequently, Ei has probability bounded by c
(
|i|−2 + |i|−1/η

)
which is sum-

mable in i with |i| ≥ 2r. By Borel-Cantelli, Ei occurs only for finitely many i ∈ Z.
But these finitely many %i die in finite (random) time, that is, for them we have
%i

t = 0 for all sufficiently large t, a.s. This gives

%t(tηB) =
∑
i∈Z

%i
t(t

ηB) = 0, for all sufficiently large t, a.s.,

that is the claim (3.8). �

Corollary 3.3 (Almost sure local finite scaling extinction of K% under η < 1). In
the case η < 1, for each ε > 0, bounded Borel set B ⊂ R, and δ ≥ 0 satisfying
η + δ < 1,

(3.10) K%t(K
δB) = 0, t ≥ ε, for all sufficiently large K, P %

` –a.s.

In particular, as K → ∞, the processes K% converge in law to 0 in path space
C((0,∞),M).

Proof. Fix η, ε, B, δ as in the corollary. Set η̃ := η + δ. For t ≥ ε and K ≥ 1,
K%t(K

δB) = K−η %Kt

(
(Kt)η̃ t−η̃B

)
.

But there is a bounded Borel set B̃ ⊂ R, such that t−η̃B ⊆ B̃, for all t ≥ ε.
Therefore (3.10) follows from Proposition 3.2 with η,B replaced by η̃, B̃. Taking
δ = 0, by the definition of the topology in C((0,∞),M) this implies the convergence
claim, since ε and B had been arbitrary. This finishes the proof. �

3.3. Convergence of the finite dimensional distributions of KX. As we al-
ready know that Xt −→

t→∞
ir ` stochastically in the vague topology, it is easy to infer

convergence of the finite dimensional distributions of the rescaled process towards
the trivial limit.

Lemma 3.4 (Convergence of finite dimensional distributions). Fix η ≥ 0. For
m ≥ 1, 0 ≤ t1 ≤ · · · ≤ tm, and ϕ1, . . . , ϕm ∈ C+

exp,

(3.11) P exp
[
−

m∑
i=1

〈
KXti

, ϕi

〉]
−→

K→∞
exp

[
− ir

m∑
i=1

〈`, ϕi〉
]
.
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Proof. The proof is particularly simple. It suffices to consider the case m = 1. We
will consider only the case ϕ = ϕ1 := λ 1[0,1] for λ ≥ 0. The general case can be
obtained via the usual approximation arguments.

For η = 0 or t = 0 there is nothing to show (see (1.1)). Assume now η > 0 and
t > 0. Hence for any λ > 0, using Jensen’s inequality and translation invariance

Pe−λ ·KXt([0,1]) = Pe−λ K−ηXKt([0,Kη ])

≤ 1
bKηc

bKηc−1∑
i=0

P e−(bKηc/Kη)λ XKt([i,i+1))

= P e−(bKηc/Kη)λ XKt([0,1))

−→ e−λ ir , as K →∞,

where we used in the last step that Xt → ir ` (stochastically). On the other hand
we have, again by Jensen’s inequality, Pe−λ ·KXt([0,1]) ≥ e−λP KXt([0,1]) = e−λ ir .
Thus lim

K→∞
P e−λ ·KXt([0,1]) = e−λ ir . �

3.4. Tightness for KX under η < 1. For translation invariant random measures
with bounded intensities the concepts of convergence in Mtem in law and in M in
law coincide. In fact, assume the convergence in law µn → µ0 in M as n→∞ and
that all these random measures are translation invariant and with intensities in ,
n ≥ 0, bounded in n. Consider any ϕ ∈ C+

exp . For 0 < ε ≤ 1, choose ϕε ∈ C+
com

such that
〈
`, |ϕ− ϕε|

〉
< ε. Then∣∣Pe−〈µn,ϕ〉 − Pe−〈µ0,ϕ〉∣∣(3.12)

≤
∣∣Pe−〈µn,ϕε〉 − Pe−〈µ0,ϕε〉

∣∣ + (in + i0)
〈
`, |ϕ− ϕε|

〉
.

Letting first n→∞ and then ε ↓ 0 gives the claim. Consequently, we can concen-
trate on a compactly supported test function where it is convenient. We may even
assume that the test function is twice continuously differentiable.

In order to deal with tightness of the KX in the case η < 1, we will decompose
them into two parts which will be handled separately. To this end we will work
with the SPDE formulation of the rescaled processes

(3.13)

K%t(x) = Kpt ∗ K%0 (x)

+
∫

[0,t)×R
dKW c

s (y) Kpt−s(y − x)
√
K1−η K%s(y),

KXt(x) = Kpt ∗ KX0 (x)

+
∫

[0,t)×R
dKW r

s (y)Kpt−s(y − x)
√
K1−η K%s(y) KXs(y),

Here Kpt := pK1−2ηt and KẆ c
s (x) := K

1+η
2 Ẇ c

Ks(K
ηx) and KẆ r

s (x) := K
1+η
2 Ẇ r

Ks(K
ηx)

are standard white noises.

We make the following assumption:

Assumption 3.5 (Choice of parameters). Fix 0 ≤ η < 1, 0 < 2ε < T , as well as a
non-vanishing ϕ ≥ 0 in C(2)

com . Choose δ ≥ 0 such that 1/2−η < δ < 1−η. Without
loss of generality we assume that supp(ϕ) ⊂ B := (−1, 1). 3
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For the moment, fix also K ≥ 1. We want to decompose KXt according to the
effects of branching (i) from inside KδB or before time ε and (ii) from outside of
KδB and after time ε. From (3.13), with dW := dKW r we get,

(3.14) KXt(x) = KIt(x) + KJε,t
t (x), t > ε, x ∈ R,

where

(3.15)

KIt(x) := Kpt−ε ∗ KXε (x)

+
∫

[ε,t)×KδB

dWs(y) Kpt−s(y − x)
√
K1−η K%s(y) KXs(y) ,

and, for ε < t ≤ t′,

(3.16) KJε,t′

t (x) :=
∫

[ε,t)×KδBc
dWs(y) Kpt′−s(y − x)

√
K1−η K%s(y) KXs(y) .

Then we have the following decomposition:

(3.17)
〈

KXt , ϕ
〉

=
〈

KIt , ϕ
〉

+
〈

KJε,t
t , ϕ

〉
, t ≥ ε,

understanding the pairings in the obvious way. Our plan is to show tightness of
the two terms separately, and, in fact, in the case of the first one, conditioned on
%. In the first case, we use the catalyst’s a.s. extinction within a parabola, whereas
in the second case second moment estimates suffice.

Lemma 3.6 (Tightness for KX under η < 1). Impose Assumption 3.5.
(a) Conditioned on %, the processes

{
t 7→ 〈KIt, ϕ〉 : K ≥ 1

}
are tight in

C([2ε, T ], [0,∞)).
(b) The processes

{
t 7→ 〈KJε,t

t , ϕ〉 : K ≥ 1
}

are tight in C([ε, T ], [0,∞)).

Proof of Lemma 3.6(a). Since η + δ < 1, by the Corollary 3.3, P %–almost surely,
K%s(y) = 0, s ≥ ε, y ∈ KδB, K ≥ K0 = K0(%, η, ε, ϕ, δ), say.

Hence, for these K, the integral term in (3.15) vanishes. Thus,〈
KIt , ϕ

〉
=

〈
KXε ,

Kpt−ε ∗ ϕ
〉

=: KYt−ε , ε < t ≤ T.

Given %, introduce the events

KEN = KEN (%, ε, T, ϕ) :=
{

sup
ε≤t≤2T

KYt ≤ N
}
, N ≥ 1.

By Markov’s inequality, for the complement KEc
N of KEN ,

(3.18) P
{

KEc
N

∣∣ %} ≤ N−1P
{

sup
ε≤t≤2T

〈
KXε ,

Kpt ∗ ϕ
〉 ∣∣∣ %}.

But with a constant c = c(ε, T ) <∞,
Kpt ≤ (2T/ε)1/2 Kp2T = c Kp2T , ε ≤ t ≤ 2T.

Hence, inequality (3.18) can be continued with

≤ N−1 cP
{〈

KXε ,
Kp2T ∗ ϕ

〉 ∣∣∣ %} = N−1 c cr ‖ϕ‖1 .

Thus, for each δ > 0 we find an N0 = N0(δ, ε, T, ϕ) such that

sup
K≥K0

P
{

KEc
N

∣∣ %} ≤ δ, N ≥ N0 .
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On the other hand, on KEN , for ε ≤ s ≤ t ≤ T ,

(3.19)
∣∣KYt − KYs

∣∣ ≤
〈

KXε , |Kpt − Kps| ∗ ϕ
〉
.

By differentiation and comparison we get

(3.20)
∣∣∣ ∂
∂r

pr(x)
∣∣∣ ≤ 2

r
p2r(x), r > 0, x ∈ R.

Therefore, ∣∣Kpt(x)− Kps(x)
∣∣ ≤

∫ t

s

dr
∣∣∣ ∂
∂r

Kpr(x)
∣∣∣ ≤ c

∫ t

s

dr p2r(x),

ε ≤ s ≤ t ≤ T , x ∈ R. Inserting this into (3.19), on KEN ,∣∣KYt − KYs

∣∣ ≤ 2
∫ t

s

dr
〈

KXε ,
Kp2r ∗ ϕ

〉
= 2

∫ t

s

dr KY2r ≤ cN |t− s|,

ε ≤ s ≤ t ≤ T . Consequently, given % and on KEN , the processes
{

KYt : ε ≤ t ≤ T
}
,

K ≥ K0 , are equi-continuous ([Yos74, Section III.3]), hence the processes{〈
KXε ,

Kpt−ε ∗ ϕ
〉

: 2ε ≤ t ≤ T + ε
}
, K ≥ K0 ,

are also equi-continuous on KEN , given %. But then the processes{〈
KIt , ϕ

〉
: 2ε ≤ t ≤ T

}
, K ≥ K0 ,

are also equi-continuous on KEN , given %. This then gives tightness of the family{〈
KIt , ϕ

〉
: 2ε ≤ t ≤ T

}
, K ≥ 1, of processes, given %, finishing the proof. 2

Proof of Lemma 3.6(b). Here we proceed without conditioning on %. It suffices to
show that there is a constant c = c(ε, ϕ,B, T, η, δ) and a K0 = K0(δ) such that

(3.21) sup
K≥K0

P
∣∣〈KJε,t

t , ϕ〉 − 〈KJε,r
r , ϕ〉

∣∣2 ≤ c |t− r|2, r, t ∈ [ε, T ].

For this we may assume that r < t. We decompose

(3.22) 〈KJε,t
t , ϕ〉 − 〈KJε,r

r , ϕ〉 = 〈KJr,t
t , ϕ〉+ 〈KJε,r,t, ϕ〉,

where
KJε,r,t(x)

:=
∫

[ε,r)×KδBc
dWs(y)

[
Kpt−s(y − x)− Kpr−s(y − x)

]√
K1−η K%s(y) KXs(y).

Now we handle KJr,t
t and KJε,r,t separately in order to prove (3.21).

1◦ (First term in the decomposition (3.22)). We show that there is a con-
stant c and a K0 = K0(δ) such that (with ζ = δ − 1

2 + η > 0)

(3.23) sup
K≥K0

K2ζP
∣∣〈KJr,t

t , ϕ〉
∣∣2 ≤ c (t− r)2.

First note that t 7→ 〈KJr,t′

t , ϕ〉, ε ≤ t ≤ t′ ≤ T, is a continuous martingale and hence

P
∣∣〈KJr,t

t , ϕ〉
∣∣2

= P
∫ t

r

ds
∫

KδBc
dy

( ∫
B

dxϕ(x) Kpt−s(y − x)
)2

K1−η K%s(y)
KXs(y).
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Note that P K%s(y) KXs(y) ≡ icir, and since K% and KX are uncorrelated with
expectations PK%t(x) ≡ ic and PKXt(x) ≡ ir. Let K0 large enough such that
Kδ

0 ≥ 2. Hence for K ≥ K0 and x ∈ B and y ∈ KδBc we have |y − x| ≥ |y/2|. Let
c′ = 4‖ϕ‖2

∞icir and assume K ≥ K0 . Hence

P
∣∣〈KJr,t

t , ϕ〉
∣∣2 ≤ c′K1−η

∫ t

r

ds
∫

KδBc
dy pK1−2η(t−s)(y/2)2

= 2c′K1−η(t− r)1/2

∫ 1

0

ds
∫ ∞

1
2 Kζ(t−r)−1/2

dy ps(y)2

≤ 2c′K1−η(t− r)1/2

∫ ∞

1
2 Kζ(t−r)−1/2

dy p1(y)2

≤ 2c′K1−η−2ζT (t− r)1/2 exp
(
−1

4
K2ζ(t− r)−1

)
,

where we used a standard heat kernel estimate in the last step. Note that

c′′ := sup
0≤r<t≤T

(t− r)−3/2 exp
(
−1

8
(t− r)−1

)
<∞

c′′′ := sup
K≥1

K1−η−2ζ exp
(
−1

8
K2ζT−1

)
<∞.

Hence, (3.23) holds with c := 2c′ c′′ c′′′ T .

2◦ (Second term in the decomposition (3.22)). We show that there is a
constant c and a K0 such that

(3.24) sup
K≥K0

P
∣∣〈KJε,r,t, ϕ〉

∣∣2 ≤ c |t− r|2 .

In fact, as in the first step we get that

P
∣∣〈KJε,r,t, ϕ〉

∣∣2 ≤ c′K1−η

∫ r

ε

ds
∫

KδBc
dy

( ∫
B

dx
∣∣Kpt−s(y − x)− Kpr−s(y − x)

∣∣)2

.

Using the estimate
∣∣ ∂
∂θ

Kpθ(y)
∣∣ ≤ 2p2θ(y) the dx–integral is bounded by∫

B

dx
∫ t−s

r−s

dθ
∣∣∣ ∂
∂θ

Kpθ(y − x)
∣∣∣ ≤ 4

∫ t−s

r−s

dθ
1
θ

Kp2θ(y/2).

Hence the dy–integral is bounded by

c

∫
|y| ≥ c Kδ

dy |t− r|
∫ t−s

r−s

dθ
1
θ2

Kp
2

2θ(y/2).

Interchanging the order of integration and substituting y 7→ (8 θK1−2η)1/2y results
into

c |t− r|
∫ t−s

r−s

dθ
1
θ2
θ1/2K−1/2+η

∫
|y| ≥ c Kη+δ−1/2 θ−1/2

dy e−y2
.

Using similar estimates as in the first step yields (3.24).

3◦ (Conclusion). Combining (3.23) and (3.24), by decomposition (3.22), claim
(3.21) follows. This finishes the proof. 2
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3.5. Pathwise convergence of the KX for η ≥ 1. Now we come to the key of
the reactant’s tightness proof.

Lemma 3.7 (Reactant’s pathwise convergence for η ≥ 1). Under η ≥ 1,

(3.25) KX → ∞X in law on C(R+,M) as K →∞.

Proof. The concept of the proof is as follows: In Step 1 we take care of a small piece
[0, t0] of the (macroscopic) time axis by a standard argument. In the subsequent
steps we concentrate on [t0,∞). In Steps 2 and 3 we construct a coupling with a
reactant process that suffers killing at finitely many points a ∈ A ⊂ R. In this new
process the intervals between the points in A are decoupled reactant processes with
killing at the boundaries. In Steps 4 and 5 we break the compact support of a test
function into small intervals. We show that only a few of them are occupied by
the catalyst K% after time t0. The boundary points of these intervals are essentially
used to form the set A. In Step 6 we show that the original reactant process KX
and the reactant with killing in A are close. We use the decoupling in Steps 7 and
8 to handle the pieces close to catalyst peaks and away from the catalyst’s support
separately and by different means.

Step 1 (Initial time interval). Fix a twice continuously differentiable com-
pactly supported function ϕ ≥ 0 on R and ε > 0.

Let c1 = 2
ε ir1〈`, |∆ϕ|〉 and c2 = 4

ε2 icir〈`, ϕ2〉. Hence for t0 > 0 by Markov’s
inequality and Doob’s inequality

P
{

sup
t∈[0,t0]

∣∣〈KXt − ir `, ϕ〉
∣∣ > ε

}
≤ P

{1
2
K1−2η sup

t∈[0,t0]

∫ t

0

〈KXt, |∆ϕ|〉ds >
ε

2

}
+ P

{
sup

t∈[0,t0]

|M r,K
t (ϕ)| > ε

2

}
≤ c1t0K

1−2η +
4
ε2
P(M r,K

t0 (ϕ))2

≤ c1t0K
1−2η + c2t0K

1−η.

For η > 1 this tends to 0 as K → ∞ and hence the statement of the theorem
is shown for this case. (However, as it requires only a minor modification of the
argument, in the remainder we will consider both η = 1 and η > 1.) For all η ≥ 1
we can choose t0 = ε/(2(c1 + c2)), hence for K ≥ 1

(3.26) P
{

sup
t∈[0,t0]

∣∣〈KXt − ir `, ϕ〉
∣∣ > ε

}
< ε.

From now on we fix this t0.

Step 2 (Killing at one point). Fix for the moment K ≥ 1 and a ∈ R. Define
the reactant process KX

a as KX but with instantaneous killing of mass in the point
a. We collect the killed “particles” in a second process KX̃

a
(with zero initial state)

and let them perform just the standard reactant process (with independent noise
driving the SPDE). Thus KX

D= {KX
a
t + KX̃

a

t : t ≥ 0}. It is easy to establish a
coupling of these processes such that

(3.27) KXt = KX
a

t + KX̃
a

t , t ≥ 0.

A construction can be done along the following lines: Let τa = τa[Kξ] denote
the first hitting time of a Brownian motion Kξ with diffusion constant K

1
2−η, and
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let Πx denote its laws when started in x ∈ Rd. Then Vt := (Kξt, 1τa≤t) is a Markov
process on R × {0, 1} with càdlàg paths. Now construct the reactant process Z
with motion process V and with catalyst (%, %). Then one can choose Z

(
· ×{0}

)
for Xa

t and Z
(
· ×{1}

)
for X̃a

t . We omit the details. In words, for the process Z
thus constructed we have assigned each particle a type either 0 or 1. Initially all
particles are of type 0. However, on hitting the site a, a particle changes its type
to 1 which is kept forever. Particles of type 0 are considered as being alive while
type 1 particles are zombie particles.

The important point to notice is that the total mass process

(3.28) t 7→ KM̃
a

t := 〈KX̃a

t , 1〉
is a non-negative continuous submartingale, and that by the reflection principle
[since KX0

(
{a}

)
= 0],

(3.29) PX|% KM̃
a

t =
∫

R

KX0(dx) Πx(τa ≤ t) = 2
∫

R

KX0(dx)
∫ ∞

|x−a|
dy Kpt(y).

Recall that Kpt(y) = (2πK1−2ηt)−1/2 exp(−y2/2K1−2ηt). Since KX0 = ir `, we
have

(3.30)

PX|% KM̃
a

t = 4ir
∫ ∞

0

dx
∫ ∞

x

dy (2πK1−2ηt)−1/2 exp(−y2/2K1−2ηt)

=
4ir√

2πK1−2ηt

∫ ∞

0

dy y exp(−y2/2K1−2ηt)

=
4ir√
2π

√
K1−2ηt .

If we fix a time horizon T > 0, then Doob’s maximal inequality (e.g. [RY91, Theo-
rem 2.1.7]) yields, for every δ > 0,

(3.31)

PX|%
{

sup
t∈[0,T ]

KM̃
a

t > δ
}
≤ δ−1PX|% KM̃

a

T

≤ 4ir√
2π

√
T

δ
K

1
2−η → 0 as K →∞.

Thus it will be sufficient to show convergence of KX
a instead of KX.

Step 3 (Killing at finitely many points). Now consider a finite set A ⊂ R.
Hence as in Step 2 we can define a coupling

(3.32) KX = KX
A

+ KX̃
A

with killing in all points a ∈ A. If we define

(3.33) KM̃
A

t :=
〈

KX̃
A

t , 1
〉
, t ≥ 0,

then again KM̃
A
, is a non-negative continuous submartingale. Clearly we have

(3.34) PX|% KM̃
A

T ≤
∑
a∈A

PX|% KM̃
a

T .

Thus, by (3.31),

(3.35) PX|%
{

sup
t∈[0,T ]

KM̃
A

t > δ
}
≤ |A| 4ir√

2π

√
T

δ
K

1
2−η → 0 as K →∞.
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Hence it is sufficient to show convergence of KX
A instead of KX, even if A depends

on K and the number |A| of points in A grows with K like Kη−1.

Step 4 (Equidistant decomposition). For our fixed ϕ, fix L ≥ 1 such that
ϕ(x) = 0 if |x| > L. Moreover, fix T > t0 . The strategy of the further proof is
to split the interval [−L,L], which supports the test function ϕ, into sufficiently
small intervals Ii = KIi, i = 0, . . . , N − 1, N = KN ≥ 1, in such a way that most
of the intervals are not populated by the catalyst K% in the time interval [t0, T ].
Roughly speaking, the set A at which killing happens will be defined as the set
of boundary points of the remaining intervals. This will allow a decoupling of the
reactant KX

A in intervals where it simply follows the heat flow, and in intervals
where also branching occurs. However the construction will be carried out in such
a way that the total reactant mass involved in branching in [t0, T ] is small and can
easily be controlled.

In this step we start with breaking [−L,L] into intervals and controlling the
migration of catalyst into neighboring intervals.

Fix a number

(3.36) ζ ∈
(
η − 1, η − 1

2

)
.

In the sequel we suppress the K–dependence in some quantities. Put

(3.37) N = KN := b2LKζc

(note that N →∞ as K →∞ by our assumption η ≥ 1), and set

(3.38) Ii = KIi :=
[
− L+

2L
N
i, −L+

2L
N

(i+ 1)
]
, 0 ≤ i < N.

By the branching property, we can assume a coupling

(3.39) K% = K%̌ +
N−1∑
i=0

K%i,

where {K%̌,K%0, . . . ,K%N−1} is an independent family of (measure-valued) catalyst
processes with initial conditions

(3.40)
K%̌0 = 1R\[−L,L] ic `,

K%i
0 = 1KIi

ic `, 0 ≤ i < N.

(Note that the uniform initial states give no mass to common boundary points.)
Define F̌ = KF̌ and F i = KF i, 0 ≤ i < N , as the events

F̌ :=
{

K%̌t(Ii) = 0, t ∈ [0, T ], 1 ≤ i < N − 1
}
,

F i :=
{

K%
i

t(Ij) = 0 , t ∈ [0, T ], 0 ≤ i, j < N, |j − i| ≥ 2
}
,

and put

(3.41) F = KF := F̌ ∩
N−1⋂
i=0

F i.

That is, on the event F the “particles” of the catalyst K% cross at most one interval
by time T (including the two outside intervals). It is well-known, see, e.g., [Daw93,
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Theorem 9.2.4], replacing there R, by Kη−ζ and t, by KT , that there exists a
constant c = c(L, T, ic) such that

P(F i) ≥ 1 − cKη−2ζ−3/2 exp(−cK2(η−ζ)−1).

Thus, since 2(η − ζ)− 1 > 0 by our assumption (3.36) on ζ,

P
( N−1⋂

i=0

F i
)
≥ 1− 2LKζ cKη−2ζ−3/2 exp(−cK2(η−ζ)−1) → 1 as K →∞.

Similarly, decomposing the infinite initial measure and replacing R in the applica-
tion of the former theorem by nKη−ζ , n ≥ 1, one gets the well-known result that
P(KF̌ ) → 1 as K →∞. Concluding, we have for T > t0 > 0 (and the fixed L),

(3.42) P(KF ) → 1 as K →∞.

Step 5 (Sparse occupation by the catalyst). In this step, we show that at
time t0 not too many of the intervals KIi, from (3.38) are occupied by the catalyst
K%. Together with the result of the previous step this bounds the number of intervals
touched by K%, between time t0 and T .

For our fixed t0 and L, define a set E, of indices by

E = KE :=
{
i ∈ {1, . . . , N − 2} : K%i

t0 6= 0
}
∪

{
0, N − 1

}
,

with N = KN from (3.37). Note that by the survival probability of Feller’s branch-
ing diffusion and the small starting mass there exists a constant c = c(L, t0, ic) > 0
such that

(3.43) P(i ∈ E) ≤ cKη−ζ−1, 1 ≤ i < N − 1.

Opposed to (3.38), for 0 ≤ i < N , set

(3.44) Îi = KÎi :=
[
− L+

2L
N

(i− 1), −L+
2L
N

(i+ 2)
]

and

(3.45) C = KC :=
⋃
i∈E

Îi, D = KD := [−L,L] \ C.

Hence, on the event F , from (3.41) we have K%t(D) = 0, t ∈ [t0, T ].
By estimate (3.43) and the definition (3.37) of KN , we get

(3.46) P|E| ≤ 2 + cKNKη−ζ−1 ≤ cKη−1,

since η ≥ 1. Thus

(3.47) P`(KC) ≤ 3
2L
N

cKη−1 ≤ cKη−ζ−1 → 0 as K →∞,

by the definition (3.37) of KN , and our assumption (3.36) on ζ. Hence, together with
estimate (3.46) and (3.42), for our fixed ε > 0, there exists a constantK0 = K0(ε, t0)
and an n = n(ε) > 0 such that for all K ≥ K0 ,

P(B) ≥ 1− ε,

where

(3.48) B = KB = KB(ε, n) :=
{
|E| ≤ nKη−1

}
∩

{
`(KC) ≤ ε2

‖ϕ‖∞ ir

}
∩ F.



20 FLEISCHMANN, KLENKE, AND XIONG

Step 6 (Reactant’s approximation by the process with killing). Now we
define the set A, at which the reactant’s killing takes place, as the boundary of the
intervals that could be occupied by the catalyst between time t0 and T :

(3.49) A = KA :=
⋃

i∈E, 0≤j≤3

{
− L+

2L
N

(i− 1 + j)
}
⊇ ∂C.

Clearly, by the definition (3.48) of B = KB, we have B ⊆
{
|A| ≤ 4nKη−1

}
. Hence,

recalling the coupling (3.32) and (3.33), the estimate in (3.35) yields that on KB,
for δ > 0,

PX|%
{

sup
t∈[0,T ]

〈
KXt − KX

A

t , 1
〉
> δ

}
≤ 16n ir

√
T

δ
√

2π
K−1/2.

Thus, for K0 = K0(ε, n, t0) sufficiently large, we have for all K ≥ K0 on KB

(3.50) PX|%
{

sup
t∈[0,T ]

〈
KXt − KX

A

t , 1
〉
>

ε

‖ϕ‖∞

}
< ε

(with our fixed ϕ). This shows that it suffices henceforth to consider KX
A instead

of KX.

Step 7 (Killed process close to the catalyst’s peaks). Recall the sets KC,
and KD, where branching might be possible, and where the catalyst is absent,
respectively. By construction, given %, the processes {KX

A
t 1C : t ≥ 0} and

{KX
A
t 1D : t ≥ 0} decouple. That is, they are independent reactant processes

with killing in each point a ∈ A = KA, [recall (3.49)]. Hence they can be treated
separately. In this step we handle KX

A
1C ,, and in the next step we will treat

KX
A
1D .

The key is, that the initial mass of KX
A
1C is small (as C is small). Clearly,

by the killing, the total mass process
{

KX
A
t (C) : t ≥ 0

}
is a non-negative right-

continuous supermartingale. Hence by a variant of Doob’s maximal inequality (e.g.
[RY91, Exercise 2.1.15]) we get that on KB

PX|%
{

sup
t∈[t0,T ]

KX
A

t (C) >
ε

‖ϕ‖∞

}
≤ ‖ϕ‖∞

ε
PX|% KX

A

t0(C)

≤ ‖ϕ‖∞
ε

ir `(C) < ε

(recall (3.48)). Thus, on KB,

(3.51) PX|%
{

sup
t∈[t0,T ]

〈
KX

A

t , ϕ 1C

〉
> ε

}
< ε.

Step 8 (Killed process away from the catalyst’s peaks). Since for %, given,
KXt0 converges in probability to ir ` as K → ∞ (Lemma 3.4), from (3.50) and
(3.51) we get that on a subset B′ ⊆ KB with P(B′) > 1 − 2ε, and for K ≥ K0

(where K0 is sufficiently large),

(3.52) PX|%
{∣∣∣〈KX

A

t0 1D − ir `, ϕ
〉∣∣∣ > 2ε

}
< 2ε.

Now {KX
A
t 1D : t ∈ [t0, T ]} is heat flow (with speed K

1
2−η) with absorption in each

point a ∈ KA. Of course, (3.50) holds also if the supremum there is taken only on
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[t0, T ], if the initial state at time t0 is KX
A
t0 1D , and if the constant function 1 is

replaced by 1D . That is, for K ≥ K0 ,

(3.53) PX|%
{

sup
t∈[t0,T ]

〈
(KX

A

t0 1D) ∗ Kpt−t0 −
KX

A

t 1D , 1
〉
>

ε

‖ϕ‖∞

}
< ε.

On the other hand, as ϕ is continuous, we can choose K0 = K0(ε) so large that

sup
K≥K0

sup
t∈[t0,T ]

∥∥ϕ− ϕ ∗ Kpt−t0

∥∥
∞ <

ε2

2L ir
.

Hence, for t ∈ [t0, T ] and K ≥ K0 ,

(3.54)
PX|%

{
sup

t∈[t0,T ]

∣∣∣∣〈(KX
A

t0 1D) ∗ Kpt−t0 −
KX

A

t0 1D , ϕ
〉∣∣∣∣ > ε

}
≤ ε

2L ir
P KXt0(D) ≤ ε

since D ⊆ [−L,L]. Combining (3.50), (3.51), (3.53), (3.54), and (3.52), we have for
K ≥ K0 on B′ [with P(B′) > 1− 2ε],

PX|%
{

sup
t∈[t0,T ]

∣∣∣ 〈
KXt − ir `, ϕ

〉 ∣∣∣ > 3ε
}

< 3ε.

Hence for K ≥ K0,

P
{

sup
t∈[t0,T ]

∣∣∣ 〈
KXt − ir `, ϕ

〉 ∣∣∣ > 4ε
}

< 6ε.

This concludes the proof. 2

3.6. Completion of the proof of Theorem 1.6 . Now we are ready to complete
the proof of Theorem 1.6.

Case 1 (Catalyst, η ≥ 1). For η = 1, the convergence to and the identification
of the limit ∞% of the K% was provided in [DF88] (with a slightly different refer-
ence function and using a Skorohod space, but note that all of our processes are
continuous). Hence for η > 1 the large of large numbers yields that K%t −→ ic `
(stochastically) as K → ∞ for all t > 0. By Lemma 3.1 the processes K%, K ≥ 1,
are tight in C([0,∞),Mtem). Hence convergence to the constant process is proved
also in path space.

Case 2 (Catalyst, η < 1). The extinction of K% under η < 1 on the path space
C((0,∞),M) was verified in Corollary 3.3.

Case 3 (Fdd convergence of KX). For all η ≥ 0, the convergence of one-
dimensional distributions of the KX was provided by Lemma 3.4.

Case 4 (Reactant, η < 1). In the case η < 1, it is enough to show convergence
in law KX → ∞X as K → ∞ on function space C([2ε, T ], M), for any choice of
0 < 2ε < T . For this purpose, for fixed ϕ ∈ C(2)

com , we can decompose as in (3.17):

(3.55)
〈

KXt , ϕ
〉

=
〈

KIt , ϕ
〉

+
〈

KJε,t
t , ϕ

〉
, t ≥ 2ε,

By Lemma 3.6(b), the second part forms a tight family of processes in C([2ε, T ], R).
Moreover, by (3.23), for fixed t,

P
∣∣〈KJε,t

t , ϕ〉
∣∣2 ≤ cK−2ζ −→

K→∞
0.
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Therefore,

(3.56)
〈

KJε,t
· , ϕ

〉
−→

K→∞
0 on function space.

On the other hand, for fixed t, the term at the left hand side of (3.55) convergence in
law to the required deterministic limit

〈∞Xt , ϕ
〉
. Therefore also the first term at the

right hand side of (3.55) converges fdd to that limit. Hence, the P %–random finite
dimensional distributions of the processes t 7→

〈
KIt , ϕ

〉
conditioned on % converge

in law to the ones of δ〈∞X· ,ϕ〉. Then by the conditioned tightness in Lemma 3.6(a),
the P %–random distributions of the processes

〈
KI· , ϕ

〉
converge in law to δ〈∞X· ,ϕ〉.

Integrating out %, the processes
〈

KI· , ϕ
〉

converge in law to
〈∞X· , ϕ

〉
.

Putting this together with (3.56), by the decomposition (3.22) the processes
t 7→

〈
KXt , ϕ

〉
converge in law to

〈∞X· , ϕ
〉

on function space C([2ε, T ], R). Since ϕ
was arbitrary, the proof of Case 4 is finished.

Case 5 (Reactant, η ≥ 1). This was provided in Section 3.5.

This completes the proof of Theorem 1.6 �
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Appendix

In [DF97a] it was shown in Theorem 6 that (%t, Xt) −→
t→∞

(0, ir `) in probability,

which we need in the present paper in (1.1). As some people feel that the proof
of Theorem 6 in [DF97a] is a bit short (and since the statement is a corner stone
in the study here), we provide a few details for that proof here. In order to keep
things short, we stick to the notation in [DF97a] and use it without further notice.

The last display formula in the proof of Theorem 6 (on page 274) is
(A.1)

‖v(s, t)‖1 ≥
∫
`(da) Πs,a ϕ(Wt) exp

[
−(t− τs,a)−1/2

+ ‖ϕ‖1

∫ τs,a

s

dr ρr(Wr)
]
.

Here v(s, t, a) is the log-Laplace transform of the reactant started at time s in δa,
evaluated with respect to the nonnegative (compactly supported continuous) test
function ϕ conditional on the catalyst ρ. Furthermore W is a Brownian motion
started at time s in a ∈ R and τs,a is the last time where W collides with ρ. This
time is shown to be finite. Since ‖v(s, t)‖1 ≤ ‖ϕ‖1 by Jensen’s inequality, it suffices
to show that P`‖v(s, t)‖1 → ‖ϕ‖1 as t→∞. From (A.1) we get

P`‖v(s, t)‖1 ≥
∫
`(da) Πs,aϕ(Wt) PlYt(W ),

where Yt(W ) = exp
[
− (t − τs,a)−1/2

+ ‖ϕ‖1

∫ τs,a

s
dr ρr(Wr)

]
. By spatial translation

invariance of ρ under P` we get that PlYt(W ) = P`Yt((Wr − a)r≥s). Hence

P`‖v(s, t)‖1 ≥
∫
`(da) Πs,0 ϕ(Wt + a) PlYt(W ) = ‖ϕ‖1 Πs,0 PlYt(W ).

Now Yt(W ) → 1, Πs,0 × Pl–almost surely as t → ∞ and is bounded by 1. Hence
Πs,0PlYt(W ) → 1 as t→∞ and we are done.
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