
Interacting diffusions in a random medium:

comparison and longtime behavior

A. Greven1), A. Klenke2), A. Wakolbinger3)

April 4, 2001

revised version: September 5, 2001

Abstract

We consider a collection of linearly interacting diffusions (indexed by a countable space) in a
random medium. The diffusion coefficients are the product of a space-time dependent random field
(the random medium) and a function depending on the local state. The main focus of the present
work is to establish a comparison technique for systems in the same medium but with different state
dependence in the diffusion terms. The technique is applied to generalize statements on the longtime
behavior, previously known only for special choices of the diffusion function.

One of these special choices, which we employ as a reference model, is that of interacting Fisher-
Wright diffusions in a catalytic medium where duality was used to obtain detailed results. The other
choice is that of interacting Feller’s branching diffusions in a catalytic medium which is itself an
(autonomous) branching process and where infinite divisibility was used as the main tool.
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1 Introduction and Main Results

1.1 Background

In this paper we are concerned with the construction and the longtime behavior of systems of countably
many interacting diffusions, where the diffusion function of the state of one component depends only
on that state and on an autonomously fluctuating medium and may therefore be varying both in space
and time. The interaction between components is linear and time- and space-homogeneous. Its precise
form is motivated either by the population dynamics notion of migration or by the population genetics
notion of “choice of ancestors from other colonies”. The systems have features which are different from
the classical time-homogeneous case.

We start with constructing the models and establishing a comparison principle. This comparison
principle is useful because it transfers results previously known only in special cases, in particular for
population models, to a wider class of interacting diffusions. The case of branching systems has already
been studied in special contexts: super Brownian motion in a catalytic medium is discussed in a sequence
of papers by Dawson and Fleischmann [DF94, DF95, DF97a, DF97b] and Fleischmann and Klenke [FK99,
FK00], while related particle models are studied by Greven, Klenke and Wakolbinger [GKW99]. In
[GKW01] another principal population model, the case of interacting Fisher-Wright diffusions, is studied
as a prototype for so-called resampling models.

The longtime behavior of interacting systems reflects the competition between migration and the
fluctuations in the components. Depending on the parameters either the migration dominates, resulting
in limiting states which are spatially constant, or the diffusion dominates, resulting in degenerate states
concentrated on the traps of the pure diffusion, or both mechanisms are relevant in the longrun. In
the latter case we get a non-degenerate limiting behavior with either limiting laws concentrated on
states, which are constant but not concentrated only on the traps, or we get an equilibrium state with a
(nontrivial) local dependence structure.

The new phenomenon due to the random medium is that the regime with nontrivial limiting behavior
splits into two cases, one has an equilibrium which is spatially exchangeable, the other one has a local
dependence structure. In the case of media which are given by a voter model or by Feller’s branching
diffusions we can characterize the exchangeable states of the process in the random medium quite explicitly
due to the knowledge one has about the cluster formation of these systems in the homogeneous case, see
[GKW99], [GKW01], [FK99], [DF94, DF95, DF97a, DF97b]. This raises the question to what extent
these results are valid in larger classes of models.

We will establish in this paper that the just described pattern of behavior is fairly independent of the
special nature of the fluctuations and occurs therefore in a larger class of systems. A major tool hereby
is a comparison result of Cox, Fleischmann and Greven [CFG96] for systems of interacting diffusions,
which we will extend to the case of time-inhomogeneous and site-dependent diffusion coefficients.

1.2 Construction of the models and special cases of particular interest

We introduce a process with countably many components driven by a space-time inhomogeneous diffusion
mechanism and interacting via a linear coupling. Consider the system X = (Xt)t≥0 with

Xt = (Xt(i))i∈S ∈ E ⊆ IS , (1.1)

where I ⊂ [0,∞) is either a closed interval or [0,∞) itself and S is a countable or finite set, E is defined
in (1.4) below and X is defined by the following system of stochastic differential equations (SSDE):

dXt(i) = AXt(i)dt +
√

2gi,t(Xt(i))dWt(i), i ∈ S , X0 = x0 ∈ E. (1.2)

The ingredients of this equation are the following:
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(i) A(i, j) or AT (i, j) = A(j, i) is the q–matrix of a rate 1 Markov chain on S. The former case arises
in spatial population genetics models where Xt(i) stands for the proportion of a certain type at site
i and where, in addition to local resampling, ancestors are chosen from other sites according to A.
The latter case refers to migration of particles according to A as considered in population dynamics
models where Xt(i) measures the number of particles at site i. Note that only in this case the total
mass 〈Xt, 1〉 is a martingale (if finite).

We write at = exp(tA), t ≥ 0 for the semigroup generated by A.

(ii) {(Wt(i))t≥0, i ∈ S} is an independent family of standard Brownian motions.

(iii) The collection {(gi,t)t≥0, i ∈ S} of diffusion functions each taking values in [0,∞) satisfies

• gi,t is locally Lipschitz continuous for all i ∈ S, t ≥ 0,

• t 7→ gi,t(x) is in D([0,∞), R) and is continuous except at isolated points, for all
i ∈ S, x ∈ R,

• gi,t(x) = 0 for x in the boundary of I,

• for all T > 0 and i ∈ S, there exists a constant CT (i) < ∞ such that

gi,T (x) ≤ CT (i)(1 + x2).

(1.3)

(iv) The state space E is defined as a Liggett-Spitzer space (see [LS81]):

E = L1(S, γ) =
{
x ∈ IS : 〈γ, x〉 < ∞

}
, (1.4)

where γ is a strictly positive measure on S satisfying

γA ≤ Mγ, (1.5)

for some M < ∞. (Note that such a γ always exists (cf. [LS81] or [CFG96]). Also note that if I is
a bounded interval then (1.4) is void since we can pick for γ any finite strictly positive measure.)

We are now ready to show that our process X is well-defined.

Theorem 1 (Existence and Uniqueness) There exists a unique strong solution X of (1.2) with
Xt ∈ E ∀ t ≥ 0. This process X is a Markov process.

Remark 1.1 If we allow in (1.2) initial conditions Xs = x0 ∈ E for all s then the process X is a strong
Markov process.

In the rest of this paper we focus on a special case of particular interest, which is of the following
form. We think of X as a process in a randomly fluctuating medium, where the medium defines for
example branching or resampling rates which are varying in time and space. However the randomness of
theses rates we can bring in later. The basic set-up in this case is therefore the following. We are given
a collection

{(Ht(i))t≥0, i ∈ S} (1.6)

of functions (the rates) which are piecewise continuous. Then we put:

gi,t(x) = Ht(i)g(x), i ∈ S, t ≥ 0, (1.7)

where g is a function satisfying

• g is locally Lipschitz,
• g(x) = 0 for x in the boundary of I,

• g(x) ≤ C(1 + x2) ∀ x ∈ I.

(1.8)
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This construction should be viewed as simply choosing in every point a time and space dependent con-
stant in front of g. This constant will be generated by a random process H which evolves autonomously.
To be clear at this important point, the construction of our model can be viewed as a two–stage experi-
ment:

(1) Choose a realization of H.

(2) For given H sample X.

(Note that for every T > 0, i, j ∈ S, and fixed (Hk(t), t ≤ T ), k 6= i, one can show that the random
variable (Xj(t), t ≤ T ) is a continuous function of (Hi(t), t ≤ T ), considered as a map from L1([0, T ]) →
L1([0, T ]×Ω), where Ω is the underlying probability space. In particular L[X|H] is a measurable function
of H.)

Two particular choices for g and H are of special interest since they are easier to study and thus will
serve later as the reference models for the comparison arguments.
Examples (Fisher-Wright and Branching diffusions with time-space fluctuating rates)

Of particular interest for both applications and as mathematical tool are the following two choices of
g for the process X itself, which specializes (1.7):

I = [0, 1], gc
FW (x) = c · x(1− x), (1.9)

I = [0,∞), gc
B(x) = c · x, (1.10)

(c > 0 a constant). The functions gc
FW and gc

B are known as the diffusion coefficients for the Fisher–
Wright diffusion and Feller’s branching diffusion, respectively.

Next we need to specify the medium in these cases. A typical situation in the context of (1.9) or
(1.10) uses for the process generating the medium (that is, for the diffusion function) the following: the
process H is itself a solution of our SSDE of the type (1.2) with gi,t(x) = g̃(x) for all i ∈ S and t ≥ 0
where g̃ satisfies the requirements of (1.8).

If g̃(x) = x, that is, in the situation (1.10), one obtains a reactant-catalyst system, the branching
diffusion Ht = (Ht(i), i ∈ S) describes the mass of the catalyst at i at time t and the process X the
mass of the reactant. In the context of (1.9) one has at fixed population size two types of reactants and
the process X describes the relative proportion of one of them.

Another important choice is g̃(x) = x(1 − x). In this case the catalyzing system involves two types
of which only one is able to catalyze. For technical reasons (cf. [GKW01]) we will consider here the case
where H is given by a voter model on S, which can be viewed as the limiting dynamics of gc

FW as c →∞.

1.3 A comparison theorem for time-inhomogeneous interacting diffusions

We continue with preparing a tool for the analysis of the above introduced models. The goal is to compare
the distributions of two processes X1 and X2 which satisfy the following three conditions:

(i) they start in the same initial point X0 ∈ E,

(ii) they both evolve according to (1.2), but based on two different collections of diffusion functions
{(g1

i,t(x))t≥0, i ∈ S, x ∈ I} and {(g2
i,t(x))t≥0, i ∈ S, x ∈ I} respectively,

(iii) those collections of diffusion functions satisfy

g1
i,t ≥ g2

i,t ∀ i ∈ S, t ≥ 0. (1.11)

The idea is now that (compare [CFG96]) more noise in the system, in the sense of (1.11), means a more
spread out distribution of the process X1 compared to X2 at every time point. To define properly the
notion of one distribution to be “more spread out” than another one, we use cones of functions. The set
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of all nonnegative convex functions on IS looks like a natural candidate. However this class is for our
purposes too small since it does not have the needed conservation properties under the semigroup of the
evolution.

Let C2,b,f (E) denote the space of bounded twice continuously differentiable functions F : E → R with
bounded first and second derivatives such that F depends on only finitely many coordinates. Further
denote by C+

2,b,f (E) the subspace of nonnegative functions, and write Di for the partial derivative with
respect to the component at site i.

Definition 1.2 (Function cone) We introduce the following cones of functions:

F := {F ∈ C+
2,b,f (E) : DiDjF ≥ 0, i, j ∈ S},

F↑ := {F ∈ F : DiF ≥ 0, i ∈ S},
F↓ := {F ∈ F : DiF ≤ 0, i ∈ S}.

(1.12)

Note that F = F↓ if I = [0,∞) since f ∈ F is bounded and convex in each coordinate.
The cone F of functions is most suited for systems where the single components take values in [0,∞)

or in a bounded interval. (For systems whose components take values in all of R requirements of convexity
and boundedness like in the definition of F would be difficult to reconcile – that is why we made the
global assumption I ⊂ [0,∞).)

Important examples for functions in F are:

(i) For λ ∈ [0,∞)S , and λ vanishing outside a finite set, define Fλ ∈ F↓ by

Fλ(ξ) = exp(−〈λ, ξ〉). (1.13)

(ii) If I is bounded, then for i, j ∈ S a function Fi,j ∈ F↑ can be defined by Fi,j(ξ) = ξ(i)ξ(j).

In the set-up just described we prove for systems given via (1.2):

Theorem 2 (Comparison)
Assume X l, l = 1, 2 are processes as described at the beginning of this subsection.

(a) If F ∈ F then
E[F (X1

t )] ≥ E[F (X2
t )] ∀ t ≥ 0. (1.14)

(b) If Fk ∈ F↑, k = 1, . . . , n or Fk ∈ F↓, k = 1, . . . , n then for 0 ≤ t1 ≤ · · · ≤ tn < ∞

E[F1(X1
t1) · · ·Fn(X1

tn
)] ≥ E[F1(X2

t1) · · ·Fn(X2
tn

)]. (1.15)

Remark 1.3 In the case I = [0,∞), the theorem is easily generalized to unbounded functions, such as
polynomials if X has sufficiently high moments.

Remark 1.4 The proof of (a) will be based on showing that F is preserved under the dynamics of X.
Thus monotonicity yields that also F↑ and F↓ are preserved. In order to show (b), one can proceed as
in [CFG96]. We only give a short outline here that makes clear why the Fi have to be in F↑ or F↓.

By an induction argument it is enough to show that F1 ·G2 ∈ F , where G2(x) := E[F2(Xt)|X0 = x].
Now

DiDjF1G2 = G2DiDjF1 + F1DiDjG2 + (DiF1)(DjG2) + (DjF1)(DiG2).

The first two terms are non-negative since F1, G2 ∈ F . Now use the assumption F1, F2 ∈ F↑ or F1, F2 ∈
F↓ (which implies G2 ∈ F↑ or G2 ∈ F↓ respectively). Hence also the third and fourth term are non-
negative.
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1.4 Application of the comparison result to the longtime behavior

The most important use of the comparison theorem is to verify universality properties in the longterm
behavior. We continue with systems of the form gi,t = Ht(i)g. However in this section we change a bit
the point of view. Our main interest is now in the law of the bivariate process of the interacting diffusion
X together with the medium H.

As our first application we determine the longtime behavior of interacting diffusions in a voter-medium,
where the index set S is Z2 or Z and the diffusion function g is quite general.

Recall that the voter model is a {0, 1}Zd

-valued Markov process evolving as follows:

(i) Each site has an independent clock ringing after successive independent exponential waiting times.

(ii) Whenever the clock rings at a site i one of the nearest neighbors of i is chosen at random and i
assumes the value of that neighbor.

We will henceforth assume that the q–matrix A of X is also nearest neighbor.
Assume that I = [0, 1] and gi,t(x) = Ht(i)g(x), where the process H is a voter model with

L[H0] = πθ1 , (1.16)

where πθ1 = ((1− θ1)δ0 + θ1δ1)⊗Zd

. We start X in the constant state:

X0 = θ21. (1.17)

In dimension 1 and 2 the homogeneous system converges in law to θ2δ1 + (1− θ2)δ0. The same holds
for the voter model with θ2 replaced by θ1. In dimension d ≥ 3 both systems approach equilibrium
states which are translation invariant and shift ergodic with densities θ2 respectively θ1. The behavior
for d = 1, 2 is very different in random medium.

We begin describing the features which are common to both d = 1 and d = 2.

Theorem 3 (Voter medium, I = [0, 1]) Assume that d = 1 or d = 2. Then there exist (nontrivial)
[0, 1]–valued random variables H̃ and X̃ such that for all choices of the diffusion functions g in (1.7)
which are Lipschitz functions on [0, 1] with g(0) = g(1) = 0, g(x) > 0 for x ∈ (0, 1)

Lπθ1⊗δθ21
[(Ht, Xt)]

t→∞=⇒ L
[
(H̃1, X̃1)

]
. (1.18)

(By =⇒ we denote weak convergence of probability measures, where we assume the space {0, 1}Zd×[0, 1]Z
d

to be equipped with the product topology. This topology is equivalent to the topology induced by the
Liggett-Spitzer norm since the coordinates are bounded. Hence (1.18) is a statement about convergence
of finite dimensional distributions.)

Next we identify the limiting laws appearing on the r.h.s. of (1.18) separately in the cases d = 1 and
d = 2. We shall derive both these theorems with the help of Theorem 2 part (a) from results in [GKW01],
where the assertion was proved for the case g = gc

FW .

Theorem 4 (Voter medium, I = [0, 1]) For d = 2 the random variables H̃ and X̃ can be represented
as

H̃ = Y 1
∞, X̃ = Y 2∫∞

0 p(Y 1
s )ds, (1.19)

where Y 1 and Y 2 are two independent standard Fisher-Wright diffusions starting in Y 1
0 = θ1 and Y 2

0 = θ2

and p : [0, 1] → [0, 1] is the unique solution of

p′′(x) = −2
p(x)(1− p(x))

x(1− x)
, x ∈ (0, 1),

p(0) = 0, p(1) = 1.

(1.20)
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Consider now the case d = 1. The result in (1.18) in d = 1 can be explained and the limiting law can
be calculated via a stronger statement namely a rescaling result, which we can obtain using now part (b)
of our Theorem 2.

Theorem 5 (Voter medium, I = [0, 1]) For d = 1

Lπθ1⊗δθ21

[((
Hst(bz

√
tc), Xst(bz

√
tc)

)
z∈R

)
s≥0

]
t→∞=⇒
fdd

L [(H∞, X∞)] , (1.21)

where the limiting process ((H∞
s (z), X∞

s (z))z∈R)s≥0 is independent of the choice of g.

The case d ≥ 3 can be treated with coupling techniques for all g so that we get automatically the
universality in the behavior for t →∞. This was explained in [GKW01] and gives here that for all g as
in Theorem 3:

Lπθ1⊗δθ21
[(Ht, Xt)]

t→∞=⇒ νθ, θ = (θ1, θ2) (1.22)

where νθ is an extremal translation-invariant, invariant measure which has intensity θ = (θ1, θ2) and is
ergodic.

The next class of examples are catalyst-reactant systems of the branching type, i.e. we are concerned
with the case of components of Xt with values in I = [0,∞). Again we consider the case S = Zd. The
medium is now a branching random walk with irreducible random walk q–matrix B.

A branching random walk (BRW) is a particle system on Zd, i.e. a Markov process on E∩NZd

0 evolving
according to the following rules:

• Particles migrate independent of each other according to B.

• Every particle has an exponential life time, independent of those other particles. At the end of its
life time the particle is either removed or replaced by a random number of new particles at that
site.

• Migration and branching occur independently of each other.

As an initial state for the bivariate evolution (Ht, Xt)t≥0 we choose H(θ1) ⊗ δθ21, where H(θ) is a
Poisson system with intensity θ. Now we have constructed a well-defined catalyst-reactant system and
we can study its longtime behavior. Again as in the Fisher-Wright model this will be highly dimension
dependent.

Both BRW and interacting Feller’s branching diffusions (gi,t = gc
B) have the property that they become

locally extinct in d = 1, 2 (more generally, if the symmetrized random walk kernel is recurrent) while
for d ≥ 3 (transient symmetrized random walk) an equilibrium state is approached which is translation
invariant, shift ergodic and has the same intensity as the initial state. Again the behavior is different in
random medium.

We prove that in one-dimensional situations the migration is the strongest force. It produces in the
longtime limit constant states with preserved mass for the reactant X. This contrasts with the local
extinction which occurs in the case of constant branching rates.

Theorem 6 Assume that d = 1 and A = B generate simple symmetric random walk. Further assume
that g : [0,∞) → R+ is locally Lipschitz and there is a constant C such that

g(x) ≤ Cx, x ∈ [0,∞). (1.23)

Then
LH(θ1)⊗δθ21

[(Ht, Xt)]
t→∞=⇒ δ(0,θ21). (1.24)
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(Note that again =⇒ denotes weak convergence w.r.t. the product topology in the state spaces of H and
X. Also, due to spatial homogeneity, weak convergence is for the used initial states equivalent to weak
convergence w.r.t. the topology induced by the Liggett-Spitzer norm. This is, of course, true also in the
next theorem.)

In the case of d = 2 we obtain limiting states for the law of the reactant L[Xt] as t → ∞ which are
as in d = 1 concentrated on constant states but now the constant is random.

Theorem 7 Assume that d = 2 and A = B generate simple symmetric random walk. Further assume
that g : [0,∞) → R+ is locally Lipschitz and there are constants c, C > 0 such that

cx ≤ g(x) ≤ Cx, x ∈ [0,∞). (1.25)

Then any weak limit point ν(d(η, ξ)) of LH(θ1)⊗δθ21
[(Ht, Xt)] as t →∞ is concentrated on states with

η ≡ 0 and ξ(i) = ξ(j), i, j ∈ S. (1.26)

Furthermore
∫

ξ(0)ν(d(η, ξ)) = θ2 and
∫

ξ(0)2ν(d(η, ξ)) = ∞.

For the case d ≥ 3 (or A, B transient after symmetrization) we have again translation invariant,
shift-ergodic extremal equilibrium states which have the same intensity as the initial state.

2 Existence, Uniqueness and Comparison

2.1 Proof of Theorem 1

First we remark that uniqueness of the solution of (1.2) is proved with a Gronwall argument like in [SS80],
Thm. 3.2, but now applied to E[〈γ, |Xt −X ′

t|〉] for two solutions X and X ′ of (1.2) with γ from (1.4).
The next point is to show existence. For that purpose we follow the classical route and consider first

systems indexed by finite sets and then we pass to the limit.

Step 1. For a finite set Λ ⊆ S and i, j ∈ Λ, we put AΛ(i, j) := A(i, j). Moreover, for a fixed x0 ∈ E,
let xΛ

0 denote its restriction to IΛ. Consider the finite-dimensional system

dXΛ
t (i) = AΛXΛ

t (i)dt +
√

2gi,t(XΛ
t (i))dWt(i), i ∈ Λ ; XΛ

0 = xΛ
0 . (2.1)

Combining Thm. V 20.1 and Thm. V 23.5 of [RW87] we conclude that a (weak) solution XΛ of (2.1)
exists (note that the boundedness assumption in [RW87] can be met by a stopping argument). The same
reasoning as in the proof of [SS80], Thm. 3.1 and Thm. 3.2, shows that XΛ

t remains in IΛ a.s. for all t,
and that in fact XΛ is the unique strong solution of (2.1) (where we use a suitable stopping argument to
meet the boundedness assumptions on the diffusion coefficients in [SS80], namely Assumption [B-1] and
[B-1]’).

Step 2. In order to consider sequences of processes corresponding to different sets Λ and in order
to compare them we use in the sequel (2.1) for different sets Λ, but driven by the same sequence of
independent Wiener processes W (i), i ∈ S.

We claim that for Λ ⊆ Λ′ ⊆ S, Λ′ finite, the following holds

XΛ
t (i) ≤ XΛ′

t (i) a.s., i ∈ Λ, t ≥ 0. (2.2)
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Indeed, using Le Gall’s local time technique for proving the Ikeda-Watanabe comparison result and
proceeding similarly as in the proof of Thm. V 43.1 in [RW87] we arrive at

0 ≤ E
∫ t

0

1{XΛ
s (i)−XΛ′

s (i)>0}(A
ΛXΛ

s (i)−AΛ′XΛ′

s (i)) ds

≤ E
∫ t

0

1{XΛ
s (i)−XΛ′

s (i)>0}A
Λ(XΛ

s −XΛ′

s )(i) ds

= E
∫ t

0

AΛ(i, i)(XΛ
s (i)−XΛ′

s (i))+ +
∑
j 6=i

AΛ(i, j)(XΛ
s (j)−XΛ′

s (j)) ds

≤ E
∫ t

0

AΛ((XΛ
s −XΛ′

s )+)(i) ds.

(2.3)

Note that in the last inequality we made use of the fact that AΛ(i, j) ≥ 0 if i 6= j. Hence,

0 ≤ E
∑
i∈Λ

(XΛ
t (i)−XΛ′

t (i))+ ≤ |Λ|
∫ t

0

E

[∑
i∈Λ

(XΛ
s (i)−XΛ′

s (i))+

]
ds .

Using Gronwall’s lemma this shows (2.2).
Thus there exists the monotone limit Xt

XΛ
t (i) ↑ Xt(i) a.s. (2.4)

Since E[|XΛ′

t (i)−XΛ
t (i)|] = (aΛ′

t −aΛ
t )x0(i), Xt(i) is also the L1–limit of XΛ

t . Note that aΛ
t (i, j) ↑ at(i, j)

as Λ ↑ S. Hence monotone convergence yields

E[Xt(i)] = lim
Λ↑S

E[XΛ
t (i)] = lim

Λ↑S

∑
j∈Λ

aΛ
t (i, j)x0(j) = atx0(i).

Thus
E[〈γ, Xt〉] = 〈γat, x0〉 ≤ eMt〈γ, x0〉, t ≥ 0, (2.5)

Hence Xt takes values in E.

Step 3. In the next step of the proof we will show that X is indeed a solution of (1.2). For this purpose
we fix i ∈ S and localize with the stopping times τN := inf{t : 〈γ, Xt〉 ≥ N}, N ∈ N. Note that X
inherits the Markov property from XΛ. (In fact, for t > s, XΛ

t is a measurable function of XΛ
s and

σ(Wr(i)−Ws(i), r ∈ [s, t], i ∈ Zd) and hence also Xt depends only on Xs and the Brownian increments
between time s and t.) Hence by (2.5) the process (e−tM 〈γ, Xt〉)t≥0 is a supermartingale, and Doob’s
inequality yields τN →∞ as N →∞ almost surely.

Note that ∫ t∧τN

0

AΛXΛ
s (i)ds =

∫ t∧τN

0

∑
j∈Λ, j 6=i

A(i, j)XΛ
s (j)ds−

∫ t∧τN

0

XΛ
s (i)ds. (2.6)

By dominated convergence the first term on the r.h.s. of (2.6) converges, as Λ ↑ S, almost surely to∫ t∧τN

0

∑
j∈S, j 6=i

A(i, j)Xs(j)ds, whereas the second term on the r.h.s. of (2.6) converges a.s. to
∫ t∧τN

0

Xs(i)ds.

Overall, we have ∫ t∧τN

0

AΛXΛ
s (i) ds −→

∫ t∧τN

0

AXs(i) ds a.s. as Λ ↑ S. (2.7)
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On the other hand,

E

[(∫ t∧τN

0

√
2gi,s(XΛ

s (i)) dWs(i)−
∫ t∧τN

0

√
2gi,s(Xs(i)) dWs(i)

)2
]

(2.8)

= E

[∫ t∧τN

0

(√
2gi,s(XΛ

s (i))−
√

2gi,s(Xs(i))
)2

ds

]
−→ 0 as Λ ↑ S.

For fixed N this shows a.s. convergence of the martingale term in (2.1) as Λ ↑ S, at least along a suitable
subsequence. Hence both terms on the r.h.s of (2.1) converge adequately as Λ ↑ S. Now letting N →∞
shows that X is a solution of (1.2). �

2.2 Proof of Theorem 2

Our task is to generalize the result in [CFG96] to diffusion functions which depend both on the site and
the time. In fact, we only show statement (a), since the proof for statement (b) is the same as provided in
[CFG96] (see also Remark 1.4). For that purpose let us recall briefly the basic idea in the homogeneous
case gi,t ≡ g.

Let (Sgl

t )t≥0, l = 1, 2 be the semigroups belonging to the system of interacting diffusions with diffusion
function gl, l = 1, 2 where g1 ≥ g2 and let Ggl

, l = 1, 2 denote the corresponding generators. From the
fact that (because of g1 ≥ g2) on F the inequality (Gg1 −Gg2

) ≥ 0 holds, we get, using the positivity of
Sgl

t and the formula of partial integration for semigroups, that for f ∈ F

Sg1

t (f)− Sg2

t (f) =
∫ t

0

Sg1

t−s(G
g1
−Gg2

)Sg2

s (f)ds ≥ 0, f ∈ F , (2.9)

provided that we can prove
Sg2

t (f) ∈ F . (2.10)

From these two relations one can derive the assertion using the Markov property.
The assertion (2.10) was shown in [CFG96] first for finite S and smooth gl, i.e.

√
gl ∈ C2 and gave

the comparison in those cases. Then one removed the smoothness requirement and then the restriction
|S| < ∞ was removed by approximation arguments to get the general case.

Accordingly we will show that we can generalize the results of [CFG96]. First we show (2.10) for finite
smooth systems in frozen media (Step 1) and then extend this to piecewise constant (in time) media (Step
2). Clearly this implies (1.14) under the restrictions.

The time-inhomegeneous medium would require in (2.9) to work with time-inhomogeneous generators.
We avoid this little technicality by generalizing (1.14) rather than (2.10) when we successively drop the
assumptions smoothness (Step 3), piecewise constantness (Step 4), and finiteness (Step 5).

Step 1. Let us consider a finite set Λ of sites, a q–matrix B (or BT ) on Λ, and (site-dependent but
time-independent) diffusion functions gi fulfilling

• √
gi is twice continuously differentiable,

• there exists a bounded interval (a, b) ⊆ I such that all the gi vanish outside (a, b).
(2.11)

Consider (for fixed z ∈ IΛ) the (unique strong) solution of the system

dXt(i) = BXt(i)dt +
√

2gi(Xt(i)) dWt(i), i ∈ Λ, X0 = z. (2.12)

Then the same reasoning as in subsections 2.1 - 2.4 of [CFG96] shows that the semigroup associated with
(2.12) preserves the function cones F and F↑. In fact, they used Trotter’s formula to get the result from
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the one for the following two systems, which are special cases of the model:
(i) B = 0 (independent collection of diffusion processes without drift),
(ii) g ≡ 0 (pure deterministic system of differential equations).

Note that in (i) there is no interaction and therefore the result of [CFG96] does not depend on their
assumption that gi = g, i ∈ S. Furthermore (ii) has in our context exactly the same form. Hence (2.10)
still holds under the two assumptions of this Step 1.

Step 2. An induction argument based on the Markov property and the preservation of F and F↑ by
the semigroup of the process shows that the comparison result stated in Step 1 extends to space-time
dependent diffusion coefficients gi,t which are piecewise constant over time in the following sense:

For all T > 0, there exists a finite partition 0 =: t0 < t1 < . . . < tn := T,

and there exist g
(1)
i , . . . , g

(n)
i obeying (2.11), such that for all m = 1, . . . , n

and t ∈ [tm−1, tm), the function gi,t coincides with g
(m)
i .

(2.13)

Hence again (2.10) holds. Finally the rest of the argument that for the solutions X1, X2 of two systems
of the form (2.12) with the same B and z but different diffusion functions g1

i , g2
i obeying g1

i ≥ g2
i for all

i ∈ Λ the comparison relations (1.14) and (1.15) hold true, remains the same.

Step 3. Next, we extend the comparison result to systems of the form

dXt(i) = BXt(i)dt +
√

2gi,t(Xt(i)) dWt(i), i ∈ Λ, X0 = z. (2.14)

where the diffusion functions satisfy (2.13) but with (2.11) replaced by the requirement that for each
m = 1, . . . , n

• g
(m)
i is locally Lipschitz,

• g
(m)
i (x) = 0 for x in the boundary of I,

• g
(m)
i has at most quadratic growth (if I is unbounded).

(2.15)

This extension is accomplished by the SDE-version of the procedure given in [CFG96]. Consider smooth
gm,`

i positive on (a, b), i.e. obeying (2.11), such that gm,`
i → gi as m, ` →∞. Then by a coupling, arising

by using the same Brownian motions, one proves as in Section 2.1 that along suitable subsequences the
solutions converge. Then by the same argument as in (2.8) we get that the solutions of our equations
converge as m, ` → ∞ to a strong solution and hence by strong uniqueness to the solution. Hence the
comparison holds for systems as in (2.14) as well.

Step 4. An approximation procedure now extends the comparison result to systems of the form (2.14)
but with space-time dependent diffusion functions gi,t fulfilling assumption (1.3) only (instead of (2.13),
(2.15)). Indeed, consider for T > 0 a sequence of partitions Pn of [0, T ] whose mesh size tends to zero,
put for a partition (tnk ), say,

gn
i,t := gi,tn

k
if tnk ≤ t < tnk+1. (2.16)

Then apply (according to Step 2) the comparison result to solutions of (2.14) (with gn
i,t instead of gi,t),

and pass to the limit, again using tightness and uniqueness of the solution of (2.14).

Step 5. Before we pass to infinite systems we make the following observation. The comparison result from
Step 3 immediately extends to systems of the form (2.1) whose kernel, respectively the transposed kernel
(being the restriction of A to Λ), generates a sub-Markovian (instead of a Markovian) semigroup. To see
this, it suffices to introduce an auxiliary site ∆ /∈ Λ and to extend the system in (2.12) to Λ̃ := Λ ∪ {∆}
by choosing b and g∆,t as

B(i,∆) :=
∑
j∈Λc

A(i, j), B(∆, j) := 0, j ∈ Λ̃, XΛ
0 (∆) := 0, g∆,t := 0. (2.17)
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To complete the proof, it remains to pass from the finite to the infinite systems, i.e. from (2.1) to
(1.2). To this end, fix site- and time dependent diffusion functions g1

i,t, g
2
i,t meeting the conditions (1.3)

and obeying the relation (1.11). Then above observation yields that for each finite Λ ⊆ S, the comparison
result (i.e. the relations (1.14) and (1.15)) holds true for the solutions X1,Λ, X2,Λ of two systems of the
form (2.1) with kernel B the restriction of A to Λ and with the diffusion functions g1

i,t, g
2
i,t, respectively.

Finally, since (2.4) asserts convergence of the solutions of (2.1) towards that of (1.2) as Λ ↑ S, the
comparison relations (1.14) and (1.15) carry over from the solutions X1,Λ, X2,Λ to the solutions X1, X2

of their infinite-dimensional counterparts (1.2). This proves Theorem 2. �

3 Interacting diffusions in a voter medium

Proof of Theorem 3 and 4

In the special case g = g1
FW the statement of Theorem 4 was shown in [GKW01, Theorem 2]. Thus we

only have to proof Theorem 3 since Theorem 4 is a corollary of it and [GKW01, Theorem 2].
Let f ∈ C+

b ([0, 1]Z
d

), let R ⊂ Zd be finite and assume that λ ∈ [0,∞)Zd

is such that λ(i) = 0 for
i ∈ Zd \R. Recall that Fλ(ξ) = exp(−〈λ, ξ〉). Note that the expectations E[f(Ht)Fλ(Xt)] determine the
distribution of (Ht, Xt), hence it suffices to show the convergence of these expectations. We will do this
by obtaining bounds from above and below which turn out to agree. The bounds are based on the fact
that from [GKW01, Theorem 2 and 3] we know that the statement is true for g = gc

FW , c > 0 (recall
(1.9)).

Upper bound. Fix a g and note that there exists a c > 0 such that gc
FW ≥ g. Define Xc as X but with

gc
FW instead of g. From Theorem 2 we know that

E[f(Ht)Fλ(Xt)] ≤ E[f(Ht)Fλ(Xc
t )], t ≥ 0. (3.1)

Hence by [GKW01, Theorem 2 and 3]

lim sup
t→∞

E[f(Ht)Fλ(Xt)] ≤ lim
t→∞

E[f(Ht)Fλ(Xc
t )]

= E[f(H̃1)Fλ(X̃1)].
(3.2)

Lower bound. If θ2 ∈ {0, 1} then in (3.1) equality holds and we are done. We may thus assume
θ2 ∈ (0, 1). Let ε ∈ (0, 1) and define Iε = [εθ2, 1− ε(1− θ2)]. For c > 0 define

gc,ε
FW : [0, 1] → [0,∞), x 7→ c · (x− εθ2)+(1− ε(1− θ2)− x)+.

Choose c = c(ε) > 0 such that gc,ε
FW ≤ g and define Xc,ε as X but with gc,ε

FW instead of g. By Theorem 2
we have

E[f(Ht)Fλ(Xt)] ≥ E[f(Ht)Fλ(Xc,ε
t )], t ≥ 0. (3.3)

On the other hand Xc,ε really lives on (Iε)Zd

(since gcε
FW (x) = 0, x ∈ I \ Iε, and θ2 ∈ Iε). Hence it is

simple to check that the following scaling relation holds

L[Xc,ε|H] = L[εθ2 + (1− ε)Xc|H]. (3.4)

Thus we get
lim inf
t→∞

E[f(Ht)Fλ(Xt)] ≥ lim
t→∞

E[f(Ht)Fλ(εθ2 + (1− ε)Xc
t )]

= exp(−εθ2|R|)E[f(H̃1)F(1−ε)λ(X̃1)]

≥ exp(−εθ2|R|)E[f(H̃1)Fλ(X̃1)].

(3.5)

Now let ε → 0 and combine this with (3.2) to obtain

lim
t→∞

E[f(Ht)Fλ(Xt)] = E[f(H̃1)Fλ(X̃1)] (3.6)

as desired. �
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Proof of Theorem 5

The proof of Theorem 5 works similarly as the proof of Theorem 3 (and 4) and we only give a sketch
here.

Again for g = gc
FW the statement is proved in [GKW01]. For the general case we proceed as above.

Fix N ∈ N and time points s1, . . . , sN . For each i = 1, . . . , N choose a finite set Ri = {ri,1, . . . , ri,ni
} ⊂ R

and numbers µi,1, . . . , µi,ni ∈ [0,∞). For t > 0 define Rt
i = {bt1/2ri,jc : j = 1, . . . , ni} and λt

i ∈ [0,∞)Rt
i

by λt
i,bt1/2ri,jc = µi,j . Finally define

F t
i (ξ) = exp(−〈ξ, λt

i〉) = exp

− ni∑
j=1

µi,jξ(bt1/2ri,jc)

 .

Similarly define functions f t
i , i = 1, . . . , N with different choices of R and µ.

Now choose gc
FW ≥ g and define Xc as X but with g replaced by gc

FW . From Theorem 2(b) we know
that

E

[
N∏

i=1

f t
i (Htsi

)F t
i (Xtsi

)

]
= E

[
N∏

i=1

f t
i (Htsi

)E

[
N∏

i=1

F t
i (Xtsi

)
∣∣H]]

≤ E

[
N∏

i=1

f t
i (Htsi

)E

[
N∏

i=1

F t
i (Xc

tsi
)
∣∣H]]

= E

[
N∏

i=1

f t
i (Htsi

)F t
i (Xtsi

)

]
.

This yields an upper bound as in the proof of Theorems 3 and 4. For the lower bound use functions gc,ε
FW

and again proceed as above. We omit further details. �

4 Catalyst-reactant systems of the branching type

4.1 Preparation: Some facts on branching systems

Recall that here the medium H is branching random walk. Consider the solution Xc of (1.2) with
gi,t = Ht(i)gc

B , where gc
B(x) = c · x, x ≥ 0. In order to show Theorem 6 and 7 one would like to use

such an Xc as a reference system. Thus we need to show the statements for Xc first and then use the
comparison theorem.

In the literature the corresponding statements have been shown for catalytic branching random walk
(ξc

t )t≥0 instead of Xc. In this process, particles perform independent random walks (with the transposed
kernel AT ) and die with rate cHt(i). At the place of death either no or two new particles are created,
each possibility occurring with probability 1

2 . This model has been investigated in [GKW99] in quite
some detail. It was shown that in d = 1 and with A and B symmetric simple random walk

LH(θ1)⊗H(θ2)[(Ht, ξ
c
t )]

t→∞=⇒ δ0 ⊗H(θ2). (4.1)

In d = 2 (and again A and B symmetric simple random walk)

LH(θ1)⊗H(θ2)[(Ht, ξ
c
t )]

t→∞=⇒ δ0 ⊗E[H(ζc)], (4.2)

where ζc is a random variable with E[ζc] = θ2 and Var[ζc] = ∞. More precisely, ζc can be represented
as the density of catalytic super Brownian motion (in d = 2) at time c at the origin, say (see also [FK99]
or [Kle00]).

Now there is a simple connection between ξc and Xc: roughly speaking we obtain ξc
t from Xc

t as a
Poisson point process on Zd with intensity Xc

t . More precisely, (see, e.g., [Kle98, (4.19)] or [Kle01])

LH(θ1)⊗δθ21
[(Ht,H(Xc

t ))] = LH(θ1)⊗H(θ2)[(Ht, ξ
c
t )]. (4.3)
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Thus (4.1) and (4.2) translate into

LH(θ1),θ21[(Ht, X
c
t )] t→∞=⇒

{
δ0 ⊗ δθ21, d = 1,

δ0 ⊗E[δζc1], d = 2.
(4.4)

where ζc is a random variable with E[ζc] = θ2 and E[ζc]2 = ∞.

4.2 Proof of Theorem 6

Recall the notation from the last subsection. Fix a function g and C > 0 such that g ≤ gC
B . By (4.4) for

i ∈ S and λ ≥ 0
lim

t→∞
E[exp(−λXC

t (i))] = exp(−λθ2). (4.5)

Thus by the comparison theorem

lim sup
t→∞

E[exp(−λXt(i))] ≤ exp(−λθ2). (4.6)

However, for any weak limit point ν of L[Xt] as t →∞ we have ϑ :=
∫

x ν(dx) ≤ θ2. Jensen’s inequality
now yields ∫

exp(−λx) ν(dx) ≥ exp(−λϑ) ≥ exp(−λθ2).

Together with (4.6) this implies

lim
t→∞

E[exp(−λXt(i))] = exp(−λθ2), (4.7)

and hence the theorem is proved. �

4.3 Proof of Theorem 7

First of all recall from (4.4) that for g = gc
B

LH(θ1)⊗δθ21
[(Ht, X

c
t )] t→∞=⇒ δ0 ⊗E[δζc1], (4.8)

and that E[ζc] = θ2, Var[ζc] = ∞. In other words, for finite R ⊂ Z2 and λ, λ′ ∈ [0,∞)R

lim
t→∞

E
[
e−〈λ

′,Ht〉−〈λ,Xc
t 〉

]
= E

[
e−〈λ,1〉ζc]

. (4.9)

Furthermore, for fc(ρ) := E[e−ρζc

], ρ ≥ 0, the first and second derivatives are

f ′c(0) = −θ2, f ′′c (0) = ∞. (4.10)

Now we come back to the general situation where c > 0 and C > 0 are such that gc ≤ g ≤ gC . In a first
step we consider only one coordinate. In the second step we show that in the longrun all coordinates are
close with high probability.

Step 1 (One Coordinate).
Let µ be a weak limit point of LH(θ1)⊗δθ21

[Xt]. By the comparison theorem for λ as above

fC(〈λ, 1〉) ≤
∫

µ(dξ) exp(−〈λ, ξ〉) ≤ fc(〈λ, 1〉). (4.11)

In particular, for f(ρ) :=
∫

µ(dξ) exp(−ρξ(0)), we have f ′(0) = −θ2 and f ′′(0) = ∞. Hence∫
µ(dξ)ξ(0) = θ2,

∫
µ(dξ)ξ2 = ∞. (4.12)
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We are done if we can show that µ–almost surely ξ(i) = ξ(j). Note that (4.11) alone is not sufficient to
show that the coordinates of ξ all agree. In fact, there are very simple counterexamples. Thus we have
to rely on a different argument.

Step 2 (The Coordinates Agree in the Longrun).
Fix two sites i1, i2 ∈ Z2 and ε > 0. We want to show that for T large enough P[|XT (i1)−XT (i2)| > ε] < ε.
The idea is that for large T the i1 and i2 have experienced for a longtime vanishing branching rate and
hence become equal by the mass flow.

Let S > 0 be large enough that∑
k∈Z2

|aS(i1, k)− aS(i2, k)| ≤ ε2

12θ2C
. (4.13)

Hence
P

[
|aSXT−S(i1)− aSXT−S(i2)| >

ε

3

]
≤ 3

ε
E

[
|aSXT−S(i1)− aSXT−S(i2)|

]
≤ ε

4θ2
E[XT−S(0)]

=
ε

4
.

(4.14)

Fix R > 0 such that ∫ S

0

du
∑

‖k‖>R

au(i1, k)2 + au(i2, k)2 <
ε3

36θ2C
. (4.15)

For T > 0 define the event

AS,R(T ) =
{
Ht(k) = 0, t ∈ [T − S, T ], ‖k‖ ≤ R

}
. (4.16)

From [GKW99, Proposition 1.5] we know that P[AS,R(T )] T→∞−→ 1. Hence we may assume that Tε is such
that

sup
{
P[AS,R(T )c], T ≥ Tε

}
<

ε

4
. (4.17)

Note that for any i ∈ Z2

E[(XT (i)− aSXT−s(i))2|H] =
∫ S

0

du
∑
k∈Z2

au(i, k)2E[g(XT−u(k))|H]. (4.18)

Combining this with (4.16) and (4.15) and using the assumption g(x) ≤ Cx, x ≥ 0, and that E[Xr(k)] =
θ2, r ≥ 0, k ∈ Z2, we get for l = 1, 2

E
[
(XT (il)− aSXT−S(il))2;AS,R(T )

]
≤

∫ S

0

du
∑

‖k‖>R

au(il, k)2E[g(XT−u(k))]

≤ ε3

36
.

(4.19)

This yields
P

[
|XT (il)− aSXT−S(il)| > ε/3; AS,R(T )

]
≤ ε

4
. (4.20)

Thus for all T > Tε

P[|XT (i1)−XT (i2)| > ε] ≤ P
[
|aSXT−S(i1)− aSXT−s(i2)| >

ε

3
]

+
2∑

l=1

P
[
|XT (il)− aSXT−S(il)| >

ε

3
;AS,R(T )

]
+ P[AS,R(T )c]

≤ ε

4
+ 2

ε

4
+

ε

4
= ε.

(4.21)

This concludes the proof of Theorem 7. �
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