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Abstract

We consider a repulsion–attraction model for a random polymer of finite length in Zd. Its law is
that of a finite simple random walk path in Zd receiving a penalty e−2β for every self-intersection,
and a reward eγ/d for every pair of neighbouring monomers. The non-negative parameters β and γ
measure the strength of repellence and attraction, respectively.

We show that for γ > β the attraction dominates the repulsion, i.e., with high probability the
polymer is contained in a finite box whose size is independent of the length of the polymer. For
γ < β the behaviour is different. We give a lower bound for the rate at which the polymer extends
in space. Indeed, we show that the probability for the polymer consisting of n monomers to be
contained in a cube of side length εn1/d tends to zero as n tends to infinity.

In dimension d = 1 we can carry out a finer analysis. Our main result is that for 0 < γ ≤
β− 1

2
log 2 the end-to-end distance of the polymer grows linearly and a central limit theorem holds.

It remains open to determine the behaviour for γ ∈ (β − 1
2

log 2, β].
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0 Introduction and Main Results

0.1 Model and Motivation

A polymer is a long chain of molecules (monomers) with two characteristic phenomenological properties:
an irregular shape and a certain stiffness. The chemical motivation is that the monomers are lined up
and are connected by “bonds” of the same length. For example, carbon-based polymers like polyethylene
or polystyrene have a bond length of 1.54 ·10−10 meters. The stereometric angles of neighbouring bonds,
however, are subject to randomness. Irregularity and stiffness are a result of entropy and repulsive and
attractive forces between the monomers (and possibly a medium).

In material sciences an important question is to determine the end-to-end distance of the polymer
and the average distance of monomers (“coil radius” or “radius of gyration”). We address this question
in the present paper for a mathematical model of a random polymer.

In the simplest mathematical model for a random polymer it is assumed that the monomers are
located at sites S0, S1, . . . , Sn ∈ Zd and that |Si − Si−1| = 1, i = 1, . . . , n. S = (Si)n

i=0 is assumed to be
a random variable. Its distribution is derived from that of a simple random walk (starting at S0 = 0),
denoted by P , by introducing interactions between monomers. More precisely, we define a Hamiltonian
Hn that models repulsive and attractive forces. The distribution of the polymer is obtained by taking
the Boltzmann distribution with respect to the simple random walk law.

For the model we consider in this paper we fix two parameters β, γ ≥ 0 and define the Hamiltonian
by

Hn(S) = Hβ,γ
n (S) = β

n∑

i,j=0

1{|Si−Sj |=0} −
γ

2d

n∑

i,j=0

1{|Si−Sj |=1}. (0.1)

For n ∈ N the new path law Qβ,γ
n is

dQβ,γ
n

dP

(
(Si)

n
i=0

)
=

1

Zβ,γ
n

e−Hn(S), (0.2)

where (with E denoting the expectation with respect to P ) Zβ,γ
n is the normalizing constant or partition

function
Zβ,γ

n = E
(
e−Hn(S)

)
. (0.3)

The law Qβ,γ
n is called the n-polymer measure with strength of repellence β and strength of attraction γ.

Qβ,γ
n gives a penalty e−2β to every pair of monomers at the same site and a reward eγ/d for every

pair of neighbouring monomers. The penalty models polarization of the monomers, or the so-called
excluded-volume-effect which means that around each monomer there is a certain space in which it is
energetically unfavourable to have another monomer. This space is called the excluded volume. For an
explanation of the excluded-volume-effect and other properties of polymers from a physicist’s point of
view, see Vanderzande (1998).

The reward models attractive forces between monomers that are of short range, the so-called van
der Waals forces. For an expository paper on mathematical polymer models, see den Hollander (1996).
For a survey of one-dimensional polymer models, see van der Hofstad and König (2000).

The above model has received a lot of attention in the case where γ = 0, in which case it is called
the Domb-Joyce model or the weakly self-avoiding walk. This is the case of a good solvent. In real
situations, this corresponds to high temperatures. At lower temperatures the quality of the solvent
deteriorates. Therefore, the excluded-volume-effect plays a less profound role, and the attractive forces
between the monomers become more important. The temperature at which this phase transition occurs
is called the θ-point. See Vanderzande (1998), Chapter 8.

It is a folklore conjecture that the following scaling for the end-to-end distance |Sn| holds for the
weakly self-avoiding walk (γ = 0):
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Conjecture 0.1 For every β ∈ R+

EQβ,0
n

[|Sn|2
] ∼ Dn2νSA (n →∞), (0.4)

where D = D(β, d) > 0 is some amplitude and νSA = νSA(d) some critical exponent. The latter is
believed to be independent of β and to assume the values

νSA =





1 d = 1
3
4 d = 2
0.588 . . . d = 3
1
2 d > 4.

(0.5)

For d = 4 it is believed that there are logarithmic corrections to the above behaviour, i.e.,

EQβ,0
n

[|Sn|2
] ∼ Dn(log n)1/4 (n →∞). (0.6)

See Madras and Slade (1993), Section 2, or Vanderzande (1998), Section 2, for a heuristic argument due
to Flory (1949) that produces the right exponents, except in dimension 3, where the heuristic argument
gives the slightly larger value 3

5 . In Vanderzande (1998), Sections 3 and 4, there are also other heuristic
explanations for the values of ν in dimensions 2 and 3.

For d > 4, two independent simple random walk paths typically intersect only finitely often. Conjec-
ture 0.1 states that in this case the interaction is typically of short range and on a macroscopic scale the
entropy is the decisive quantity. Therefore, we observe ordinary diffusive behaviour. Here dimension 4
is the critical dimension, where the behaviour is thought to be Gaussian with logarithmic corrections.

In lower dimensions the range of the interaction is larger and no Gaussian limit is expected. Finally,
in dimension d = 1 the end-to-end distance behaves ballistically, i.e., grows linearly in the number of
monomers.

For d ≥ 5, the lace expansion was used to prove the above conjecture (see e.g. Brydges and Spencer
(1985), Hara and Slade (1992 a,b) or Madras and Slade (1993)). In dimension d = 1, Greven and den
Hollander (1993) showed the ballistic behaviour of the polymer (law of large numbers). Later König
(1996) was able to show a central limit theorem which we cite here as a basic theorem.

Denote by N (0, 1) the standard normal distribution.

Theorem 0 For every β ∈ R+ there exist θ∗ = θ∗(β) ∈ (0, 1), σ∗ = σ∗(β) ∈ (0,∞), such that

lim
n→∞

Qβ,0
n

( |Sn| − θ∗n
σ∗
√

n
∈ ·

)
= N (0, 1). (0.7)

It is reasonable to expect that β 7→ θ∗(β) is increasing. However this is still an open problem. It is
known that β 7→ θ∗(β) is analytic as a map from (0, 1) to (0, 1) (see Greven and den Hollander (1993)).

One main goal of this paper is to show a CLT for Qβ,γ
n when γ is smaller than β (Theorem 3

below). Our strategy is to adapt the methods of Greven and den Hollander (1993), König (1996), and
van der Hofstad, den Hollander and König (1997) to our model. The approach turns out to work for
γ ≤ β − 1

2 log 2. We expect the CLT to hold for all γ < β but we could not show it with this method.

The fundamental theorem

The fundamental difference between γ < β and γ > β is that the polymer localizes if γ > β while it
does not if γ < β (Theorem 1). For the behaviour at γ = β we only have a conjecture (Conjecture 0.3).

In order to state our first theorem we have to fix some terminology.
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Definition 0.2 The polymer is called localized, if for some L ∈ N

lim
n→∞

Qβ,γ
n

(
Si ∈ CL ∀ i ≤ n

)
= 1, (0.8)

where CL = {−L, . . . , L}d.

The polymer is trapped in a finite box in the localized regime. In fact, we will show that the probability
to leave a certain large cube is exponentially small as n →∞.

Theorem 1 (Fundamental Theorem) Fix d ≥ 1.

(i) If γ < β, then the polymer is not localized. Furthermore, for ε > 0 small enough there exists a
constant c > 0 such that for all n ∈ N,

Qβ,γ
n

(
Si ∈ C[εn1/d] ∀i ≤ n

)
≤ e−cn. (0.9)

(ii) If γ > β, then the polymer is localized. Moreover, there exists a constant c > 0 such that for L
large enough and all n ∈ N,

Qβ,γ
n

(
∃i ≤ n : Si /∈ CL

)
≤ e−cLn. (0.10)

Theorem 1 states that the transition from localization to non-localization takes place exactly at γ = β.
The key ingredients for the proof of Theorem 1 are that for γ > β we have

a := lim
n→∞

1
n2

log Zβ,γ
n > 0, (0.11)

while for γ < β

−∞ < lim sup
n→∞

1
n

log Zβ,γ
n < 0. (0.12)

Indeed, for the behaviour in (0.11) to occur, the Hamiltonian has to be of order an2. This is only
possible when the local times are of order n and is a clear indication that the polymer localizes. In this
case, we will see that a = limn→∞ n−2 maxHn(S), where the maximum is taken over all n-step simple
random walk paths (see Section 1). If, on the other hand, we have that γ < β, then the polymer pays a
super-exponential price for large local times (see Section 1.1). Hence, if the bounds in (0.12) hold, then
none of the local times are of order n, so that the polymer cannot localize.

We can think of β − γ as the ‘effective parameter’ of self-intersections. If this effective parameter is
negative, there is an overall reward for self-intersections so that the polymer behaves like a self-attractive
random walk (β < 0, γ = 0), which localizes in all dimensions even when β = βn = −α

n with α > 0
large enough (see Bolthausen and Schmock (1995)). (However, for α > 0 small enough, the behaviour
is diffusive in d = 2 (Brydges and Slade (1995)). This shows that in d = 2 there is an interesting phase
transition.)

If β−γ is positive, then the polymer does not want to localize in the sense of Definition 0.2. However,
it is unclear what the precise scaling behaviour will be in this case. We will go deeper into conjectures
and comparisons to other models in Section 0.2 below.

Shape Theorem and the Transition Point

The next aim is to investigate the two regimes γ > β and γ < β in more detail. We start with the
regime of localization (γ > β). How does the polymer localize? Does it reveal a particular profile? More
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precisely, if we assign to each monomer a mass of 1
n , does the concentration of mass converge (weakly)

to a random distribution and can we characterize this distribution?
In order to formulate our result we need to introduce the local times for simple random walk

`n(x) = #{0 ≤ i ≤ n : Si = x} (n ∈ N0, x ∈ Zd). (0.13)

We want to show that up to translations, n−1`n converges to some function fβ,γ , the “shape” or
“profile” of the polymer. We are able to do so if d = 1. In Corollary 1.5 (page 13) we can even determine
the “shape” fβ,γ .

Theorem 2 (Shape Theorem) Assume d = 1 and and γ > β. There exist a finitely supported
function fβ,γ : Z → [0,∞), ‖fβ,γ‖1 = 1 and constants c′, C ′ > 0 such that for ξ large enough and all
n ∈ N

Qβ,γ
n

(
min
x∈Z

‖n−1`n − fβ,γ(x + ·)‖1 > ξn−1/2

)
≤ C ′e−c′n. (0.14)

Moreover, fβ,γ is the function that minimizes the Hamiltonian among all functions that can occur as
limits of rescaled local times n−1`n (n →∞).

It is not too hard to show the existence of such a minimizer for any d ≥ 1 (see Lemma 1.3). However,
uniqueness requires more work. We are only able to show uniqueness in d = 1 where we can give an
explicit formula in Corollary 1.5. A similar statement as in (0.14) holds for d ≥ 2 if we replace the
minimum over x ∈ Z by the minimum over the set F∗ of functions that minimize the Hamiltonian.
Since we do not know whether F∗ is generated by one function (as in d = 1) or a finite number of
functions or if it is more complicated, it does not seem worthwhile to state this as a result. However, we
formulate the proof in Section 1.3 for Zd, under the assumption that there are finitely many maximizers.

Another interesting question is what happens at the transition point γ = β. We have the following
conjecture:

Conjecture 0.3 If γ = β, then the scale of the polymer is given by

EQβ,β
n

[|Sn|2
] ∼ Dn2/(d+1)(log n)−1/(d+1) (n →∞). (0.15)

The rigorous proof in d = 1 will be presented in a forthcoming paper (see van der Hofstad, Klenke
and König [11]), in which the authors show that the properly normalized range of the random walk (i.e.,
the number of distinct sites visited by the walk) converges.

Central Limit Theorem

In dimension d = 1 there is a simple connection between the local times of simple random walk and a
critical Galton-Watson branching process (Knight’s Theorem). Since it was first used in this context
by Greven and den Hollander (1993) it has proved to be the most powerful tool for the investigation of
one-dimensional random walks with interactions. Therefore, it is natural that we get the most precise
result in d = 1. We are able to show ballistic behaviour, which means Qβ,γ

n (
∣∣|Sn|/n−θ∗(β, γ)

∣∣ > ε) → 0,
n →∞, for some θ∗(β, γ) > 0 and all ε > 0. In addition we can show the central limit theorem for the
fluctuations of |Sn| around nθ∗(β, γ). Clearly the CLT is the stronger statement. Since our proof does
not need the LLN as an intermediate step but is a direct approach via large deviation techniques we
only state the CLT. Due to technical difficulties, we can only show this for γ such that γ ≤ β − 1

2 log 2.

Theorem 3 (Central Limit Theorem) For every β, γ ∈ (0,∞) such that γ ≤ β− 1
2 log 2, there exist

θ∗ = θ∗(β, γ) ∈ (0, 1], and σ∗ = σ∗(β, γ) ∈ (0,∞) such that

lim
n→∞

Qβ,γ
n

( |Sn| − θ∗n
σ∗
√

n
∈ ·

)
= N (0, 1). (0.16)
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Theorem 3 shows that for γ ≤ β − 1
2 log 2, the polymer is in the same universality class as the weakly

self-avoiding walk for which γ = 0 (see Conjecture 0.1 and Theorem 1).
The quantity θ∗ is called the speed of the polymer, while σ∗ is called the spread of the polymer. In

Section 2 we give a characterization of these quantities in terms of a largest eigenvalue problem. It is
reasonable to believe that (β, γ) 7→ θ∗(β, γ) is increasing in β and decreasing in γ and that θ∗(β, γ) → 0
as γ ↑ β. However, we are only able to show analyticity for 0 < γ < β.

The gap of 1
2 log 2 is due to a technical difficulty that we could not overcome here. We know from

Theorem 1(i) that max0≤i≤n |Si| > εn with high probability. This suggests that we would also have
ballistic behaviour here, which presumably goes along with the central limit theorem behaviour for all
0 < γ < β.

0.2 Discussion and Conjectures

The model considered in this paper is related to the attractive (strictly) self-avoiding walk studied
in Brak, Owczarek and Prellberg (1993), obtained by taking the limit of Qβ,γ

n as β tends to infinity.
Evidently self-avoiding walk cannot intersect itself and thus cannot localize in the sense of Definition 0.2.
Brak, Owczarek and Prellberg (1993) conjecture that there exists a γ∗(d) ∈ (0,∞) such that for γ <
γ∗(d) the attractive self-avoiding walk behaves like ordinary self-avoiding walk while it is contained in
a ball of radius of a multiple of n1/d if γ > γ∗(d). Note that for β = ∞ the phase transition observed in
this paper at γ = β does not occur. The transition point γ∗ is expected to take a non-trivial value. It
is believed that for 0 < β < ∞, a similar picture holds. Indeed, it is conjectured that there is a second
critical curve β 7→ γ∗(β, d) such that for γ ∈ [0, γ∗(β, d)) the scale of the polymer is nν , with ν = νSA as
in Conjecture 0.1, while for γ ∈ (γ∗(β, d), β) the scale is n1/d. (Note that in dimension one, ν = 1/d = 1,
so there cannot be a second phase transition.) In Theorem 1 (i) we show that if ν exists, then ν ≥ 1

d .
The value γ∗(β) is called the θ-point. Thus, two phase transitions are expected, one at γ = β and

one at the θ-point. We mention that νθ = ν(γ∗(β), β) is expected to be 4
7 in d = 2 and 1

2 for d ≥ 3. See
Vanderzande (1998) for all these conjectures for the attractive self-avoiding walk (β = ∞, γ ∈ [0,∞)).
For the critical case γ = β there exist no conjectures in the literature, up to our best knowledge.
We think that ν(β, β) = 1

d+1 in all dimensions (recall Conjecture 0.3), and that there are logarithmic
corrections. However, the heuristic argument for d > 1 is very weak. In Figure 1 below, we give a
summary of the expected critical exponents ν. A general proof of the existence of the critical exponent
ν does not exist, so all values are conjectured unless a rigorous proof and identification exists.
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Figure 1: Sketch of the conjectured values for ν(γ, β).

For d ≥ 5, the lace expansion has been used to prove that weakly self-avoiding walk can be rescaled
to Brownian motion, i.e., weakly self-avoiding walk is diffusive. However, the lace expansion technique
depends sensitively on the strict self-repellence property of that model. Even for γ ¿ β the attractive
random polymer is self-repellent only on a macroscopic scale. This is not sufficient to use the lace
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expansion. Still we believe that the attractive weakly self-avoiding walk behaves diffusively for d ≥ 5 and
γ small enough. Possibly the lace expansion can be adapted to handle the case where 0 ≤ γ ¿ β ¿ 1.

Oono (1975 and 1976) investigates the above model for γ = 0 and β < 0. He shows that the path
jumps back and forth between two points with high probability. The above problem is easier than the
one we consider for γ > β, since one can explicitly compute the maximizer of the Hamiltonian, whereas
in the case where γ > β we cannot.

0.3 Outline

In Section 1 we prove the Fundamental Theorem (Theorem 1) and the Shape Theorem (Theorem 2).
The main step is to compute the exact scaling of the partition function as n → ∞. This is done by
solving a variational problem for the Hamiltonian. Furthermore, we give a heuristic argument that
explains the formulae in the special case γ = 0.

In Section 2 we identify θ∗(β, γ) and σ∗(β, γ) in terms of derivatives of the largest eigenvalue of an
N2 × N2 matrix, acting as a compact operator on `2(N2). Existence and analyticity of this eigenvalue
(as a function of β and γ) are proved by employing standard functional analytic methods.

In Section 3 and 4 we prove the Central Limit Theorem (Theorem 3) using a variation of a method
introduced by van der Hofstad, den Hollander and König (1997). We recall Knight’s Theorem in
Section 3. This is a Markov chain description of the local times of one-dimensional simple random walk.
We use this description to write the moment generating function of Sn under Qβ,γ

n ( · |Sn > 0) as the
expectation of an exponential functional of three Markov chains. These Markov chains correspond to
the local times in the intervals (−∞, 0), [0, Sn] and (Sn,∞).

In Section 4 we absorb the exponential functional e−Hβ,γ
n (S) into the transition kernels of the Markov

chains and rewrite the moment generating function as a correlation function involving three Markov
processes. We show that, in the limit as n → ∞, the correlation function factors into a product of
three parts. The part corresponding to [0, Sn] gives the CLT in Theorem 3, the parts corresponding
to (−∞, 0) and (Sn,∞) result into constants that drop out in the normalization. This proves the CLT
(Theorem 3).

1 Proof of the Fundamental and Shape Theorem

The proof of Theorem 1(i) is fairly simple and is the content of the next short subsection. The proof
of localization for γ > β requires a firm grip on the asymptotics of the partition function Zβ,γ

n . This is
Proposition 1.1 in Section 1.2. The proof is rather involved and includes solving a variational problem.
At the end of that subsection we prove Theorem 1(ii). The various steps in the study of the variational
problem serve to prove the Shape Theorem in the final subsection.

1.1 No Localization for γ < β

First we introduce some notation. We consider the local time `n of a random walk path (see (0.13))
as an element of l2(Zd), the space of square-summable sequences with scalar product 〈·, ·〉. We first
reformulate the Hamiltonian (recall (0.1)) in terms of the local times `n (see (0.13)):

Hn(S) = β
∑

x∈Zd

`2n(x)− γ

2d

∑

x,e∈Zd:|e|=1

`n(x)`n(x + e). (1.1)
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We see that the Hamiltonian Hβ,γ
n is a quadratic functional on l2(Zd) that is given by a symmetric

bilinear form, i.e., by a matrix F = Fβ,γ indexed by Zd which is given by

F (x, y) = Fβ,γ(x, y) =




−β, x = y,
γ
2d , |x− y| = 1,
0, else.

(1.2)

Thus Hn(Sn) = −〈`n, F `n〉. We will frequently use the inequality

〈`n, Fβ,γ`n〉 = −(β − γ)
∑

x∈Zd

`2n(x)− γ

4d

∑

x,e∈Zd:|e|=1

(`n(x)− `n(x + e))2 (1.3)

≤ −(β − γ)
∑

x∈Zd

`2n(x)

= −(β − γ)〈`n, `n〉 = 〈`n, Fβ−γ,0`n〉.

Fix γ < β and L ∈ N. We give a lower bound for the energy of a path that stays in CL at all times.
To do so, let (`n(x))x∈Zd be the local time of such a path and use (1.3) to get the estimate

Hn(S) ≥ (β − γ)〈`n, `n〉 ≥ (β − γ)n2(2L + 1)−d.

Combine this with the trivial estimate (using a straight path) Zβ,γ
n ≥ e−β(e−β+γ/d/2d)n to conclude

that for some c > 0

Qβ,γ
n

(
Sj ∈ CL ∀j ≤ n

)
≤ e−(β−γ)n2(2L+1)−d

/Zβ,γ
n ≤ e−cn → 0, n →∞. (1.4)

Note that (1.4) still holds if L = Ln = εn1/d and ε > 0 small enough. This proves (0.9).
In addition to (1.4) we will give bounds for the normalizing constant Zβ,γ

n for γ < β. Use (1.3) to
get

Zβ,γ
n = E[e〈`n,Fβ,γ`n〉] ≤ E[e〈`n,Fβ−γ,0`n〉] = Zβ−γ,0

n . (1.5)

Note that Zβ−γ,0
n is the normalizing constant for the weakly self-avoiding walk with interaction parameter

β − γ > 0. By submultiplicativity (i.e., Zβ−γ,0
n+m ≤ Zβ−γ,0

n Zβ−γ,0
m ), it is clear that

lim
n→∞

1
n

log Zβ−γ,0
n = inf

n∈N
1
n

log Zβ−γ,0
n ≤ 1

2
log Zβ−γ,0

2 < 0. (1.6)

where we used that Zβ−γ,0
2 = (1− 1

2d ) + 1
2de−(β−γ) < 1. This proves (0.12).

1.2 Localization for γ > β

Fix γ > β. We will start by bounding the normalizing constant Zβ,γ
n from above and below in Proposi-

tion 1.1.
First we need some notation. Define

Mn = Mn(β, γ) = max
S=(Si)n

i=0

〈`n, Fβ,γ`n〉 (1.7)

and note that (
1
2d

)n

eMn ≤ Zβ,γ
n ≤ eMn . (1.8)

The main ingredients for the proof of Theorem 1(ii) are good upper and lower bounds for Mn. This is
the content of the next proposition which will be proved on the next pages. The proof of Theorem 1(ii)
follows at the end of this section.
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Proposition 1.1 There exist constants a,C > 0 such that for all n ∈ N,

an2 − Cn ≤ Mn ≤ an2 +
γ

d
n. (1.9)

The proof of (0.11) is a simple consequence of (1.9) and (1.8).
For the proof of (1.9) we scrutinize a variational problem for the Hamiltonian (Lemma 1.3). A major

point is that due to periodicity of the random walk not all functions are admissible as possible limits of
the rescaled local times. Rather than considering the local times directly, we reformulate the problem
in terms of the numbers of bond crossings. Here no restrictions apply (apart from non–negativity), at
least in the limit n →∞, as will follow from the proof.

In order to formulate the problem we have to introduce some notation.
For a random walk path (Si)n

i=0, not necessarily starting in 0, define the averaged local time

˜̀
n(x) =

1
2

n−1∑

i=0

(1Si=x + 1Si+1=x). (1.10)

Clearly, ˜̀
n = `n − 1

21{S0} − 1
21{Sn}.

Furthermore, let

G =
{
g = (g1, . . . , gd)| gi : Zd → [0,∞), i = 1, . . . , d, ‖g‖ = 1

}
, (1.11)

where

‖g‖ =
d∑

i=1

∑

x∈Zd

|gi(x)|. (1.12)

Let ei be the ith unit vector in Zd and define the linear map α by

(αg)(x) =
1
2

d∑

i=1

[
gi(x− ei) + gi(x)

]
. (1.13)

gi(x) measures the number of crossings of the bond between x and x + ei, in either direction. αg(x) is
the corresponding local time.

Finally, let F = α(G). It is clear that for every random walk path (Si)n
i=0,

1
n

˜̀
n ∈ F . (1.14)

Now, define for L ∈ N
GL = {g ∈ G : supp(g) ⊂ {0, . . . , L− 1}d} (1.15)

and let FL = α(GL).

Lemma 1.2 For every f ∈ FL and every n ∈ N there exists a random walk path (Si)n
i=0 such that

(recall (1.10))
‖˜̀n − nf‖1 ≤ (2d + 2)Ld. (1.16)

Proof. Choose g ∈ GL with f = αg. Choose ḡ ∈ GL with ḡi(x) ∈ 2
nN0, x ∈ Zd, i ∈ {1, . . . , d} and

|ḡi(x) − gi(x)| ≤ 2/n. Hence ‖αḡ − f‖ ≤ 2dLd/n. ḡ corresponds in an obvious way to a family of
(at most) Ld random walk paths starting and ending in the same position x and visiting only their
neighbours x + ei, i = 1, . . . , d (exactly n

2 ḡi(x) times).
Now connect these paths by a random walk path that visits every point in {0, . . . , L − 1}d exactly

once. This gives a random walk path of length n + Ld. Cutting off the last Ld steps gives the desired
path S for which (1.16) holds. 2
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The previous lemma is the connection of (1.9) to the following variational problem

sup{〈f, Ff〉, f ∈ F}. (1.17)

Lemma 1.3 The supremum in (1.17) is attained and there exists an L0 ∈ N such that (up to transla-
tions) supp(f∗) ⊂ {0, . . . , L0}d for any maximizer f∗ of (1.17). Furthermore, a := 〈f∗, Ff∗〉 > 0.

Proof. First we rewrite our problem in terms of functions in G. Define the matrix G = α∗Fα, where
α∗ is the adjoint of α. Hence we have to show that for the variational problem

sup{〈g, Gg〉, g ∈ G} (1.18)

the supremum is assumed, that there exists an L0 ∈ N such that any maximizer g∗ has (up to transla-
tions) its support in {0, . . . , L0}d, and that a = 〈g∗, Gg∗〉 > 0.

Clearly the set GL is compact for every L ∈ N and GL → R, g 7→ 〈g,Gg〉 is continuous. Hence there
exists a solution g∗L ∈ GL of

〈g∗L, Gg∗L〉 = sup{〈g, Gg〉, g ∈ GL}. (1.19)

Denote by G∗L the set of such g∗L and let aL = 〈g∗L, Gg∗L〉. The sequence (aL)L∈N is non-decreasing and
a = limL→∞ aL. We have to show that there exists an L0 ∈ N such that for any K ≥ L0 and g ∈ G∗K
we have (up to translations) g ∈ G∗L0

. In this case clearly a = aL0 .

Let ϕL = (L−d1{0,...,L−1}d , 0, . . . , 0) ∈ GL. Clearly α(ϕL)(x) = L−d if x ∈ {0, . . . , L−2}×{0, . . . , L−
1}d−1 and = 1

2L−d if x ∈ {−1, L− 1} × {0, . . . , L− 1}d−1. Hence for L ≥ 3γ
γ−β ,

aL ≥ 〈ϕL, GϕL〉 = 〈α(ϕL), Fα(ϕL)〉

≥ (γ − β)L−d − γ − β

2
L−(d+1) − γL−(d+1)

≥ (γ − β)L−d − 3
2
γL−(d+1) ≥ γ − β

2Ld
.

(1.20)

Choosing L0 =
⌊

4γ
γ−β

⌋
we get for L ≥ L0 that aL ≥ (γ−β)d+1

2(4γ)d > 0.

Let L ∈ N and fix g∗L ∈ G∗L. For x, y ∈ {0, . . . , L − 1}d and i, j ∈ {1, . . . , d} such that (g∗L)i(x) > 0
and for ε ∈ [0, 1] define hε = (h1

ε, . . . , h
d
ε) by

hk
ε(z) =





(g∗L)j(y) + ε, k = j, z = y,

(g∗L)i(x)− ε, k = i, z = x,

(g∗L)k(z), else.

(1.21)

Clearly hε ∈ GL for ε ∈ [0, (g∗L)i] and h0 = g∗L. Thus

0 ≥ d

dε
〈hε, Ghε〉

∣∣∣
ε=0

= 2
[
(Gg∗L)j(y)− (Gg∗L)i(x)

]
(1.22)

If also (g∗L)j(y) > 0, then the reverse inequality holds. Hence there exists bL ∈ R such that

(Gg∗L)i(x) = bL, x ∈ supp(g∗L)i, i = 1, . . . , d. (1.23)

It follows that aL = 〈g∗L, Gg∗L〉 = 〈g∗L, bL1〉 = bL. G is a continuous operator on l1(Zd × {1, . . . , d}),
‖G‖ < ∞, with entries of absolute value not exceeding dγ. Furthermore, G is translation invariant and
symmetric and G((x, i), (y, j)) = 0, |x − y| ≥ 3. Thus #{(y, j) : G((x, i), (y, j)) > 0} ≤ d5d. This
implies

‖(Gg∗L)i‖1 ≤ γd25d‖g∗L‖1 = γd25d.
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Thus |supp(g∗L)i| ≤ γd25d/aL. Using the estimate for aL we get

|supp(g∗L)| ≤ d3

10

(
20γ

γ − β

)d+1

< ∞. (1.24)

We must exclude the possibility that supp(g∗L) has large gaps. For y ∈ Z and i ∈ {1, . . . , d} define

Hi,−(y) = {x ∈ Zd : xi ≤ y} (1.25)
Hi,+(y) = {x ∈ Zd : xi ≥ y}

and Hi(y) = Hi,−(y) ∩Hi,+(y).

Assume that the support of g ∈ GL has a gap of three hyperplanes,

g(x) = 0, x ∈ Hi(y − 1) ∪Hi(y) ∪Hi(y + 1),

for some y ∈ Z. Then define g+ and g− by g−(x) = g(x)1Hi,−(y)(x) and g+(x) = g(x)1Hi,+(y)(x). Since
G((x, j), (x′, j′)) = 0 if |x− x′| ≥ 3 we get

〈g, Gg〉 = 〈g− + g+, G(g− + g+)〉 = 〈g−, Gg−〉+ 〈g+, Gg+〉
≤ [‖g−‖2 + ‖g+‖2]〈g∗L, Gg∗L〉.

(1.26)

(Recall the norm ‖g‖ from (1.12).) If g− 6= 0 and g+ 6= 0 then 〈g, Gg〉 < 〈g∗L, Gg∗L〉. Hence we can rule
out the possibility that g∗L has gaps of more than two hyperplanes in the support. This implies that (up
to translations)

supp(g∗L) ⊂ {0, . . . , 3|supp(g∗L)|}d ⊂ {0, . . . , L0}d, (1.27)

where L0 = b
(

20γ
γ−β

)d+1

d3c is independent of L. Now, if L ≥ L0, then g∗L ∈ G∗L0
which finishes the

proof. 2

Proof. [Proof (of Proposition 1.1)] Let a = 〈f∗, Ff∗〉 as in the proof of the previous lemma and
let L0 be such that supp(f∗) ⊂ {0, . . . , L0 − 1}d. The upper bound of (1.9) is immediate from the fact
that ˜̀

n = `n − 1
21{S0} − 1

21{Sn} ∈ F , the fact that absolute values of the entries of Fβ,γ are bounded
from above by γ and that

∑
x∼Si

˜̀
n(x) ≤ n for i = 0, n. Let C = (2d + 2)γLd

0. Similarly, the lower
bound in (1.9) follows from Lemma 1.2, the fact that the entries of the matrix F have absolute values
not exceeding γ and that ˜̀

n(x) ≤ n for all x ∈ Zd. 2

In dimension d = 1 we can show that the maximizers g∗ and f∗ are unique and we determine their
shapes. Unfortunately we are not able to give the exact maximizer but we can give a class of functions
in which this maximizer lies. This class is indexed by the size L of the support of these functions. We
have a conjecture for the size of the optimal L, but rigorously we can only use the previous lemmas to
get bounds on the optimal L that are rather poor.

Lemma 1.4 Assume d = 1. Let ω = arccos(β/γ) and define for L ∈ N the function gL with support in
{0, . . . , L− 1} and ‖gL‖ = 1 for x ∈ {0, . . . , L− 1} by:

gL(x) =





b

[
α0 + α1

(
1− 2

L− 1
x

)
(−1)x + cos

(
ω

(
x− L− 1

2

))]
, L even,

b

[
α0 + α1(−1)x + cos

(
ω

(
x− L− 1

2

))]
, L odd,

(1.28)
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where b > 0 is a normalizing constant and

α0 =





1
2(L + 2)

(
(L + 1) cos

(
ω

L + 3
2

)
+ (L + 3) cos

(
ω

L + 1
2

))
, L even,

− cos
(ω

2

)
cos

(ω

2
(L + 2)

)
, L odd,

(1.29)

α1 =





1
L + 2

sin
(ω

2

)
sin

(ω

2
(L + 2)

)
, L even,

sin
(ω

2

)
sin

(ω

2
(L + 2)

)
, L odd.

(1.30)

Then g∗ = gL for some L ∈ N.

Proof. Refining the argument of (1.26) we see that in d = 1 the support has no gaps at all, hence for
any L there exists K ≤ L such that supp(g∗L) = {0, . . . ,K − 1}. If L > K then g∗L = g∗K = g∗.

We will next solve the equation

(GgL)(x) = c for all x ∈ {0, . . . , L− 1},

for hL with supp(hL) = {0, . . . , L− 1}. Clearly, (G1L)(x) = γ − β for all x ∈ {0, . . . , L− 1}, where we
define 1L(x) = 1{−2,...,L+1}(x). Hence,

gL(x) = b[1L(x) + f(x)],

where (Gf)(x) = 0 for all x ∈ {0, . . . , L − 1}, whereas f(−2) = f(−1) = f(L) = f(L + 1) = −1.
However, (Gf)(x) = 0 for all x ∈ {0, . . . , L− 1} if and only if

f ∈ {x 7→ (ξ1(−1)x + ξ2x(−1)x + ξ3 cos(ωx) + ξ4 sin(ωx)), ξ1, . . . , ξ4 ∈ R},

where the right hand side is considered to be a set of functions on {−2, . . . , L + 1}. Indeed, the above
can easily be checked by using that

G(x, y) =





γ
4 − β

2 for x = y,
γ
4 − β

4 for |x− y| = 1,
γ
8 for |x− y| = 2,
0 else.

The solution for ξ1, . . . , ξ4 is given in the statement of the lemma. Next, b = bL and c = cL are
determined by

‖gL‖ = 1 and c = b(γ − β).

Consequently, we find the optimal L by maximizing cL over all L such that gL(x) > 0 for all x ∈
{0, . . . , L− 1}, and we see that g∗ = gL for this value of L. 2

Remark: Numerical computations suggest that the optimal choice is L = [ 2π
ω ] − 2 ∼ π

√
2
√

γ
γ−β ,

γ − β ↓ 0. This is consistent with the corresponding optimization problem in continuous space where
the optimizer is (1− cos(ωx))1[0,2π/ω](x). However, we have not been able to prove this.
Note that for the correct choice of L automatically gL = g∗ ≥ 0. However, it need not be that the
maximal L with this property is the correct choice. This makes it difficult to determine L analytically.

We give the following corollary of Lemma 1.4 that determines the shape of the maximizer f∗ in
dimension one.
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Corollary 1.5 Assume d = 1. The maximizer f∗ has the form fL ∈ FL for some L ∈ N, where

fL(x) =





b

[
α0 +

α1

L− 1
(−1)x + cos

(ω

2

)
cos

(
ω

(
x− L− 2

2

))]
, L even,

b

[
α0 + cos

(ω

2

)
cos

(
ω

(
x− L− 2

2

))]
, L odd,

(1.31)

where b, α0 and α1 are defined as in Lemma 1.4.

With Proposition 1.1 at hand it is not difficult to prove localization of the polymer. In fact, we can
show immediately the stronger statement of (0.10).

Proof (of Theorem 1(ii)). We may assume for convenience that 1
3L ∈ N. Recall that ˜̀

n is the
averaged local time of the path defined in (1.10).

For any x ∈ Zd, let xi be the ith component, i = 1, . . . , d. Let (Si)n
i=0 be a random walk path from

the event in (0.10). Without loss of generality we may assume that S1
i > L for some i ∈ {0, . . . , n}. For

y ∈ Z, define the hyperplane (recall the notation of (1.25))

H1(y) = {x ∈ Zd : x1 = y}. (1.32)

Since
∑2L/3

y=L/3

∑
x∈H1(y)

˜̀
n(x) ≤ n, there exists a y0 ∈ {L

3 + 1, . . . , 2L
3 − 1} with

∑

x∈H1(y0−1)∪H1(y0)∪H1(y0+1)

˜̀
n(x) ≤ 9n

L− 3
. (1.33)

The next step is to decompose the path into the pieces that are “left” of H1(y0) and “right” of H1(y0).
Of course, a path may re-enter a half-space at a different place than where it left it. Thus, rather than
one path we get a collection of paths in the left and right half-space.

Here are the precise definitions. Define the random times τ−k and τ+
k , k ∈ N inductively by τ−1 = 0

and
τ+
k = inf{m ≥ τ−k ; S1

m > y0} − 1
τ−k+1 = inf{m ≥ τ+

k ; S1
m < y0} − 1.

(1.34)

Consider now the families of random walk paths
{
(Sk,−

i )i=0,...,(τ+
k ∧n)−τ−k

, k ∈ N, τ−k < n
}
,

{
(Sk,+

i )i=0,...,(τ−k+1∧n)−τ+
k

, k ∈ N, τ+
k < n

}
,

(1.35)

where Sk,−
i = Si+τ−k

, and Sk,+
i = Si+τ+

k
. Define the associated averaged local times ˜̀− and ˜̀+, so that

˜̀
n = ˜̀− + ˜̀+. Note that ˜̀− and ˜̀+ are supported by H1,−(y0) and H1,+(y0). Let m± = ‖˜̀±‖1, hence

n = m− + m+. Furthermore, clearly ˜̀±/m± ∈ F , so that by Lemma 1.4 we have

〈˜̀±, F ˜̀±〉 ≤ a[m±]2. (1.36)

Furthermore, use (1.33) and assume L ≥ 30 (which implies
∑

x∈H1(y0±1)
˜̀±(x) ≤ 9n

L−3 ≤ 10n
L ) to get

〈˜̀−, F ˜̀+〉 = 〈˜̀+, F ˜̀−〉 =
γ

2d

∑

x∈H1(y0)

[˜̀−(x− e1)˜̀+(x) + ˜̀−(x)˜̀+(x + e1)
]

(1.37)

≤ γ

2d

( ∑

x∈H1(y0−1)

˜̀−(x)
∑

x∈H1(y0)

˜̀+(x) +
∑

x∈H1(y0)

˜̀−(x)
∑

x∈H1(y0+1)

˜̀+(x)
)

≤ 10γ

d

n

L
[m− ∧m+].
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Note that by construction m− ∧m+ ≥ L
3 and thus m−m+ ≥ [m− ∧m+] · n

2 ≥ nL
6 . Hence,

〈`n,F `n〉 ≤ 〈˜̀n, F ˜̀
n〉+

γ

2d
n

= 〈˜̀−, F ˜̀−〉+ 〈˜̀+, F ˜̀+〉+ 2〈˜̀−, F ˜̀+〉+
γ

2d
n

≤ a[(m−)2 + (m+)2] +
20γn

dL
[m− ∧m+] +

γ

2d
n

= an2 − am−m+ − Cn +
(

C +
γ

2d
− am−m+

2n

)
n +

(
40γ

dL

n

2
m− ∧m+

m−m+
− a

2

)
m−m+

≤ an2 − am−m+ − Cn + (C +
γ

2d
− La

12
)n + (

40γ

dL
− a

2
)m−m+.

(1.38)

Now for L ≥ a−1(12C +80γ/d) the last two terms on the r.h.s. of (1.38) are negative. Letting c = a/12
we get

〈`n, F `n〉 ≤ an2 − Cn− 2cLn

= an2 − Cn− cLn− aL

12
n

≤ Mn − cLn− aL

12
n.

(1.39)

Finally, assume in addition L ≥ a−112 log(2d) and use the fact that Zβ,γ
n ≥ (2d)−neMn to conclude

Qβ,γ
n

(
∃i ≤ n : Si /∈ CL

)
≤ (Zβ,γ

n )−1 exp(an2 − cLn− (aL/12)n)

≤ (2d)n exp(−cLn− (aL/12)n) ≤ e−cLn.
(1.40)

2

1.3 Proof of the Shape Theorem

With the estimates at hand about the partition function and the maximizers from the previous subsection
it is not too hard to prove the Shape Theorem in the case where the number of maximizers is finite.
This proves the Shape Theorem for dimension d = 1 by Lemma 1.4. For d ≥ 2 we do not have an
analogue for Lemma 1.4 that proves uniqueness of the maximizer.

Here is the quick argument that works whenever we have a finite number of maximizers of the
quadratic functional F → R, f 7→ 〈f, Ff〉. Let f∗ be a maximizer of the quadratic functional f 7→
〈f, Ff〉 from F → R. f∗ has finite support uniformly for all maximizers f∗. Let L and c be as in
Theorem 1(ii). We may assume that L is large enough such that supp(f∗) ⊂ CL for all maximizers f∗

for which the origin is in the support. By Theorem 1(ii) it suffices to consider paths (Si)n
i=0 which are

contained in CL for some sufficiently large but fixed L.
Define V = {f ∈ F : supp(f) ⊂ CL}, V ∗ = {f∗; f∗ maximizes 〈f, Ff〉} ∩ V , and V1 = {f ∈ V :

‖f‖1 = 1}. Note that V ∗ ⊂ V1 and that (with a from Proposition 1.1)

a = sup
f∈V1

〈f, Ff〉 = 〈f∗, Ff∗〉 for all f∗ ∈ V ∗.

By definition we have 〈f, Ff〉 < a if f ∈ V1 \ V ∗. By assumption, V ∗ is a finite set and f 7→ 〈f, Ff〉 is
quadratic. Thus, there exists an open neighbourhood N of V ∗ and a c′ > 0 such that for f ∈ N

〈f, Ff〉 − a ≤ −c′ min
f∗∈V ∗

‖f − f∗‖21. (1.41)

On the other hand, V1 \N is compact and hence

sup
f∈V1\N

〈f, Ff〉 < a.
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Thus (by maybe making c′ a little smaller), (1.41) holds for all f ∈ V1.
Recall C from Proposition 1.1, assume ξ > ((C + log(2d))/c′)1/2, and let c′′ = min(cL, c′ξ2 − (C +

log(2d))) > 0. Hence by Theorem 1(ii),

Qβ,γ
n

(
inf

f∗∈V ∗
‖`n − nf∗‖1 > ξn1/2

)
≤ e−cLn + Qβ,γ

n

(
inf

f∗∈V ∗
‖`n − nf∗‖1 > ξn1/2; supp(`n) ⊂ CL

)

≤ e−cLn + (2d)neCne−c′ξ2n

≤ 2e−c′′n.

2

2 Speed and Variance in Dimension One

In the rest of the paper we only consider d = 1 and γ < β. As explained earlier, in this case we get the
best results due to the availability of a particularly powerful method. Before we start with the details
we give an outline of the method and some heuristics.

Greven and den Hollander (1993) identified the speed of a polymer in the case γ = 0. A similar
method was used in König (1996) to prove the central limit theorem (Theorem 0) for γ = 0. We give a
non-rigorous sketch of the underlying ideas of their work in order to motivate this and the next three
sections.

Let us assume γ = 0 and that the end-to-end distance grows like θ∗n as n →∞, for some θ∗ ∈ (0, 1].
We want to identify the speed θ∗ and the exponential rate of the normalizing constant r∗ = r∗(β).
With equal probability the polymer extends to the left or right of the origin. Without loss of generality
we assume that it extends to the right. Assume that n is very large and that Sn is precisely bθ∗nc.
In the subsequent heuristic argument we neglect all boundary effects coming from local times left of 0
and right of bθ∗nc. Hence the local times (`n(x))bθ

∗nc
x=0 form a stationary (non-Markov) sequence and

we should have 1/θ∗ = EQβ,0
n

(`n(x)). Let m(x) be the number of up-crossings from x to x + 1. Hence
`n(x) = m(x− 1) + m(x)− 1. Note that the stationary sequence (m(x))0≤x≤bθ∗nc is Markov. In order
to determine θ∗ we have to obtain information on the stationary distribution of m under Qβ,0

n .
Knight’s Theorem (see Section 3) relates the up-crossings of simple random walk to a critical Galton-

Watson branching process with geometric offspring distribution and one immigrant per generation. This
process has the transition matrix

P (i, j) =
(

i + j − 2
i− 1

)(
1
2

)i+j−1

. (2.1)

Our polymer is a random walk with interaction. There is a penalty of e−β
∑

x `n(x)2 =
∏

x e−β(m(x)+m(x+1)−1)2 .
The normalizing constant Zβ,0

n = E(e−β
∑

x∈Z `n(x)2) behaves like e−r∗(n+1) = e−r∗
∑

x∈Z `n(x) =∏
x e−r∗(m(x)+m(x+1)−1). We want to identify r∗. Again neglecting boundary effects, we can write

er(n+1)Zβ,0
n ≈

∑∏
x

Ar,β(m(x),m(x + 1)),

where we sum over all sequences (m(x)) such that
∑bθ∗nc

x=0 (m(x) + m(x + 1)− 1) =
∑

x `n(x) = n, and
we define

Ar,β(i, j) = er(i+j−1)−β(i+j−1)2P (i, j), i, j ∈ N, and r ∈ R.

Then we can write

er∗(n+1)Zβ,0
n ≈

∑∏
x

Ar∗,β(m(x),m(x + 1)) =
∑ τr∗(m(0))

τr∗(m(bθ∗nc))
∏
x

Pβ(m(x),m(x + 1)). (2.2)
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Here Pβ is defined by

Pβ(i, j) = Ar∗,β(i, j)
τr∗(j)
τr∗(i)

,

where r∗ ∈ R has to be chosen appropriately, and τr ∈ l2(N) is the unique positive and normalized
eigenvector of Ar,β corresponding to the largest eigenvalue λ(r, β). The ratio of τr∗ ’s in (2.2) is of
order 1. If r∗ is the exponential rate of Zβ,0

n , then er∗(n+1)Zβ,0
n has exponential rate 0. This is the case

if and only if Pβ is a stochastic matrix. Therefore its largest eigenvalue λ(r∗, β) =
∑

j Pβ(i, j) must
equal 1. Thus we have to pick r∗ such that λ(r∗, β) = 1. Furthermore, it is easy to check that τ2

r∗ is the
invariant distribution of (m(x)) under Pβ . Therefore,

1

θ∗ = Eτ2
r∗

(m(x) + m(x + 1)− 1) =
∑

i,j(i + j − 1)τ2
r∗(i)Pβ(i, j)

= d
dr

∑
i,j τr(i)Ar,β(i, j)τr(j)

∣∣
r=r∗

= d
dr λ(r, β)

∣∣
r=r∗ .

(2.3)

Computing the second derivatives yields an expression for the variance σ∗2.

The situation in the present paper is somewhat more involved. There are interactions between
monomers on neighbouring sites. Hence, the m(x)–chain under the transformed measure does not form
a Markov process. This forces us to consider a bivariate process of the type ((m(x),m(x + 1))x∈N. The
analogue of the matrix Ar,β becomes a matrix Ar,β,γ(i, j), i, j ∈ N2.

The programme for the rest of this paper is as follows. In this section we define Ar,β,γ , we show
analyticity of the largest eigenvalue λ(r, β, γ) and define the quantities r∗, θ∗ and σ∗. The methods
employed are adapted from Greven and den Hollander (1993) and Baillon et al. (1994).

In Section 3 we quote Knight’s Theorem, introduce the bivariate branching chain M (in (3.4)), and
formulate the connection of the end-to-end distance of the polymer to exponential functionals of M
(Lemma 3.1).

In Section 4 we construct for every r ∈ R a positive recurrent bivariate chain with the equilibrium
distribution corresponding to τ (R)

r,β,γτ (L)

r,β,γ of Ar,β,γ (Lemma 4.1). We write the Laplace transform of the
end-to-end distance in terms of this chain (Lemma 4.2 and 4.3). Recall that in the heuristics we used
that the sequence of local times was stationary (no boundary effects). Lemma 4.3 would lead directly to
the proof of the CLT if we really had stationarity. It is the content of Proposition 4.4 and 4.5 to show
that the boundary terms are negligible, hence showing the asymptotic stationarity of the local times
as n →∞. In Proposition 4.4 we state pointwise convergence to the equilibrium while Proposition 4.5
states summability of the boundary terms needed for a dominated convergence argument. To prove
the summability we have to make the assumption γ ≤ β − 1

2 log 2. At the end of Section 4, dominated
convergence and the ideas leading to (2.3) are combined to a proof of Theorem 3.

2.1 Defining Speed and Variance

Now we come to the technical details. For i = (i1, i2) ∈ N2 let

s(i) = i1 + i2 − 1 and s?(i) = i1 + i2. (2.4)

For r ∈ R and β, γ ∈ R+ we define the matrix Ar,β,γ by (recall (2.1))

Ar,β,γ(i, j) = e(r/2)[s(i)+s(j)]−(β/2)[s(i)2+s(j)2]+γs(i)s(j)1{i2=j1}
√

P (i1, i2)P (j1, j2) (i, j ∈ N2), (2.5)

Define λ(r, β, γ) to be the unique largest eigenvalue of Ar,β,γ in l2(N2). The analytic heart of this section
are the following propositions. They are needed to define r∗, θ∗ and σ∗.
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Proposition 2.1 (Unique maximal eigenvector) Fix 0 ≤ γ < β. Then
(i) The operator Ar,β,γ : l2(N2) → l2(N2) is compact and has non-negative matrix elements for all r ∈ R.
Its square A2

r,β,γ has strictly positive matrix entries.
(ii) For every r ∈ R, there exist unique left and right eigenvectors τ (L)

r,β,γ , τ (R)

r,β,γ ∈ l2(N2) corresponding
to λ(r, β, γ) and normalized in l2(N2). Moreover, τ (L)

r,β,γ(i1, i2) = τ (R)

r,β,γ(i2, i1) > 0 for all i1, i2 ∈ N. In
particular

pr,β,γ := 〈τ (L)

r,β,γ , τ (R)

r,β,γ〉 > 0. (2.6)

We will need the following properties of the dependence of the maximal eigenvalue on its parameters.

Proposition 2.2 (Analyticity of the maximal eigenvalue)
(i) The map (r, β, γ) 7→ λ(r, β, γ) is analytic on {(r, β, γ) ∈ R× [0,∞)2; β > γ}.
(ii) The map r 7→ λ(r, β, γ) is strictly increasing and strictly log-convex, λ(0, β, γ) ≤ e−(β−γ) and
limr→∞ λ(r, β, γ) = ∞.
(iii) The map r 7→ pr,β,γ is continuous.

For fixed 0 ≤ γ < β let r∗ = r∗(β, γ) be the unique solution of

λ(r∗, β, γ) = 1. (2.7)

Now we are in the position to define θ∗ and σ∗.

Definition 2.3 We define the speed θ∗ = θ∗(β, γ) and the spread σ∗ = σ∗(β, γ) of the random polymer
by

θ∗ =
[ ∂

∂r
λ(r, β, γ)

]−1

r=r∗
, σ∗2 = θ∗3

[ ∂2

∂r2
λ(r, β, γ)− 1

θ∗2

]
r=r∗

. (2.8)

2.2 Proof of Proposition 2.1

We will prove the different parts of Proposition 2.1 one by one. For notational convenience we suppress
the (β, γ)–dependence in the notation where no ambiguities may occur, and write Ar = Ar,β,γ , λr =
λ(r, β, γ), τ (L)

r = τ (L)

r,β,γ and τ (R)
r = τ (R)

r,β,γ .

Part (i). If 0 ≤ γ < β, or 0 ≤ γ ≤ β and r < 0, then Ar is a Hilbert-Schmidt matrix. To see
this, we estimate the Hilbert-Schmidt norm ||Ar||HS as

||Ar||2HS =
∑

i,j∈N2

Ar(i, j)2

=
∑

i,j∈N2

er[s(i)+s(j)]−β[s(i)2+s(j)2]+2γs(i)s(j)1{i2 = j1}P (i1, i2)P (j1, j2)

≤
∑

i,j∈N2

er[s(i)+s(j)]−(β−γ)[s(i)2+s(j)2]−γ(s(i)−s(j))2P (i1, i2)P (j1, j2)

≤
∑

i,j∈N2

er[s(i)+s(j)]−(β−γ)[s(i)2+s(j)2]P (i1, i2)P (j1, j2) (2.9)

=
( ∑

i∈N2

ers(i)−(β−γ)s(i)2P (i1, i2)
)2

< ∞.

This implies that Ar : l2(N2) 7→ l2(N2) is a compact operator (see, e.g., Yosida (1980), Chapter X.2,
Example 2).
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The fact that A2
r,β,γ(i, j) > 0 for all i, j ∈ N2 is easiest to see by writing down the explicit formula

for A2
r,β,γ(i, j). This is left to the reader.

Part (ii). Since A = Ar,β,γ is compact on l2(N2), it has unique positive left and right eigenvectors
τ (L) = τ (L)

r,β,γ and τ (R) = τ (R)

r,β,γ corresponding to λ = λ(r, β, γ), normalized such that 〈τ (L), τ (L)〉 =
〈τ (R), τ (R)〉 = 1.

Define i = (i2, i1) for i ∈ N2. To see τ (L)(i) = τ (R)(i), we note that the transposed matrix A∗ fulfills
the relation A∗(i, j) = A(i, j) for all i, j ∈ N2. Thus i 7→ τ (R)(i) is the left eigenvector with eigenvalue λ.
Since A2 is strictly positive the same is true for the eigenvectors which proves the final claim in Part
(ii). 2

2.3 Proof of Proposition 2.2

Part (i). Let
A(N)

r = (Ar(i, j)1{1,...,N}4(i, j))i,j∈N2

be the restriction of A to l2({1, . . . , N}2) and denote by λ
(N)
r its largest eigenvalue. Clearly (r, β, γ) 7→

λ(N)(r, β, γ) is analytic for each N . Furthermore,
∣∣∣λ(r, β, γ)− λ(N)(r, β, γ)

∣∣∣ ≤
∥∥∥Ar,β,γ −A

(N)
r,β,γ

∥∥∥
HS

.

A calculation similarly to (2.9) shows that the latter quantity converges to 0 as N → ∞ uniformly
in (r, β, γ) on compact subsets of R × {(β, γ), β > 0, γ > β}. Hence, as a uniform limit of analytic
functions (r, β, γ) 7→ λ(r, β, γ) is analytic.

Part (ii). By the Perron-Frobenius theorem, the largest eigenvalue is a strictly increasing function of
the entries of the (non-negative) matrix. Hence r 7→ λr is strictly increasing. Furthermore, the largest
eigenvalue of the matrix

(
A(i, j)1{((1,1),(1,1))}(i, j)

)
ij

is simply Ar((1, 1), (1, 1)). Thus we get the following
inequality that we need below

λr > Ar((1, 1), (1, 1)) = erA0((1, 1), (1, 1)). (2.10)

For each i, j ∈ N2 the map r 7→ Ar(i, j) is log-linear. Moreover, λ(r, β, γ) = limN→∞
(
AN (i, j)

) 1
N .

Since log-convexity is preserved under positive combinations and under taking pointwise limits (see
Kingman (1961) and Kato (1982)), r 7→ λ(r, β, γ) is log-convex in r.

We will show that it is strictly log-convex by contradiction. Assume that r 7→ log λr is not strictly
convex. Since it is convex, analytic and increasing there exist a, b ≥ 0 such that λr = a ebr. For r < 0
we get from (2.9) that

λr ≤ ‖Ar‖HS

≤ erA0((1, 1), (1, 1)) +
∑

i, s(i)≥2

ers(i)P (i1, i2)

= erA0((1, 1), (1, 1)) +
1
2
e2r(1− er)−1.

Letting r → −∞ yields b ≥ 1. Together with (2.10) this implies b = 1 and a = A0((1, 1), (1, 1)).
However, this is a contradiction to (2.10). Thus we have proved strict log-convexity of r 7→ λr.
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Recall that 0 ≤ γ < β. Then we use an estimate as in (2.9) and Cauchy-Schwarz to get

λ0 ≤ sup
‖x‖=1

〈x,A0x〉

≤ sup
‖x‖=1

e−(β−γ)
∑

i,j

x(i) 1{i2 = j1}
√

P (i1, i2)P (j1, j2) x(j)

≤ sup
‖x‖=1

e−(β−γ)
( ∑

i,j

x2(i)1{i2=j1}P (j1, j2)
)1/2( ∑

i,j

x2(j)1{i2=j1}P (i1, i2)
)1/2

= e−(β−γ) < 1,

(2.11)

where the last equality follows from the facts that P is a doubly stochastic matrix and that x is
normalized.

Finally, limr→∞ λr = ∞ since r 7→ log λr is (strictly) increasing and convex.

Part (iii). This works quite similarly as Part (i). We omit the details. 2

3 Branching Process and Local Times

In this section we quote Knight’s Theorem, a representation of random walk local times in terms of a
branching process. We write the exponential in the definition of Qβ,γ

n (recall (0.1) and (0.2)) in terms
of this branching process (Lemma 3.1).

3.1 Knight’s Theorem

This subsection provides an important tool for the proof of Theorem 3, namely, a family of Markov
chains that describes the local times of simple random walk on Z (recall (0.13)) at certain stopping
times, viewed as a process in the spatial parameter. The following material is based upon the work
of Knight (1963). It is the discrete space-time analogue of the Ray-Knight theorem for local times of
Brownian motion. The present form is taken from van der Hofstad, den Hollander and König (1997),
to which we refer for some of the proofs.

Recall that (Si)n
i=0 is a path of simple random walk in Z. Fix s ∈ N0. Define the successive times at

which the walker makes steps s → s + 1 and s + 1 → s, by putting T ↑0,s = T ↓0,s = 0 and for k ∈ N,

T ↑k,s = inf{i > T ↑k−1,s : Si−1 = s, Si = s + 1},
T ↓k,s = inf{i > T ↓k−1,s : Si−1 = s + 1, Si = s}. (3.1)

By discarding null sets we can assume that all these stopping times are finite (one-dimensional simple
random walk is recurrent!). Note that T ↑k,s < T ↓k,s < T ↑k+1,s for s ∈ N0. Recall the definition of the
stochastic N× N matrix P in (2.1), and introduce a stochastic N0 × N0 matrix P ? by putting

P ?(i, j) = 1N(i)P (i, j + 1) + 1{(0,0)}(i, j) (i, j ∈ N0). (3.2)

Let
(m(x))x∈N0 and (m?(x))x∈N0 (3.3)

be the Markov chains with transition kernels P and P ? respectively.
We introduce the bivariate chains

M(x) = (m(x),m(x + 1)) and M?(x) = (m?(x),m?(x + 1)), x ∈ N0. (3.4)
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Recall that s?(i) = i1 + i2 and s(i) = i1 + i2 − 1.
In terms of these Markov chains, we can describe the distribution of the local times of simple random

walk at the stopping times T ↑k,s respectively T ↓k,s as follows. (We write d= for equality in distribution.)

Theorem 4 (Knight’s Theorem) Fix k, s ∈ N. Let (m(x))x∈N0 start at m(0) = k. Let (m?
1(x))x∈N0

and (m?
2(x))x∈N0 be two independent copies of (m?(x))x∈N0 starting at m?

1(0) = m(0) respectively
m?

2(0) = m(s). Assume that m, m?
1 and m?

2 are independent given m(0) and m(s). Then
[(

`T↑k,s
(s + 1− x)

)
x=1,...,s

,
(
`T↑k,s

(s + x)
)
x∈N0

,
(
`T↑k,s

(1− x)
)
x∈N0

]

d=
[
(s(M(x− 1)))x=1,...,s, (s?(M?

1(x− 1)))x∈N0 , (s?(M?
2(x− 1)))x∈N0

]
.

(3.5)

Furthermore,

`T↓k,s
(x) =

{
`T↑k,s

(x) + 1{s}(x) if x ≤ s,

`T↑k+1,s
(x)− 1{s+1}(x) otherwise. (3.6)

Proof. See van der Hofstad, den Hollander and König (1997). 2

In the sequel Pi and P?
k will denote the laws of the two Markov chains in (3.3) starting in M(0) =

i ∈ N2 respectively m?(0) = k ∈ N0. We write Ei and E?
k for expectation with respect to Pi respectively

P?
k.

3.2 The Distribution of the Local Times

The description of the local times given in Knight’s theorem has the disadvantage that the local times
are observed at certain stopping times. For the description of the polymer we need to go back to
the fixed time n. One of the problems we consequently have to deal with is the global restriction∑

x∈Z `n(x) = n + 1.

Fix s, n ∈ N. In this subsection we derive a representation for the expression E(e−Hn(Sn)1{Sn=s}) in
terms of the Markov chains introduced in the preceding subsection. The idea is to sum over the number
of steps 0 → 1, s → s + 1 (respectively s + 1 → s), and over the amount of time the walker spends in
the three intervals −N0, {1, . . . , s} and {s + 1, s + 2, . . .} until time n.

Define the functionals

U(s) =
s−1∑
x=0

s(M(x)), U? =
∞∑

x=0

s?(M?(x)),

V (s) =
s−1∑
x=0

s(M(x))2, V ? =
∞∑

x=0

s?(M?(x))2, (3.7)

W (s) =
s−1∑
x=0

s(M(x))s(M(x + 1)), W ? =
∞∑

x=0

s?(M?(x))s?(M?(x + 1)).

We will need the notation i = (i2, i1) for i ∈ N2. In terms of these new objects we may write:

Lemma 3.1 For all n, s ∈ N,

E
(
e−Hn(S)1{Sn=s+1,Sn−1=s}

)
=

∑
n1,n2∈N

∑
j1, j2∈N2

2∏
i=1

E?
ji2

[
e−βV ?+γW ?+γs(ji)s?(M?(0))1{ni}(U

?)
]

×Ej1

[
e−βV (s)+γW (s)1{n−n1−n2+1}(U(s))1{j2}(M(s− 1))

] (3.8)
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and

E
[
e−Hn(S)1{Sn=s,Sn−1=s+1}

]
=

∑
k1∈N\{1},n1∈N0

∑
k2,n2∈N

2∏
i=1

E?
ki

[
e−βV ?+γW ?−δi1{ni}(U

?)
]

×Ek1−1

[
e−β[V (s)+δ3]+γ[W (s)+δ4]1{n−n1−n2+1}(U(s))1{k2}(m(s))

]
,

(3.9)

with

δ1 = 2βm?(1)− γ(m?(1) + m?(2)), δ2 = 0, δ3 = 2m(1), δ4 = k1 + m(1)− 1. (3.10)

Proof. See van der Hofstad, den Hollander and König (1997), proof of Lemma 3. 2

In the proof of Theorem 3 we shall focus on the contribution coming from the right hand side of
(3.8). It will be argued at the end of Section 4.4 that (3.9) behaves in the same manner as (3.8) as
n →∞, i.e., the small perturbations δ1, . . . , δ4 are harmless.

In Lemma 3.1 we have rewritten Qβ,γ
n in terms of exponential functionals of the two Markov chains

defined in (3.3). We can henceforth forget about the underlying random walk. Note that in Lemma 3.1
we have products of expectations.

4 Proof of the CLT

In this section we perform the main steps of the proof of Theorem 3. Our approach is a variation of
the method used in van der Hofstad, den Hollander and König (1997). In Section 4.1 (Lemma 4.2) we
reformulate Lemma 3.1 in terms of the equilibrium distribution of a transformed Markov chain. Then
in Section 4.2 we give the final reformulation in terms of a Markov renewal chain (Lemma 4.3). The
representation in Lemma 4.3 allows to give in Section 4.3 the key propositions (Proposition 4.4 and 4.5)
that are the technical core of the argument. In Section 4.4 we complete the proof of Theorem 3.

4.1 A Transformed Markov Chain

In this subsection we define a transformation of the Markov chain (M(x))x∈N0 introduced in Section 3.1.
The goal of this transformation is to absorb the random variable e−βV (s)+γW (s) (see (3.7)) into the new
transition probabilities.

Recall the definition of Ar,β,γ and r∗ from Section 2.1 (equations (2.5) and (2.7)) and recall that we
usually suppress the (β, γ)–dependence in the notation. Fix r ∈ R and β, γ ∈ R+ such that γ < β. As
was pointed out in Proposition 2.1, the matrix Ar has a unique largest eigenvalue λr. Consequently,
similarly as an h-transform we can define a stochastic matrix Pr by

Pr(i, j) =
Ar(i, j)

λr

τ (R)
r (j)

τ (R)
r (i)

(i, j ∈ N2). (4.1)

We shall write Pr
k to denote the law of the Markov chain (M(x))x∈N0 (recall (3.4)), starting at k ∈ N2

and having Pr as its transition kernel. We write Er
k for the corresponding expectation.

Lemma 4.1 (M(x))x∈N0 is positive recurrent and ergodic with invariant distribution (recall (2.6))(
p−1

r τ (L)
r (i)τ (R)

r (i)
)
i∈N2 .

Proof. Since A2
r is strictly positive (Proposition 2.1 (i)), the same is true for the eigenvector τ (R)

r

and for P 2
r . Hence Pr has a unique invariant measure. However, it is immediate from (4.1) that

p−1
r τ (L)

r τ (R)
r Pr = p−1

r τ (L)
r τ (R)

r , hence p−1
r τ (L)

r τ (R)
r is an invariant measure for Pr. Since it is a probability

measure by the definition of pr, (M(x))x∈N0 is positive recurrent and ergodic. 2
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We write Pr,Er when the chain starts in its invariant distribution.
We will reformulate the right hand side of (3.8) in terms of (M(x))x∈N0 , since this is the natural

object for our analysis. First we need some more notation. For r ∈ R and β, γ ∈ R+, define the functions
w(R)

r , w(L)
r : N2

0 × N0 → R+
0 by (see (3.7))

w(R)
r (k, l) = τ (R)

r (k)−1E?
k2

[
erU?−βV ?+γW ?+ r

2 s(k)− β
2 s(k)2+γs(k)(k2+m?(1))1{l}(U?)

]√
P (k1,k2), (4.2)

and w(L)
r (k, l) = w(R)

r (k, l). Furthermore, define

Tl = min{s : U(s) ≥ l} (4.3)

to be the exceeding time of l and let for n ∈ N

I(n) =
⋃

s∈N0

{U(s) = n} = {U(Tn) = n} (4.4)

the event that U hits n exactly.

Our aim is to obtain a convenient description of the Laplace transforms of Qβ,γ
n

( |Sn|−θ∗n
σ∗n1/2 ∈ · ). A

first step is the following lemma (recall pr from (2.6)).

Lemma 4.2 For µ ∈ R and n ∈ N,

e−2µ/σ∗
√

ne(n+1)r∗nE
[
e−Hn(S)eµSn/σ∗

√
n1{0≤Sn−1<Sn}

]

=pr∗n

∑

n1,n2∈N
Er∗n

[
w(L)

r∗n
(M(0), n1)w

(R)
r∗n

(M(Tn−n1−n2+1 − 1), n2); I(n− n1 − n2 + 1)
]

(4.5)

where r∗n = r∗n(µ) is given by
λr∗n = e−µ/σ∗

√
n. (4.6)

Proof. Note that by definition of the transformed Markov chain in Section 4.1 we can write for i, j ∈ N2

and N, s ∈ N

λ1−s
r Pr

i [U(s) = N, M(s− 1) = j]
√

P (i1, i2)
√

P (j1, j2)

=
τ (R)
r (j)

τ (R)
r (i)

∑

k1,...,ks−2∈N2
s(i)+s(k1)+...+s(ks−2)+s(j)=N

Ar(i,k1) · · ·Ar(ks−2, j)
√

P (i1, i2)
√

P (j1, j2).
(4.7)

Letting k0 = i1, k1 = i2, ks−1 = j1, ks = j2 and

u(s) =
s−1∑

l=0

(kl + kl+1 − 1), v(s) =
s−1∑

l=0

(kl + kl+1 − 1)2, w(s) =
s−2∑

l=0

(kl + kl+1 − 1)(kl+1 + kl+2 − 1)

this equals

τ (R)
r (j)

τ (R)
r (i)

∑
k2,...,ks−2∈N

u(s)=N

P (k0, k1) · · ·P (ks−1, ks) er(u(s)−(s(i)+s(j))/2) e−β(v(s)−(s(i)2+s(j)2)/2) eγw(s)

=
τ (R)
r (j)

τ (R)
r (i)

Ei

[
e−βV (s)+γW (s); U(s) = N, M(s− 1) = j

]
e−r(s(i)+s(j))/2eβ(s(i)2+s(j)2)/2erN .

(4.8)
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Hence, if we let N = n−n1−n2 +1 and r = r∗n and use the representation in (3.8), then we can rewrite
the left hand side of (4.5) as pr∗n times

∑

n1,n2∈N

∑

i,j∈N2

∑

s∈N0

w(L)
r∗n

(i, n1)w
(R)
r∗n

(j, n2)τ
(L)
r∗n

(i)τ (R)
r∗n

(i) Pr∗n
i [U(s) = n− n1 − n2 + 1,M(s− 1) = j]

=
∑

n1,n2∈N

∑

i,j∈N2

w(L)
r∗n

(i, n1)w
(R)
r∗n

(j, n2)τ
(L)
r∗n

(i)τ (R)
r∗n

(i) Pr∗n
i [M(Tn−n1−n2+1 − 1) = j; I(n− n1 − n2 + 1)] .

This completes the proof. 2

In the right hand side of (4.5) appears a correlation function. In the sequel we shall prove that the
first and the last factor in this correlation function are asymptotically independent as n →∞.

4.2 Markov Renewal Chain

It turns out that a convenient way to show that the correlations vanish is to replace the chain M(x) by
a related renewal chain (Γ(l))l∈N0 . In this subsection we define (Γ(l)) and reformulate Lemma 3.1 in
terms of (Γ(l)).

Define
X(l) = U(Tl)− l, Y (l) = (m(Tl − 1),m(Tl)). (4.9)

Then I(n) = {X(n) = 0}. The pair
Γ(l) = (X(l), Y (l)) (4.10)

is a random element of the set

Σ = { (i, j) ∈ N0 × N2 : i ≤ s(j)− 1 }.

For any j ∈ N2, under the law Pr
j the process (Γ(l))l∈N0 is a Markov renewal process with transition

kernel Qr on Σ given by

Qr ((i, j), (i′, j′)) = 1{i=0,i′=s(j′)−1}Pr(j, j′) + 1{i′=i−1,j′=j} (4.11)

and starting at Γ(0) = (0, j). It is easily checked that the probability distribution νr on Σ defined by

νr(i, j) = θrp
−1
r τ (L)

r (j)τ (R)
r (j) (4.12)

and
θr =

λr

λ′r
is the associated invariant distribution on Σ. Indeed,

(νrQr)(i′, j′) =
θr

pr

( ∑

j∈N2

τ (L)
r (j)τ (R)

r (j)Pr(j, j′)1{i′=s(j′)−1} + τ (L)
r (j′)τ (R)

r (j′)1{i′≤s(j′)−2}
)

=
θr

pr
τ (L)
r (j′)τ (R)

r (j′)1{i′≤s(j′)−1} = νr(i′, j′),

since τ (L)
r τ (R)

r is invariant for Pr. To see that νr is normed, note that

‖νr‖ :=
∑

(i,j)∈Σ

νr(i, j) =
θr

pr
〈τ (L)

r , Sτ (R)
r 〉, (4.13)
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where S is the diagonal matrix S(i, j) = s(i)1{i=j}, i, j ∈ N2. Clearly Ar = exp( r
2S)A0 exp( r

2S). Hence
∂rAr = 1

2 (SAr + ArS). Moreover, we let A∗ be the adjoint operator of A. Then

〈τ (L)
r , Sτ (R)

r 〉 =
1
λr

〈A∗rτ (L)
r , Sτ (R)

r 〉 =
1
λr

1
2

(
〈SA∗rτ

(L)
r , τ (R)

r 〉+ 〈τ (L)
r , ArSτ (R)

r 〉
)

(4.14)

=
1
λr

〈
τ (L)
r ,

1
2
(SAr + ArS)τ (R)

r

〉
=

1
λr

〈τ (L)
r , (∂rAr)τ (R)

r 〉.

Thus we get ‖νr‖ = 1
λ′r

∂r(p−1
r 〈τ (L)

r , Arτ
(R)
r 〉) = 1.

We write P̃r and Ẽr to denote probability and expectation w.r.t. the Markov chain (Γ(l))l∈N0 starting
in its invariant distribution νr.

Before we reformulate the right hand side of (3.8) in terms of (Γ(l))l∈N0 we need some more notation.
Recall that for i ∈ N2 we defined i = (i2, i1).

For r ∈ R and β, γ ∈ R+, define the functions f (R)
r and f (L)

r : Σ× N0 → R+ by

f (R)
r ((i, j); l) = w(R)

r (j, l)1{i=0}, f (L)
r ((i, j); l) = f (R)

r ((i, j); l), (4.15)

where w(L)
r and w(R)

r are defined in (4.2).
We can now reformulate the left hand side in Lemma 4.2 as follows.

Lemma 4.3 For µ ∈ R and n ∈ N,

e−2µ/σ∗
√

ne(n+1)r∗n E
[
e−Hn(Sn)eµSn/σ∗

√
n1{0≤Sn−1<Sn}

]

=
pr∗n

θr∗n

∑

n1,n2∈N
Ẽr∗n

[
f (L)

r∗n
(Γ(0);n1)f

(R)
r∗n

(Γ(n− n1 − n2); n2)
]
,

(4.16)

where r∗n is given in (4.6).

Proof. Using Lemma 4.2 we rewrite the left hand side of (4.16) as

pr∗n

∑

n1,n2∈Z
Er∗n

[
w(L)

r∗n
(M(0), n1) w(R)

r∗n
(M(Tn−n1−n2+1 − 1), n2); I(n− n1 − n2 + 1)

]

= pr∗n

∑

n1,n2∈Z
Er∗n

[
w(L)

r∗n
(M(0), n1) 1{0}(X(n− n1 − n2 + 1)) w(R)

r∗n
(Y (n− n1 − n2 + 1), n2)

]

= pr∗n

∑

n1,n2∈Z
Er∗n

[
w(L)

r∗n
(M(0), n1) f (R)

r∗n
(Γ(n− n1 − n2 + 1); n2)

]

= pr∗n

∑

n1,n2∈Z
Er∗n

[
w(L)

r∗n
(Y (1), n1) f (R)

r∗n
(Γ(n− n1 − n2 + 1); n2)

]
.

Note that X(0) = 0 if and only if X(1) = s(Y (1))− 1 and use the fact that Pr∗n = P̃r∗n [ · |X(0) = 0] =
1

θr∗n
P̃r∗n · 1X(0)=0 to rewrite this equation as

=
pr∗n

θr∗n

∑

n1,n2∈Z
Ẽr∗n

[
w(L)

r∗n
(Y (1), n1) 1{0}(X(0)) f (R)

r∗n
(Γ(n− n1 − n2 + 1); n2)

]

=
pr∗n

θr∗n

∑

n1,n2∈Z
Ẽr∗n

[
f (L)

r∗n
(Γ(1);n1)f

(R)
r∗n

(Γ(n− n1 − n2 + 1); n2)
]
.

Using the fact that Γ is stationary under Ẽr∗n yields the claim. 2
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4.3 Convergence to the Equilibrium

It is clear from the ergodicity of the renewal chain that its distribution converges to its equilibrium νr

for every fixed r. However, in Lemma 4.3 we need convergence where r = r∗n depends on n and converges
to r∗. We state pointwise convergence in Proposition 4.4 and uniform integrability in Proposition 4.5.
This sets the stage for the proof of Theorem 3.

Proposition 4.4 Fix (i,k), (i′,k′) ∈ Σ and n1 ∈ N. For any sequence rn → r∗

lim
n→∞

Prn

(i,k) [X(n− n1) = i′, Y (n− n1) = k′] = νr∗(i′,k′). (4.17)

Proof. The statement is equivalent to
∥∥δ(i,k)Q

n−n1
rn

− νr∗
∥∥

TV
→ 0, n → ∞. Note that N 7→∥∥δ(i,k)Q

N
rn
− νrn

∥∥
TV

is decreasing for all n ∈ N since νrnQrn = νrn and Qrn is a contraction. Thus
for n ≥ n1 + N ,

∥∥δ(i,k)Q
n−n1
rn

− νr∗
∥∥

TV

≤ ∥∥δ(i,k)Q
n−n1
rn

− νrn

∥∥
TV

+ ‖νrn
− νr∗‖TV

≤
∥∥δ(i,k)Q

N
rn
− νrn

∥∥
TV

+ ‖νrn − νr∗‖TV

≤
∥∥δ(i,k)Q

N
r∗ − δ(i,k)Q

N
rn

∥∥
TV

+
∥∥δ(i,k)Q

N
r∗ − νr∗

∥∥
TV

+ 2 ‖νrn − νr∗‖TV .

(4.18)

By continuity of r 7→ τr, r 7→ λ′r and r 7→ λr, we get Qrn → Qr∗ and νrn → νr∗ as n → ∞, and hence
the first and third term on the r.h.s. of the above equation vanish, so that

lim sup
n→∞

∥∥δ(i,k)Q
n−n1
rn

− νr∗
∥∥

TV
≤ ∥∥δ(i,k)Q

N
r∗ − νr∗

∥∥
TV

for all N ∈ N. (4.19)

However, by ergodicity of Q: ‖δ(i,k)Q
N
r∗ − νr∗‖ → 0, N →∞. This completes the proof. 2

The next proposition states summability of the correlation function. This will be needed to impose
a dominated convergence argument in the proof of Theorem 3. Note that it is only here that we have
to assume γ ≤ β − 1

2 log 2.

Proposition 4.5 Assume that 0 ≤ γ ≤ β − 1
2 log 2. Then there exists an n0 < ∞ such that

∑

k,j∈N2

∑

n1,n2∈N
sup

n≥n0

1
θr∗n

νr∗n(0,k)Er∗n
(0,k)

[
f (L)

r∗n
(Γ(0);n1)f

(R)
r∗n

(Γ(n− n1 − n2); n2)1{j}(Y (n− n1 − n2))
]

< ∞.

(4.20)

We divide the proof of this proposition into three lemmas. The statement (4.20) will be immediate from
Lemma 4.6, 4.7 and 4.8.

Lemma 4.6 Assume that 0 ≤ γ ≤ β − 1
2 log 2. Then there exists an n0 < ∞ such that for n ≥ n0

νr∗n(0,k)Er∗n
(0,k)

[
f (L)

r∗n
(Γ(0);n1)f

(R)
r∗n

(Γ(n− n1 − n2); n2)1{j}(Y (n− n1 − n2))
]

≤ θr∗nλr

√
τ (L)
r∗n

(k)τ (R)
r∗n

(k)w(L)
r∗n

(k, n1)
√

τ (L)
r∗n

(j)τ (R)
r∗n

(j)w(R)
r∗n

(j, n2).
(4.21)

Proof. The proof is easy. Write

νr∗n(0,k)Er∗n
(0,k)

[
f (L)

r∗n
(Γ(0);n1)f

(R)
r∗n

(Γ(n− n1 − n2); n2)1{j}(Y (n− n1 − n2))
]

= Ẽr∗n
[
f (L)

r∗n
(Γ(0);n1)1{(0,k)}(Γ(0))f (R)

r∗n
(Γ(n− n1 − n2); n2)1{(0,j)}(Γ(n− n1 − n2))

]
,

(4.22)
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and use Cauchy-Schwarz and the fact that νr∗n is the stationary measure. This gives

νr∗n(0,k)Er∗n
(0,k)

[
f (L)

r∗n
(Γ(0);n1)f

(R)
r∗n

(Γ(n− n1 − n2); n2)1{j}(Y (n− n1 − n2))
]

≤
(
νr∗n(0,k)(f (L)

r∗n
)2((0,k); n1)

)1/2 (
νr∗n(0, j)(f (R)

r∗n
)2((0, j); n2)

)1/2

.

(4.23)

Finally, substitute f (L)
r∗n

, f (R)
r∗n

(recall (4.15) and (4.2)) and νr∗n (recall (4.12)). 2

Recall U? and V ? from (3.7) and r∗n from (4.6). The crucial quantity for summability of w(R)
r∗n

is

r := sup{r > 0 : αr < ∞}, (4.24)

where
αr := E?

1

[
e−(β−γ)V ?+rU?

]
. (4.25)

Lemma 4.7 If r̄ > r∗, then for sufficiently large n0 ∈ N,
∑

k∈N2
m∈N

sup
n≥n0

(
w(R)

r∗n
(k,m)

√
τ (L)
r∗n

(k)τ (R)
r∗n

(k)
)

< ∞.

Proof. By convexity of the map r 7→ λr we get that r∗n < r∗ + |µ|/σ∗
√

n. In particular, there exists an
r′ ∈ (r∗, r̄) and an n0 ∈ N such that r∗n < r′ for all n ≥ n0.

Note that τ (R)
r∗n

(k) ≥ 1
λr∗n

Ar∗n,β,γ(k,k)τ (R)
r∗n

(k). Since Ar∗n,β,γ(k,k) = er∗ns(k)+(γ−β)s(k)2P (k1,k2), and
since r 7→ λr is increasing we get

√
τ (L)
r∗n

(k)τ (R)
r∗n

(k) ≤ τ (R)
r∗n

(k)λ1/2
r′ e−(r∗n/2)s(k)+((β−γ)/2)s(k)2/

√
P (k1,k2).

Now, sum out over m and note that V ?−W ? = 1
2s?(M?(0)))2 + 1

2

∑∞
x=0(s

?(M?(x+1)−s?(M?(x)))2 ≥
1
2s?(M?(0))2 + 1

2 (s?(M?(1)− s?(M?(0)))2 to bound the exponential in the expectation in the definition
of w(R)

r∗n
to get ∑

k,m

sup
n≥n0

(
w(R)

r∗n
(k,m)

√
τ (L)
r∗n

(k)τ (R)
r∗n

(k)
)
≤

∑

k

vr′(k), (4.26)

where
vr(k) = E?

k2

[
e−(β−γ)V ?+r′U?− γ

2 (k1−m∗(1)+1)2
]
. (4.27)

We show that vr′(k) is in l1(N2). We first define cγ = 2
∑∞

j=0 e−
γ
2 j2

to bound

∑

k∈N2

vr′(k) ≤ cγ

∑

k∈N
E?

k

[
e−(βV ?+rU?)

]
=: cγ

∑

k∈N
zr′(k).

We next use that z satisfies for k ≥ 1

zr′(k) =
∑

l∈N
P (k, l + 1)er′(k+l)− (β−γ)

2 (k+l)2zr′(l),

to see that it is sufficient to have zr′(l) ≤ αl for some α < ∞. This is what we will prove now.
To this end let {(m?

i (x))x∈N0 ; i ∈ N} be independent copies of (m?(x))x∈N0 starting with m?
i (0) = 1,

i ∈ N. Here we make use of the fact that m? has the branching property, i.e., is the sum of independent
branching chains. More precisely, if we fix k2 ∈ N and define

(m?(x))x∈N0 = (m?
1(x) + . . . + m?

k2
(x))x∈N0 , (4.28)
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then (m?(x))x∈N0 is a Markov chain with transition matrix P ? and m?(0) = k2. Define the functionals
U?

i and V ?
i as in (3.7), now for the chain m?

i , i ∈ N. Hence

U? = U?
1 + . . . + U?

k2
and V ? ≥ V ?

1 + . . . + V ?
k2

. (4.29)

From (4.29) it is clear that

zr′(k) ≤ E?
k

[
e−(β−γ)

∑k
i=1 V ?(i)+r′

∑k
i=1 U?(i)

]
= αk

r′ .

However, by assumption αr′ < ∞, which finishes the proof. 2

The final step in the proof of Proposition 4.5 is to show that γ ≤ β − 1
2 log 2 implies r̄ > r∗.

Lemma 4.8 If γ ≤ β − 1
2 log 2, then r̄ > r∗.

Proof. Define r′ = β − γ + log 2 > r∗. Then r′ ≤ 3(β − γ), hence r′s?(i) − (β − γ)s?(i)2 ≤ 0 unless
i = (1, 0) or i = (1, 1), where it assumes the values r′ − (β − γ) = log 2, respectively, 2r′ − 4(β − γ) =
2 log 2− 2(β − γ) ≤ log 2.

Let E = {(1, 1), (1, 0), (0, 0)}. Thus

r′U? − (β − γ)V ? ≤
∞∑

x=0

1E(M?(x))
(
r′s?(M?(x))− (β − γ)s?(M?(x))2

)

≤ log 2(1 + #{x : M?(x) = (1, 1)}).
(4.30)

Let M′ be the chain M? observed only when it is in E. This definition makes sense since E is absorbing.
Hence the right-hand side of (4.30) equals log 2(1 + τ), where τ = sup{x ∈ N : M′(x) = (1, 1)}.
Note that we can compute the transition probabilities of M′: P ((0, 0), (0, 0)) = 1, P ((1, 0), (0, 0)) = 1,
P ((1, 1), (1, 1)) = 1/(4(1−ρ)), P ((1, 1), (1, 0)) = 1/(2(1−ρ)), and P ((1, 1), (0, 0)) = (1−4ρ)/(4(1−ρ)),
where

ρ = P 1(m?(1) ≥ 2, m?(x) = 1 for some x ≥ 2) <
1
4
.

Hence 1 + τ is geometrically distributed with parameter 1
4(1−ρ) < 1

3 and we get

αr′ = E?
1[e

r′U?−(β−γ)V ?

] ≤ E(1,1)[21+τ ]

= 2
1− 1/(4(1− ρ))
1− 1/(2(1− ρ))

=
3− 4ρ

1− 2ρ
< ∞.

2

Remark: Numerical computations show that it is possible that αr∗ = ∞. More precisely, we can
show analytically that if β−γ ≤ 0.1 and r∗ ≥ 0.65, then αr∗ = ∞. The numerics yield, for example, that
r∗(8, 7.91) ≈ 0.685 > 0.65 and that hence this case in fact occurs. This means that with our estimates
we have wasted too much. However, we have not found a way how we can substantially improve the
bounds presented here.

4.4 Completion of the Proof

We prove Theorem 3 by showing that there is an L ∈ R+ such that for every µ ∈ R,

lim
n→∞

er∗nE
[
e−Hn(Sn)eµ(Sn−θ∗n)/σ∗

√
n1{Sn>0}

]
= Leµ2/2. (4.31)

Note that (4.31) implies that under the law Qβ,γ
n ( · |Sn > 0) the moment generating function of (Sn −

θ∗n)/σ∗
√

n converges pointwise to the one of the standard normal distribution as n → ∞ (divide the
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left hand side of (4.31) by the same expression for µ = 0 and use (1.1)). Therefore (4.31) implies the
central limit theorem as stated in Theorem 3.

Now we show (4.31). Fix µ ∈ R. First we analyse the asymptotics of the exponential on the right
hand side of (4.16). Recall that we abbreviate λr = λ(r, β, γ). We write s 7→ λ−1(s) for the inverse of
r 7→ λr for fixed β and γ, and we write ∂s for the derivative with respect to s. Expand λ−1(s) in a
Taylor series around s = 1. Abbreviate µn = µ/σ∗

√
n. Then, from the definition of r∗n(µ) in (4.6), we

obtain the existence of some number ξn in between 1 and e−µn such that

r∗n(µ) = λ−1(e−µn)

= λ−1(1) + (e−µn − 1) ∂sλ
−1(1) + 1

2 (e−µn − 1)2 ∂2
sλ−1(s)

∣∣
s=ξn

= r∗ + (e−µn − 1) θ∗ + 1
2 (e−µn − 1)2 ∂2

sλ−1(s)
∣∣
s=ξn

.

(4.32)

Here the last equality follows from (2.7) and (2.8).
Next, we calculate

∂2
sλ−1(ξn) =

[
∂s [∂rλr]

−1
r=λ−1(s)

]
s=ξn

= −
[

∂2
rλr

(∂rλr)3

]
r=λ−1(ξn)

= −σ∗2 − θ∗ + o(1). (4.33)

Note that the θ∗ term cancels the second order term of e−µn − 1 in (4.32). Thus

r∗ − r∗n(µ) = µnθ∗ +
1
2
µ2

nσ∗2 + o(µ2
n)

=
µθ∗

σ∗
√

n
+

1
2

µ2

n
+ o

( 1
n

)
.

(4.34)

Recall from Lemma 4.3 that

er∗nE
[
e−Hn(Sn)eµ(Sn−θ∗n)/σ∗

√
n1{0≤Sn−1<Sn}

]
= e(r∗−r∗n)n−µ(θ∗/σ∗)

√
n

× pr∗ne−r∗ne2µ/σ∗
√

n

θr∗n

∑

n1,n2∈N
Ẽr∗n

[
f (L)

r∗n
(Γ(0);n1)f

(R)
r∗n

(Γ(n− n1 − n2); n2)
]
.

(4.35)

From (4.34) it is clear that the first term converges to eµ2/2 as n → ∞. Further, by continuity, the
middle term converges to pr∗e

−r∗/θ∗ ∈ (0,∞).
To finish the proof, use Lemma 4.1 and 4.2, Proposition 4.4 and 4.5, together with dominated

convergence to get that the sum converges to
( ∑

k∈N
Ẽr∗ [f (L)

r∗ (Γ(0); k)]
)( ∑

k∈N
Ẽr∗ [f (R)

r∗ (Γ(0); k)]
)
.

This yields (4.31) with the additional indicator on the event {0 ≤ Sn−1 < Sn} in the l.h.s. The limit
assertion with the indicator on {0 ≤ Sn < Sn−1} is similar. The constant L in (4.31) is the sum of both
limits. 2
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