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Abstract

We study a system of interacting diffusions

dxξ(t) =
∑

ζ∈Ξ

a(ξ, ζ) (xζ(t) − xξ(t)) dt +
√
g(xξ(t)) dWξ(t) (ξ ∈ Ξ),

indexed by the hierarchical group Ξ, as a genealogical two genotype model (where xξ(t)
denotes the frequency of, say, type A) with hierarchically determined degrees of relationship
between colonies.

In the case of short interaction range it is known that the system clusters, i.e. locally
one genotype dies out. We focus on the description of the different regimes of cluster growth
which is shown to depend on the interaction kernel a(·, ·) via its recurrent potential kernel.
One of these regimes will be further investigated by mean-field methods.

For general interaction range we shall also relate the behaviour of large finite systems,
indexed by finite subsets Ξn of Ξ, to that of the infinite one.

On the way we will establish relations between hitting times of random walks and their
potentials.

Keywords and phrases: Interacting diffusions, Infinite particle systems, Coalescing ran-
dom walks
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1 Introduction and Main Results

Survey

In this paper we analyse the pattern of cluster formation in systems of interacting diffusions and
study the behaviour of large finite versus infinite systems of interacting diffusions.

Our main point is to cover the full range of clustering models in a systematic way. So far
the treatment of clustering phenomena has been focused on particular interaction kernels (see
Arratia (1982), Cox and Griffeath (1986) and Fleischmann and Greven (1994)) or the system
has been studied after taking a parameter of the dynamics to a limit (see Dawson and Greven
(1993). In fact, we shall investigate the question whether the mean-field analysis of Dawson,
Greven and Vaillancourt (1994) indeed yields the same result as when we take the objects
describing the cluster formation for a given interacting system and then letting the interaction
parameter approach its limit.

At the same time we are able to treat, in a likewise systematic way, the question of how the
behaviours of finite and infinite systems are related for systems on the hierarchical group for
the whole class of models considered. For a treatment of the lattice case see Cox and Greven
(1990), and Cox, Greven and Shiga (1994).

Introduction

We consider a system X(t) = (xξ(t))ξ∈Ξ of linearly interacting diffusions on [0, 1]Ξ defined as the
solution of the following system of stochastic differential equations (SSDE)

dxξ(t) =
∑

ζ∈Ξ

a(ξ, ζ)(xζ(t) − xξ(t))dt +
√
g(xξ(t)) dWξ(t) (ξ ∈ Ξ),(1.1)

indexed by the countable hierarchical group Ξ, where (Wξ) are independent Brownian motions,
a(·, ·) is the kernel of a random walk on Ξ and the diffusion coefficient g is assumed to fulfill

g : [0, 1] → [0,∞[ is Lipschitz-continuous(1.2)

g(x) = 0 iff x ∈ {0, 1}.

Existence and uniqueness of the strong solution of (1.1) is assured by Shiga and Shimizu (1980),
Theorem 3.2.

The hierarchical group Ξ is defined by

Ξ := {ξ = (ξm)m∈N : ξm ∈ {0, . . . , N − 1}, ξm 6= 0 only for finitely many m}(1.3)

with addition component wise modulo N (N = 2, 3 . . . is some fixed parameter) and distance
‖ξ‖ := max{k : ξk 6= 0} ∨ 0. Of course Ξ carries the discrete topology, induced by the metrics
‖ · ‖. For n ∈ N0 = N ∪ {0} we denote by Ξn the finite subgroup

Ξn := {ξ ∈ Ξ : ‖ξ‖ ≤ n}.(1.4)

We restrict ourselves to the case, where a(ξ, ζ) depends only on ‖ξ−ζ‖ and put for k = ‖ξ−ζ‖

rk := a(ξ, ζ)Rk with Rk := #{ξ ∈ Ξ : ‖ξ‖ = k} = (N − 1 + 1I0(k))N
k−1.(1.5)

This model has been suggested by Sawyer (1976) to describe the evolution of gene frequencies.
Think of Ξ as the site space, each site ξ containing a (large) colony of individuums. Then xξ(t)
represents the frequency of some fixed allel, say A, at site ξ and time t. By resampling, the
frequency fluctuates at random, modelled by g. Additionally, the frequency may change by
migration.
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Here the spatial structure of the site space becomes important. The idea is that the colonies
are organized according to different degrees of relationship. N colonies form a family, N families
form a clan, N clans form a tribe, and so on. Thus ξ = (ξ1, ξ2, ξ3, . . .) is the ξ1th member of the
ξ2th family of the ξ3th clan etc. We measure the degree of relationship between two colonies
ξ and ζ by ‖ξ − ζ‖. If, for example ‖ξ − ζ‖ = 2, then ξ and ζ are in the same clan, tribe etc.
but in different families. The flow of migration between two colonies shall depend only on their
degree of relationship. The total flow of migration from ξ to all relatives of degree k is rk. It
divides uniformly on all relatives of the same degree.

Here and in the following µ = Lµ(X(0)) is assumed to be in Mθ (for some θ ∈ [0, 1]) given
by

Mθ = {µ : µ is a spatially ergodic probab. measure on Ξ with intensity θ = 〈µ, x0〉}.(1.6)

Note that spatial homogeneity of the starting measure is preserved under the dynamics.
It is known that X(t) clusters if a(·, ·) is recurrent, i.e.

Lµ(X(t))
t→∞
=⇒ θδ1 + (1 − θ)δ0,(1.7)

where δ0, δ1 denote the (unit) point masses on 0,1 ∈ [0, 1]Ξ.
In the case a transient, opposed to (1.7), there is a family (νθ|θ ∈ [0, 1]) of invariant (under

the dynamics) ergodic measures with intensity θ = 〈νθ, x0〉 such that for µ ∈ Mθ

Lµ(X(t))
t→∞
=⇒ νθ.(1.8)

(See Cox and Greven (1994a) Theorem 1 and 2)
Of special interest are the geometrical kernels ac, c >

1
N with rk = ϑc · (Nc)−k (ϑc = Nc−1

Nc
is the normalizing constant). One can easily verify that ac is transient iff c < 1 (see (2.31)).
Notation We denote by L the law of a random variable, by =⇒ weak convergence and let
〈µ, f〉 =

∫
fdµ. Thus θ =

∫
x0νθ(dx).

Clustering in Infinite Systems

We are now led to the question of how fast the clusters grow in the case a recurrent. It has
already been shown in the theory of interacting particle systems that this depends on the strength
of interaction (see Bramson and Griffeath (1980), Cox and Griffeath (1986)). In our situation
it depends on whether c = 1 or c > 1. In the first case, the so-called diffusive case, clusters
grow at random speed. This has been studied in great detail by Fleischmann and Greven (1994).
However, we shall see that the diffusive case is not as singular as it seems at first glance by being
sandwiched between c < 1 and c > 1. Namely, and this is our main point, it will be broadened
to transition kernels such that k 7→ log(Nkrk) is slowly varying in a sense that will be made
precise. Here the random speed of growth splits up into three regimes. We shall investigate
this more closely in our Theorem 1. In contrast, in the case c > 1, clusters grow with a fixed
deterministic speed and we shall study fluctuations in our Theorem 2.

In order to fix the notion of growing clusters we work with two concepts described in (i) and
(ii) below.

(i) Scaled systems

In order to get a more detailed description of the clustering of (1.7) we want to compare sites
with a distance growing in time. For a systematic treatment, however, we will also rescale the
time by a monotone sequence (sn), sn ↑ ∞, called the time scale. Thus for n ∈ N0 we consider
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sites of distance f(n) at time sn. The monotone function f : N0 → N0, f(n) ↑ ∞ is called space
scale. To keep time continuous we introduce the ”inverse” of (sn)

n(t) = sup{n ∈ N : sn ≤ t} ∨ 0.(1.9)

For f and (sn) fixed the rescaled system f
X(t) is defined as follows.

Let the shift operators Sk : Ξ −→ Ξ, k = 0, 1, 2, . . ., be defined by

Sk((ξm)m∈N) = (ξm+k)m∈N(1.10)

and let S−1
k be a fixed right inverse. Now f

X(t) = (fxξ(t))ξ∈Ξ is defined by

fxξ(t) = xζ(t) where ζ = S−1
f(n(t))ξ.(1.11)

(ii) Block averages

For n ∈ N let the nth block average be defined by

Θn : [0, 1]Ξ → [0, 1]

(xξ) 7→ N−n ∑

ξ∈Ξn

xξ.(1.12)

The block averages are to be thought of as a macroscopic variable determining the behaviour
of the system up to a certain degree. So as to fully explore this concept we have introduced
the time scale sn in (i).

In order to formulate our results we need some more ingredients

(i). Let (Yt)t≥0 be a standard Fisher-Wright diffusion on [0, 1], i.e. the solution of

dYt =
√
Yt(1 − Yt) dWt(1.13)

(Wt is a standard Brownian motion), and let Qt(·, ·) be its transition semigroup. It
is known that 0 and 1 are accessible boundary points for Yt (see e.g. Ethier and Kurtz
(1986), Prop. 10.2.8). Hence lim

t→∞
Pθ[Yt = 1] = 1 − lim

t→∞
Pθ[Yt = 0] = θ.

(ii). It turns out that there are two main regimes of clustering. For their classification we will
need the recurrent potential kernel of the random walk induced by a

A(ζ, ξ) =
∞∑

m=0

(
a(m)(ζ, ζ) − a(m)(ζ, ξ)

)
.(1.14)

Furthermore let A(n) = sup
ξ∈Ξn

A(0, ξ) = A(0, ζ) for any ζ with ‖ζ‖ = n. As usual, a(m)

denotes the m-step transition probability induced by a. The existence of the recurrent
potential kernel is assured e.g. by Kemeny, Snell and Knapp (1976), Corollary 9-29. Note
that an irreducible recurrent random walk on an infinite denumerable abelian group is
null recurrent. (For random walks on Z

d the existence is due to Spitzer (1964), P12.1 and
P28.4.)

The kernel a is called critical (or critically recurrent) if it is recurrent and

log(k)
[
log(rkN

k) − log(rk+1N
k+1)

]
(1.15)

is bounded. E.g. the geometrical kernel a1 is critical. On the other hand, the recurrent
kernels ac with c > 1 are called strongly recurrent.
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(iii). In the case a critical and for α ∈ [0, 1] let the α-space-scale be a function fα : N0 → N0

(depending only on the potential kernel) that is chosen such that

α = lim
n→∞

A(fα(n))

A(n)
(1.16)

and let the time scale be sn = NnA(n).

Theorem 1 (Cluster formations in the case a critical)
Suppose that (1.15) and (1.16) hold. Then

a) Lµ
(
Θfα(n(t))(X(t))

) t→∞
=⇒ Lθ(Yα̂)

b) Lµ
(
fα(X(t))

)
t→∞
=⇒ νθ(α̂) :=

∫
Qα̂(θ, dρ)πρ

where µ ∈ Mθ, α̂ := − logα and πρ is the product measure concentrated on {0, 1}Ξ with intensity
ρ = 〈πρ, x0〉.

Remarks

(i). Theorem 1 states that for fixed α there exists one possible limit field ν(α̂) independent
of the particular choice of the (critical) a. X converges towards ν(α̂) when rescaled with
fα and (sn). The asymptotic behaviour of fα thus measures the speed at which clusters
grow. There are mainly (i.e. with some additional monotonicity conditions) three sizes of
clusters

∗ small clusters when
fα(n)

n

n→∞−→ 0 for α < 1

∗ medium clusters when lim
n→∞

fα(n)

n
∈]0, 1[ for α ∈]0, 1[

∗ large clusters when
fα(n)

n

n→∞−→ 1 for α > 0

For instance these above cases can occur if we choose

∗ rk = ϑkN−k and fα(n) = nα

∗ rk = ϑN−k and fα(n) = αn

∗ rk = ϑk− log kN−k and fα(n) = n
(
1 + logα

2 logn

)

(ϑ some normalizing constants).

(ii). We can choose f0 ≡ 0. Hence (1.7) is included in b), since ν(0̂) = ν(∞) = (1− θ)δ0 + θδ1.

(iii). Note that the statements of Theorem 1 do not depend on the choice of g. This is also true
for the Theorems 2,4 and 5. The asymptotic behaviour of X(t) as t → ∞ is determined
by the interaction kernel rather than by the diffusion coefficient. For a detailed discussion
of this point see Cox, Fleischmann and Greven (1996).

Let us now turn to the case a strongly recurrent. Here the picture is by far not as complete
as in the case a critical. In fact, a statement such as Theorem 1 (b) cannot be expected. This
case is the analogue to the d = 1 case for finite variance interaction kernels on Z

d. Despite this
we cannot expect an invariance principle such as Arratia’s (1982) for the voter model on Z. In
fact this greatly depends on the linear structure of Z and on the comparably simple structure
of the voter model. Conceptually Arratia’s work is based on nearest neighbour interaction.
Recently extensions have been made to Arratia’s result wich are concerned with stochastic partial
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differential equations models (Tribe (1993), Section 7) or more general interaction kernels in the
voter model (Cox and Durrett (1996), Thm. 4). But these still rely on the linear structure. In
order to circumvent this problem we use the idea of renormalization via block averages (recall
(1.12)) and establish that the limiting density chain (ZN,tm ) = w − lim

n→∞
Θn−m(X(tsn)) (with m

as time parameter) exists. In fact, the distribution of the limiting chain can be determined.
Namely the moments can be expressed in terms of a coalescing system with motion given by
weak limits γ(t) of rescaled random walks on Ξ. This is done in Section 5.

In order to bring some more light into the structure of (ZN,tm ) we then let N → ∞ to obtain
even a Markov chain. To describe the transition probabilities of this chain we need the following
diffusion Xθ

t on [0, 1] given by Xθ
0 = θ and

dXθ
t =

√
2(c− 1)Xθ

t (1 −Xθ
t ) dWt + (θ −Xθ

t )dt.(1.17)

L
[
Xθ
t

]
converges weakly to the unique invariant law of (1.17) as t → ∞ which is known to be

the β-distribution

L
[
Xθ

∞
]

= B

(
1

c− 1
θ ,

1

c− 1
(1 − θ)

)
,(1.18)

(see e.g. Ethier and Kurtz (1986), Chapter 10, Lemma 2.1).
Assume ac is strongly recurrent (c > 1). Here again NnA(n) would give the right time scale.

But since A(n) can be computed to be κ(N) · cn with κ(N)(Nc)−1 N→∞−→ 1 we prefer to let

sn = (Nc)n+1.(1.19)

Theorem 2 (Cluster formations in the case a strongly recurrent)
a) For any N and t > 0 there exists a nonnegative martingale (ZN,tm )m∈Z such that

Lµ
[
(Θn−m(X(tsn)))m∈Z

] n→∞
=⇒ Lθ

[
(ZN,tm )m∈Z

]

where µ ∈ Mθ. This martingale has the following properties

b) Lθ(ZN,tm )
m→∞
=⇒ θδ1 + (1 − θ)δ0

Lθ(ZN,tm )
m→−∞
=⇒ δθ

c) (Ztm)m∈Z := w − lim
N→∞

[
(ZN,tm )m∈Z

]
exists and is Markov.

The transition mechanism of (Ztm) is given by

L
[
Ztm|Ztm−1 = ρ

]
=





δρ m < 0

L[Xρ
t ] m = 0

L[Xρ
∞] m > 0

(1.20)

Remarks

(i). At first glance the appearance of Xθ
t in Theorem 2 might be surprising. The key for

understanding its meaning is the duality (Lemma 5.5) of Xθ
t to the so-called death-escape

process. This is a modification of the pure death process (Definition 3.1) which is known
to be dual to the Fisher-Wright diffusion with no drift.

(ii). (ZN,tm ) is not Markov for fixed N since the influence of Θn−m+2 on Θn−m given Θn−m+1

does not vanish as n → ∞. However, computer simulations show that (ZN,tm ) is even for
small N not ”too far off” from the limiting structure N → ∞.
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(iii). Dawson and Greven (1993b) obtain their ”interaction chain” by letting N → ∞ for fixed
n. A simple computation shows that letting n → ∞ for that chain and rescaling time
properly yields the same chain (Ztm). Thus the order of the limits can be interchanged.
To see that the stable laws there approximate our L[Xθ

∞] one needs Baillon et al. (1995),
Theorem 1(a).

Theorem 2 asserts in particular that clusters grow all at ”maximum speed”. Note the differ-
ence between large clusters in the case a critically recurrent and clusters in the case a strongly
recurrent. In the former case fα(n) − n

n→∞−→ −∞ for α < 1, thus part b) of Theorem 2 would
not hold.

Finite Systems versus Infinite Systems

Since all computers known to the author so far (May 11, 1995) are of finite size, simulations
have to be restricted to finite versions of the model. On the other hand, finite systems can
be considered in their own right. They model a finite nature and the infinite system can be
regarded as an idealization for analytical convenience only. So the questions arise: How well do
finite systems approximate the infinite system (and vice versa)? How long can a finite system
be observed until it ”feels” its finiteness and which effects of finiteness do occur?

A number of approaches have been used in the literature for various models (see e.g. Durrett
and Schonmann (1988) or Dawson and Gärtner (1988)). We will proceed in the fashion of
the finite systems scheme suggested by Cox and Greven (1990) and (1994b): The system is
dominated by the macroscopic variable of the block averages. Roughly speaking it relaxes to
an ”equilibrium state” with intensity θ, given that the block average is θ. This relaxation takes
place faster than the fluctuation of the block averages. In the case a transient these equilibria
are the invariant measures νθ while in the case a critical we have to take the νθ(α̂) (introduced
in Theorem 1) instead. In the case a strongly recurrent however the finite systems scheme
does not work. This is connected with the fact that the intensity, that is the block averages of
components, alone does not characterize the system above any more. Hence the (macroscopic)
associated process (Z̃N,tm ) is not Markov.

We first define the finite system Xn(t) and (in case of criticality) the scaled finite system
f
Xn(t) as the solution of the restricted SSDE

dxn,ξ(t) =


∑

ζ∈Ξn

an(ξ, ζ)(xn,ζ(t) − xn,ξ(t))


 dt+

√
g(xn,ξ(t)) dWξ(t) (ξ ∈ Ξn),(1.21)

where
an(ξ, ζ) =

∑

ζ′∈Ξ
ζ′≡ζ(mod Ξn)

a(ξ, ζ ′)(1.22)

and
fxn,ξ(t) = xζ(tsn) where ζ = S−1

f(n)ξ(1.23)

Lµ(Xn(0)) = µn := µ
∣∣∣
Ξn

.(1.24)

Note that the space scale here does not depend on t as before, but on the finite system size n.
By speeding up time by the factor sn we expect the intensity Θn(Xn(tsn)) to start to fluctuate

and to tend to some nontrivial process Ỹt. We even hope that Xn(t) (resp.fαXn(t)) ”relaxes”
fast enough, so its limiting distribution given Ỹt = ρ is νρ (resp. νρ(α̂)). In fact, an integral

statement of this heuristics holds in the cases a transient or critical, where Ỹt turns out to be a
Fisher-Wright diffusion running at double speed.
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In the case a transient a prominent role is played by the Green function

G(ξ, ζ) =

∞∑

m=0

a(m)(ξ, ζ).(1.25)

Its role is analogous to that of the recurrent potential kernel for the case a critically recurrent.
Assume a to be transient, g(x) = x(1 − x) and let (νθ|θ ∈ [0, 1]) be the family of invariant

measures. Let G = G(0, 0) and

V := E0

[
exp

(
−1

2

∫ ∞

0
1I{Xs=0}ds

)]
(1.26)

where (Xs)s≥0 is the continuous time random walk associated with a(·, ·) (see Subsection 2.1).
Let the time scale be

sn =
G

1 − V
Nn.(1.27)

To put the latter discussion in perspective we give the following result for the transient case.

Theorem 3 (Finite system, Case a transient)
Under these assumptions for t > 0 the following holds

a) Lµ (Θn(Xn(tsn))
n→∞
=⇒ Lθ(Y2t)

b) Lµ (Xn(tsn))
n→∞
=⇒

∫
Q2t(θ, dρ)νρ

where µ ∈ Mθ.

Remarks

(i). The condition on g can be dropped but then Ỹt (the limiting process of Θn(Xn(tsn))) does
not have such a simple form. We do not stress this point here. In the lattice case a stronger
version of Theorem 3 can be found in Cox, Greven and Shiga (1994), Theorem 2.

(ii). In the voter model a similar statement holds, when sn is replaced by GNn. For the lattice
case of this see Cox (1989), Theorem 2 and 3. For the case a critical see Cox and Greven
(1991), Theorem 1.

Assume now a to be critical. Again things happen to depend only on the recurrent potential
kernel.

Theorem 4 (Finite system, Case a critical)
Let α, fα and sn = NnA(n) be as in Theorem 1. Then for t > 0 the following holds

a) Lµ
(
Θfα(n)(Xn(t))

) n→∞
=⇒ Lθ(Y2t+α̂)

b) Lµ
(
fαXn(t · sn)

)
n→∞
=⇒

∫
Q2t(θ, dρ)νρ(α̂) =

∫
Q2t+α̂(θ, dρ)πρ

where µ ∈ Mθ.

Let ac be strongly recurrent. Considerably less can be said in this situation since Theorem 2
is weaker than Theorem 1. Again we use the slightly modified time scale

sn = (Nc)n+1.



2 RANDOM WALK ESTIMATES 9

Theorem 5 (Finite system, Case a strongly recurrent)
a) For any N and t > 0 there is a nontrivial martingale (Z̃N,tm )m=0,1,... such that

Lµ [(Θn−m(Xn(tsn)))m=0,1,...]
n→∞
=⇒ Lθ

[
(Z̃N,tm )m=0,1,...

]

where µ ∈ Mθ. This martingale has the following properties

b) Lθ
(
Z̃N,tm

)
m→∞
=⇒ θδ1 + (1 − θ)δ0

c) (Z̃tm)m=0,1,... := w − lim
N→∞

[
(Z̃N,tm )m=0,1,...

]
exists and is Markov

The transition mechanism of (Z̃tm) is given by

L
[
Z̃tm|Z̃tm−1 = ρ

]
=

{
L[Y ρ

2t] m = 0

L[Xρ
∞] m > 0

(1.28)

Remark
Compare (Z̃tm) with (Ztm). The transition mechanisms coincide except for m = 0. Here the
difference between the infinite and the finite system becomes clear. In the infinite system there
are blocks at level m = −1 with deterministic intensity θ that put a drift on the fluctuation of
(Zt0)t≥0 while in the finite system these bigger blocks do not exist and thus the drift is missing.

Outline

The rest of the paper is organized as follows: Since the system considered is for g(x) = x(1−x)
in duality with delayed coalescing random walks we develop in Section 2 some first hitting time
asymptotics for random walks with scaled initial points on a rather general class of abelian
groups by using Green function and recurrent potential properties. These properties will be
used in the investigation of systems of coalescing random walks in Section 3. In Section 4
we do moment calculations in our original problem via a duality relation in the special case
g(x) = x(1 − x). Based on this, generalizations will be obtained by coupling and comparison
arguments. This will suffice to give the proofs of Theorems 1,3,4. Since Theorem 2 and 5 are
somewhat different, their proofs are deferred to Section 5.

2 Random Walk Estimates

The goal of this section is to derive results on the asymptotic behaviour of hitting times of 0 for
sequences of initial points which typically move away from 0. The key result is Proposition 2.7
in Subsection 2.4.4

2.1 Preparations

First we develop some more general results on random walks on a countably infinite abelian
group (Λ,+) and then give examples in Z

d and Ξ.
Let (Gn) be a sequence of subgroups of Λ. Assume that we can choose for any n ∈ N a

complete system Λn ⊂ Λ of representatives for the quotient group Λ/Gn such that Λ1 ⊂ Λ2 ⊂ . . .

and lim
n→∞

Λn = Λ. E.g. think of Λ = Z
d, Gn = nZ

d and Λn =
(
] − n

2 ,
n
2 ] ∩ Z

)d
. Further let p(·, ·)

be the transition kernel of an irreducible random walk on Λ. Let pn(·, ·) be the kernel of the
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induced random walk on Λn, i.e. pn(x, y) =
∑

g∈Gn
p(x, y + g). By (X(t))t≥0 resp. (Xn(t))t≥0

denote the induced continuous time random walks, i.e. with transition probabilities

p(t;x, y) := P(X(t) = y|X(0) = x) = e−t
∞∑

k=0

tk

k!
p(k)(x, y)(2.1)

pn(t;x, y) := P(Xn(t) = y|X(0) = x) = e−t
∞∑

k=0

tk

k!
p(k)
n (x, y)(2.2)

= e−t
∞∑

k=0

tk

k!

∑

g∈Gn

p(k)(x, y + g).

The key role is played by the recurrent potential kernel (recall (1.14))

A(x, y) =

∞∑

m=0

(
p(m)(x, x) − p(m)(x, y)

)
(2.3)

which is well defined for either recurrent or transient random walk. In the latter case we have
in addition

A(x, y) = G(x, x) −G(x, y) = G−G(x, y)(2.4)

where G(x, y) =

∞∑

m=0

p(m)(x, y) and G = G(0, 0). Further let

A(n) = sup
x∈Λn

A(0, x)(2.5)

and for later technical convenience let (an) be a sequence such that

lim
n→∞

an
A(n)

= 1.(2.6)

The purpose of this section is the investigation of the first hitting times of the origin

τ = inf{t ≥ 0|X(t) = 0}(2.7)

τn = inf{t ≥ 0|Xn(t) = 0}.(2.8)

Since the random walks will typically be started from initial points (xn) far away we shall
consider τ and τn but scaled with sn. Here

sn = an|Λn|.(2.9)

We have to make some more assumptions on the random walk.

Definition 2.1 (Diffusive Random Walk)
The random walk X(t) (and its kernel p(·, ·)) is called diffusive if the following assumptions

hold

∃K <∞ : sup
m≥0,n≥0

x∈Λn

(
p(m)
n (0, x) − p(m)(0, x)

)
· |Λn| < K(2.10)

sup
x∈Λn

∣∣∣|Λn| · p([tsn])
n (0, x) − 1

∣∣∣ n→∞−→ 0 ∀ t > 0(2.11)

There exists a sequence (cn) ≪ (an) such that
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|Λn| · sup
m≥cn|Λn|t

p(m)(0, 0)
n→∞−→ 0 ∀ t > 0(2.12)

1

an

cn|Λn|∑

m=0

p(m)(0, 0)
n→∞−→ 1(2.13)

1

an
sup
x∈Λn

∣∣∣∣∣∣

∞∑

m=cn|Λn|
[p(m)(0, 0) − p(m)(0, x)]

∣∣∣∣∣∣
n→∞−→ 0(2.14)

Here we used the notation (cn) ≪ (an) for
cn
an

n→∞−→ 0.

2.2 Scaled Limits of Hitting Times

Assume X(t) to be diffusive (either transient or recurrent) and let (xn)n∈N a sequence with
xn ∈ Λn, n ∈ N be such that

α := lim
n→∞

A(0, xn)

A(n)
(2.15)

exists. Denote by E(µ) the exponential distribution with mean µ. By Lx (Px, Ex) we denote
the law (probability, expectation) with respect to the initial point x. By δ∞ we denote the unit
mass at +∞ ∈ R ∪ {−∞,+∞}, i.e. P[X > x] = 1 ∀x ∈ R if L[X] = δ∞.

Proposition 2.2 (Diffusive Random Walk on Λ)

(i) Lxn

(
τ

sn

)
n→∞
=⇒ (1 − α)δ0 + αδ∞

(ii) Lxn

(
τn
sn

)
n→∞
=⇒ (1 − α)δ0 + α · E(1)

Proof

It is enough to show the convergence of the Laplace transforms Tn(λ) = Exn [e−λτ/sn ] and
T ′
n(λ) = Exn [e−λτn/sn ]. We will show

Tn(λ)
n→∞−→ 1 − α

T ′
n(λ)

n→∞−→ 1 − α+
α

1 + λ
.

By a simple first hitting time decomposition we obtain

T ′
n(λ) ∼

∞∑

m=0

p(m)
n (0, xn)e

−λm/sn

∞∑

m=0

p(m)
n (0, 0)e−λm/sn

as n→ ∞.(2.16)

We multiply by
1

an
and split the dividend in three parts

1

an

∞∑

m=0

[
p(m)
n (0, xn) − p(m)(0, xn)

]
e−λm/sn +

1

an

∞∑

m=0

[
p(m)(0, xn) − p(m)(0, 0)

]
e−λm/sn

+
1

an

∞∑

m=0

p(m)(0, 0)e−λm/sn(2.17)
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The three sums are now estimated separately

(i)

lim
n→∞

sup
x∈Λn

∣∣∣∣∣
1

an

∞∑

m=0

[
p(m)
n (0, x) − p(m)(0, x)

]
e−λm/sn − 1

λ

∣∣∣∣∣ =

= lim
n→∞

sup
x∈Λn

∣∣∣∣|Λn|
∫ ∞

0

[
p([tsn])
n (0, x) − p([tsn])(0, x)

]
e−λtdt − 1

λ

∣∣∣∣ = 0

since the integrand is bounded by K
|Λn|e

−λt and is ∼ 1
|Λn|e

−λt (by (2.11) and (2.12)).

(ii)

lim
n→∞

1

an

∞∑

m=0

[
p(m)(0, 0) − p(m)(0, xn)

]
e−λm/sn

(2.14)
= lim

n→∞
1

an

cn|Λn|∑

m=0

[
p(m)(0, 0) − p(m)(0, xn)

]

(2.14)
= lim

n→∞
1

an

∞∑

m=0

[
p(m)(0, 0) − p(m)(0, xn)

]
= α

(iii)

lim
n→∞

1

an

∞∑

m=0

p(m)(0, 0)e−λm/sn
(2.12)

= lim
n→∞

1

an

cn|Λn|∑

m=0

p(m)(0, 0)e−λm/sn

(2.13)
= 1

Putting the pieces together we obtain the convergence of the dividend to 1
λ − α + 1. A similar

expansion yields that the divisor converges to 1
λ + 1. So we are done with the finite case. For

the infinite case note that the first term of the expansion vanishes. So the convergence of the
Laplace transform is obtained the same way. 2

Now look deeper into the case X(t) transient. Here we can chose an ≡ G and (2.13) and
(2.14) trivially hold with any sequence cn >> |Λn|−1.

So assume X(t) to be transient and diffusive. Let

sn = G|Λn|.(2.18)

Assume that
γ = lim

n→∞
G(0, xn)(2.19)

exists.

Corollary 2.3 (Transient Diffusive Random Walk on Λ)
Under these assumptions

(i) Lxn

(
τ

sn

)
n→∞
=⇒ γ

G
δ0 +

(
1 − γ

G

)
δ∞

(ii) Lxn

(
τn
sn

)
n→∞
=⇒ γ

G
δ0 +

(
1 − γ

G

)
E(1)
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2.3 Application to ZZ
d

As a first example we give a well known result on symmetric Bernoulli random walk on Z
d.

Let Λn =] − n
2 ,

n
2 ]d ∩ Z

d, (bn) some real sequence n
2 > bn ↑ ∞ and

sn =

{
2
πn

2 log n if d = 2
Gnd if d ≥ 3

(2.20)

Proposition 2.4

(a). If d ≥ 3, then uniformly in all sequences (xn)n∈N with xn ∈ Λn, n ∈ N and such that
|xn| > bn

Pxn(τn/sn > t)
n→∞−→ e−t

(b). If d = 2, let α ∈ [0, 1] and assume |xn| ∼ nα. Then

Pxn(τn/sn > t)
n→∞−→ αe−t

Pxn(τ/sn > t)
n→∞−→ α

Remarks

1. Part (a) is Theorem 4 of Cox (1989) while (b) is a combination of this and a result of
Erdös and Taylor (1960) (equation (2.16)).

2. The Bernoulli random walk in Z
1 is not diffusive. Indeed A(0, x) = |x| (see Spitzer (1964),

E29.1) is not slowly varying.

Proof

Since |Λn| = nd we can choose an = 2
π log n if d = 2 (see P12.3 of Spitzer (1964)). It remains to

verify diffusiveness.
Since there exists a K <∞ such that

p(m)(0, x) ≤ Km− d
2 e−

d|x|2
2m(2.21)

(see e.g. P7.10, Spitzer (1964)), one easily derives (2.10). (2.11) is implied by Proposition 2.8
of Cox (1989), which is obtained by a Bhattacharya-Rao expansion. By (2.21)

mp(m)(0, x) ≤ Km1− d
2
m→∞−→ 0

if d ≥ 3. This implies (2.12).
Assume now d = 2. Let cn =

√
log n . (2.12) follows from (2.21). Since p(m)(0, 0) ∼ 1

π
1
m we

have
n2

√
logn∑

m=0

p(m)(0, 0) ∼ 1

π
log
(
n2
√

log n
)
∼ 2

π
log n,(2.22)

so (2.13) is valid. Again by (2.21)

∣∣∣p(m)(0, 0) − p(m)(0, x)
∣∣∣ ≤ K

1

m

(
1 − e−

|x|2
m

)
∀x,m,(2.23)

so ∞∑

m=M

∣∣∣p(m)(0, 0) − p(m)(0, x)
∣∣∣ ≤ 2K|x|2

M
.(2.24)

Putting M = n2
√

log n yields (2.14). 2
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2.4 Application to Ξ

In order to apply Proposition 2.2 and Corollary 2.3 to random walks on Ξ we have to calculate
the m-step transition probabilities p(m). This is a relatively simple task due to the special
geometry of Ξ. We then compute the potential kernels and verify the diffusiveness assumptions
for the cases X(t) transient and critical separately.

2.4.1 Computation of the transition probabilities

Introduce
Ξ̂ := {(ak)k∈N : ak ∈ {0, . . . , N − 1}}

with addition component wise modulo N and the scalar product

〈a, ξ〉 = exp

(
2πi

N

∞∑

k=1

akξk

)
.

Ξ̂ is the character group of Ξ. Now some Fourier transformations yield the desired transition
probabilities (see Fleischmann and Greven (1994), Section 2a).

For k = 1, 2, . . . let fk = r0 + . . . + rk−1 −
1

N − 1
rk. (Recall from (1.5) that a(ξ, ζ) = rk/Rk

for ‖ζ − ξ‖ = k.) Then

p(m)(0, ξ) = (N − 1)
∑

k>‖ξ‖
N−k(fk)

m + (1I{0}(ξ) − 1)N−‖ξ‖(f‖ξ‖)
m(2.25)

p(t; 0, ξ) = (N − 1)
∑

k>‖ξ‖
N−ke−t(1 − fk) + (1I{0}(ξ) − 1)N−‖ξ‖e−t(1 − f‖ξ‖)(2.26)

Write also p(m)(n) for p(m)(0, ξ) with ‖ξ‖ = n. By restricting the random walk to Λn := Ξn
(note |Ξn| = Nn) the rk transform to

rn,k =





rk

(
1 −

∞∑
l=n+1

rl

)−1

, k ≤ n

0 , else

(2.27)

Hence we put fn,k = rn,0+. . .+rn,k−1−
1

N − 1
rn,k to obtain from (2.25) and (2.26) the transition

probabilities in the finite setting.

p(m)
n (0, ξ) = (N − 1)

n∑

k=‖ξ‖+1

N−k(fn,k)
m + (1I{0}(ξ) − 1)N−‖ξ‖(fn,‖ξ‖)

m +N−n(2.28)

pn(t; 0, ξ) = (N − 1)
n∑

k=‖ξ‖+1

N−k exp {−t(1 − fn,k)}(2.29)

+(1I{0}(ξ) − 1)N−‖ξ‖ exp
{
−t(1 − fn,‖ξ‖)

}
+N−n.

Note that (2.10) is always valid by symmetry.

2.4.2 Case X(t) transient

Now look into the case X(t) transient in detail.

Lemma 2.5 (Transient random walk on Ξ)
A transient random walk on Ξ is diffusive in the sense of Definition 2.1.
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Proof

G can be explicitly expressed in terms of the fk. By (2.25) G equals

G = (N − 1)

∞∑

k=1

N−k

1 − fk
.

By transience G <∞ and hence

lim inf
n→∞

Nn
∞∑

k=n

rk = ∞.(2.30)

In particular let for c > 1/N be Gc(·, ·) the Green function associated with the geometrical
kernel ac. Let Gc = Gc(0, 0). Then

Gc =
Nc(N − 1)2

N2c− 1

∞∑

k=1

ck.(2.31)

Thus Gc <∞ iff c < 1. In this case

Gc =
Nc2(N − 1)2

(1 − c)(N2c− 1)
.(2.32)

Let Tn denote the first exit time of Ξn

Tn := inf {t ≥ 0 : X(t) ∈ Ξ \ Ξn} .(2.33)

Lξ(Tn) coincide for all ξ ∈ Ξn. Hence by the Markov property Lξ(Tn) = E(µ) for some µ ≥ 0
(recall E(µ) is exponential with mean µ). Note that µ does not change if we replace rn+1 by
r′n+1 =

∑∞
k=n+1 rk and rk by 0 for k > n+ 1. Denote the corresponding transition probabilities

by p′. Then by (2.26) for t→ 0

∑

ζ∈Ξ\Ξn

p(t, 0, ζ) =
∑

ζ∈Ξn+1\Ξn

p′(t, 0, ζ) =
N − 1

N

(
1 − exp

{
−t N

N−1r
′
n+1

})
= tr′n+1 + o(t).(2.34)

Thus µ = r′n+1 and

Lξ(Tn) = E((

∞∑

k=n+1

rk)
−1) if ξ ∈ Ξn.

So (2.11) is true since by symmetry and by (2.30)

|Nnpn(tN
n, 0, ξ) − 1| ≤ Nn

n∑

l=1

P0(Tl ≥ tNn)N−l(2.35)

≤
n∑

l=0

Nn−l exp

(
−tNn

∞∑

k=l+1

rk

)
n→∞−→ 0.

Also (2.12) holds by (2.30) and (2.26). 2
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2.4.3 Case X(t) critical

Recall that a recurrent random walk on Ξ is called critical if

log k
[
log(Nkrk) − log(Nk+1rk+1)

]
is bounded.(2.36)

This implies

∃ε > 0 : ε−1 >
Nkrk
N lrl

> ε ∀l ∀k ∈]l − log l, l + log l[.(2.37)

Lemma 2.6 (Critical random walk on Ξ)
A critical random walk on Ξ is diffusive in the sense of Definition 2.1 and (cn) can be chosen as

cn = 2
N − 1

N + 1

log n

Nnrn
.(2.38)

Proof

Because of (2.37)
∞∑

k=n

rk =

∞∑

k=n

(Nkrk)N
−k ∼ N

N − 1
rn(2.39)

Thus (an) can be chosen as (recall (2.5) and (2.6))

an =
(N − 1)2

N + 1

n∑

k=1

1

Nkrk
,(2.40)

since by (2.25)

A(n) = (N − 1)
n∑

k=1

N−k
∞∑
j=k

rj + 1
N−1rk

+
N−n

∞∑
j=n

rj + 1
N−1rn

(2.41)

∼ (N − 1)

n∑

k=1

N−k

N+1
N−1rk

+
N−n

N+1
N−1rn

=
(N − 1)2

N + 1

n∑

k=1

1

Nkrk
+
N − 1

N + 1

1

Nnrn
∼ an.

Note that in particular
A(n+ 1)

A(n)

n→∞−→ 1.(2.42)

Obviously (cn) ≪ (an). By (2.25)

1

an

∞∑

m=[cnNn]

[
p(m)(0) − p(m)(n)

]
=
N − 1

an

n∑

k=1

N−k f
[cnNn]
k

1 − fk
− 1

an
N−n f

[cnNn]
n

1 − fn
.(2.43)

Since

1 − fk ∼
N + 1

N − 1
rk(2.44)

we have ∞∑

k=1

1

ak

N−k

1 − fk
f ckN

k

k <∞.
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Since by recurrence an ↑ ∞, applying Kronecker’s lemma to (2.43) yields (2.14).
Now by (2.25)

Nnp([cnNn])(0, 0) = (N − 1)

∞∑

k=1

Nn−kf [cnNn]
k(2.45)

∼ (N − 1)

∞∑

k=1

Nn−k exp

(
−2

Nkrk
Nnrn

log(n)Nn−k
)

Split up the sum in three parts

n−logn∑

k=1

+

n+logn∑

k=n−logn

+

∞∑

k=n+logn

and observe that the summand obtains a maximum of value ≤ 2
ε logn at k0 = n+ log(2ε)+log logn

logN
and is monotone for k < k0. Thus it is easily seen that (2.45) vanishes as n → ∞, so (2.12)
holds. Proving (2.13) is almost the same. First note by (2.25)

1

an

[cnNn]∑

m=0

p(m)(0, 0) =
N − 1

an

∞∑

k=1

N−k 1 − f
[cnNn]
k

1 − fk

∼ (N − 1)2

an(N + 1)

∞∑

k=1

1

Nkrk

[
1 − exp

(
−2 log n

rk
rn

)]
.

Now

lim
n→∞

(N − 1)2

an(N + 1)

n−logn∑

k=1

1

Nkrk

[
1 − exp

(
−2 log n

rk
rn

)]

= lim
n→∞

(N − 1)2

an(N + 1)

n−logn∑

k=1

1

Nkrk
= 1

while
n+logn∑
n−logn

and
∞∑

n+logn

are shown to tend to 0 similarly as above. Finally (2.11) is obtained the

same way as in the case X(t) transient.
2

2.4.4 Key result on hitting times

Up to now we have proved the following

Proposition 2.7 (Diffusive random walks on Ξ)
Let X(t) be a random walk on Ξ and Xn(t) its restriction to Ξn.

(a). If X(t) is transient and sn = GNn then

Pξn(τn > tsn)
n→∞−→ e−t(2.46)

uniformly in all sequences (ξn)n∈N with ξn ∈ Ξn, n ∈ N, of starting points such that
‖ξn‖ ≥ bn for an arbitrary fixed sequence bn ↑ ∞.
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(b). If X(t) is critical, sn = anN
n, α ∈ [0, 1] fixed and (ξn)n∈N a sequence with ξn ∈ Ξn, n ∈ N,

such that
A(0, ξn)

A(n)

n→∞−→ α, then

Pξn

[
τ

sn
> t

]
n→∞−→ α(2.47)

Pξn

[
τn
sn

> t

]
n→∞−→ αe−t(2.48)

2

Recall n(t) from (1.9).

Corollary 2.8 (Continuous time)
In the critical case the following continuous time version of (2.47) holds

Pξn(t) [τ > t]
t→∞−→ α.

Proof

By (2.42)
sn
sn+1

is bounded and bounded away from 0 for n large enough. Thus (2.47) yields the

assertion. 2

3 Coalescing Random Walks

We introduce the notion of delayed coalescing random walks and instantaneously coalescing
random walks and then give asymptotics for the number of surviving particles when scaling
space and time properly. The main results are Propositions 3.2 and 3.4.

3.1 Preparations

Start with a system X(t) = (X(i, t))i=1,...,m of independent copies of a random walk X(t) on
Ξ (resp. Xn(i, t) on Ξn) starting at some initial points ξ(i). Now think of X(t) as m particles
moving on Ξ and let any two particles coalesce if they meet each other, i.e. one of the two particles
dies and the other goes on moving. Call this new process η̃(t) the system of instantaneously
coalescing random walks. Finally change the coalescence mechanism by not letting coalescence
occur instantaneously but at a constant rate b > 0. This is a pair of particles coalesces after the
particles have spent together an exponential waiting time with mean 1

b . Call this new process
a system of delayed coalescing random walks (with delay 1

b ) and denote it by η(t). We are
interested in η(t) because of the mentioned duality relation. Since η̃(t) is easier to handle we
first investigate this and then compare η̃(t) with η(t). By Xn, ηn(t), η̃n(t) etc we denote the
corresponding objects on Ξn.

By forgetting the ordering of the particles we can regard η(t) as a process on

Φ :=



ϕ = (ϕξ) ∈ N

Ξ
0 : #ϕ :=

∑

ξ

ϕξ <∞



(3.1)

where ηξ(t) is the number of particles at site ξ. Φ herits the Tychonov topology from (N0)
Ξ.

Note that η(t) preserves Φm := {ϕ ∈ Φ : #ϕ ≤ m}. For η(0) ∈ Φm η(t) is the Markov process
on Φm with generator Gm defined for f ∈ Cb(Φm) by

Gmf(ϕ) =
∑

ξ,ζ∈Ξ

ϕξ · a(ξ, ζ)[f(ϕ − 1Iξ + 1Iζ) − f(ϕ)] +
∑

ξ∈Ξ

b

(
ϕξ
2

)
[f(ϕ− 1Iξ) − f(ϕ)].(3.2)
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(We use the convention
(n
k

)
= 0 for n < k.)

On the other hand η̃(t) runs on

Φ̃ := {ϕ ∈ Φ : ϕξ ∈ {0, 1}∀ ξ}.(3.3)

η̃(t) preserves Φ̃m := Φ̃ ∩ Φm and on this has generator Hm defined for f ∈ Cb(Φ̃m) by

Hmf(ϕ) =
∑

ξ,ζ∈Ξ

ϕξ · a(ξ, ζ)[f((ϕ− 1Iξ + 1Iζ) ∧ 1) − f(ϕ)].(3.4)

3.2 Scaling properties of η̃(t) on Ξ

We first look into the case X(t) critical and then consider the case X(t) transient. Hence assume
now a(·, ·) to be critical.

We fix m ∈ N and start η̃(t) with particles at sites ξn,1, . . . , ξn,m, i.e. in

ϕn := 1Iξn,1 + . . .+ 1Iξn,m(3.5)

such that (recall A(n) from 2.6 and 2.41)

A(ξn,i , ξn,j)

A(n)

n→∞−→ α ∀ i 6= j.(3.6)

In order to formulate the main result of this subsection we shall need

Definition 3.1 (Pure Death Process)
With (Dt)t≥0 we denote the nonlinear pure death process on N that jumps from m to m−1
at rate

(m
2

)
. By

qt(m; k) = Pm(Dt = k)(3.7)

we denote its transition probabilities.

Note that qt(m;m) = e−(m
2 )t and recall α̂ = − log α.

Proposition 3.2 (Scaling Limit, Infinite Case)

Pϕn [#η̃(sn) = k]
n→∞−→ qα̂(m; k).(3.8)

We introduce the following notations

τ(i, j) := inf{t ≥ 0 : X(i, t) = X(j, t)}
τ := min

i6=j
τ(i, j).(3.9)

In view of Corollary 2.8 is suffices to let t → ∞ along the fixed sequence tn = sn. Our
main goal for proving Proposition 3.2 is then to establish that the

(
m
2

)
pairs of particles happen

to coalesce asymptotically independently in the infinite case and the ”meeting probability” is
given by our quantity α. Namely we show

Lemma 3.3
Pϕn [τ ≤ sn]

n→∞−→ 1 − α(m
2 ).(3.10)

Following the lines of the proof of Theorem 5 of Cox and Griffeath (1986) an induction
argument then proves the proposition. We will not repeat the latter argument here.
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Proof (of Lemma 3.3)

We first rewrite the relation (3.10) in a more tractable form using Proposition 2.7. Namely
(recall an and rn from (1.5) and (2.6))

Pϕn
[
τ ≤ 1

rn

]
n→∞−→ 1 − α(m

2 ).(3.11)

To see this equivalence we argue as follows. Note that sn in Proposition 2.7 can be replaced by
1

rn
since we can choose (n′) : sn′ ≤ 1

rn
and n−n′ = o(log n), so (2.36) implies

an′

an

n→∞−→ 1. Thus

for γ ∈ [α, 1] Proposition 2.7 asserts

Pξn [τ > t(γ, n)]
n→∞−→ α

γ
(3.12)

where we put t(γ, n) :=
1

rfγ(n)
. W.l.o.g. we assume f1(n) = n.

So we concentrate on showing (3.11). Again by (2.36) for any γ ∈ [α, 1] there exist sequences
d(γ, n), e(γ, n) such that

lim
n→∞

fγ(n) − d(γ, n) = lim
n→∞

e(γ, n) − fγ(n) = ∞

and

lim
n→∞

A(d(γ, n))

A(n)
= lim

n→∞
A(e(γ, n))

A(n)
= γ.

These can be assumed to be increasing in γ.
Let

Ξ(γ, n) := {ξ ∈ Ξ : ‖ξ‖ ∈ [d(γ, n), e(γ, n)]}.
Note that Proposition 2.7 is valid uniformly in all sequences (ξn)n∈N with ξn ∈ Ξ(α, n).

Now
Pξn [X(t(γ, n)) ∈ Ξ(γ, n)]

n→∞−→ 1(3.13)

since

Pξn [‖X(t(γ, n))‖ ≥ e(γ, n)] ≤ Pξn [Te(γ,n) ≤ t(γ, n)](3.14)

= exp


−t(γ, n)

∑

k≥eγ(n)

rk


 n→∞−→ 0

by (2.39). The opposite direction works similarly.
Denote by ε(n) any quantity tending to 0 as n → ∞. We shall make use of the following

auxiliary equations

∫ 1

α
Pϕn [τ = τ(1, 2) ∈ dt(n, γ), X(2, t(n, γ)) −X(3, t(n, γ) /∈ Ξ(n, γ)] = ε(n)(3.15)

∫ 1

α
Pϕn [τ = τ(1, 2) ∈ dt(n, γ), X(4, t(n, γ)) −X(3, t(n, γ)) /∈ Ξ(n, γ)] = ε(n).(3.16)

We prove only (3.15) since the proof of (3.16) is even simpler.

∫ 1

α
Pϕn [τ = τ(1, 2) ∈ dt(n, γ), X(2, t(n, γ)) −X(3, t(n, γ)) /∈ Ξ(n, γ)]
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=

∫ 1

α

∑

ξ∈Ξ

Pϕn [τ = τ(1, 2) ∈ dt(n, γ), X(2, t(n, γ)) = ξ] · P[X(3, t(n, γ)) − ξ /∈ Ξ(n, γ)]

by symmetry and (3.13)

=

∫ 1

α

∑

ξ∈Ξ

Pϕn [τ = τ(1, 2) ∈ dt(n, γ), X(2, t(n, γ)) = ξ] · P[X(3, t(n, γ)) /∈ Ξ(n, γ)] + ε(n)

= ε(n) by dominated convergence.

Now we put the pieces together

Pϕn
[
τ(i, j) ≤ 1

rn

]
=(3.17)

Pϕn
[
τ = τ(i, j) ≤ 1

rn

]
+

∑

{k,l}6={i,j}

∫ t(1,n)

t(α,n)
Pϕn [τ = τ(k, l) ∈ dt, τ(i, j) ≤ t(1, n)] + ε(n)

We substitute to change the domain of integration to [α, 1]. We then condition the integrand
on (X(i, t),X(j, t)) and apply the Markov property. With (3.13) and (3.12) we get that the
integral term in (3.17) equals

∫ 1

α
Pϕn [τ = τ(k, l) ∈ dt(γ, n),(3.18)

X(i, t(γ, n)) −X(j, t(γ, n)) ∈ Ξ(γ, n), τ(i, j) ≤ t(1, n)] + ε(n).

Apply (3.15) and (3.16) to see that this in turn equals

=

∫ 1

α

∑

ξ−ζ∈Ξ(γ,n)

Pϕn [τ = τ(k, l) ∈ dt(γ, n), X(i, t(γ, n)) = ξ,X(j, t(γ, n)) = ζ]

×P(ξ,ζ)[τ(1, 2) ≤ t(1, n) − t(γ, n)] + ε(n)

=

∫ 1

α
Pϕn [τ = τ(k, l) ∈ dt(γ, n)](1 − γ) + ε(n).

Integration by parts and summation over all pairs {i, j} in (3.17) yields

(
m

2

)
(1 − α) = Pϕn

[
τ ≤ 1

rn

]
+

((
m

2

)
− 1

)∫ 1

α
Pϕn [τ ≤ t(γ, n)]dγ + ε(n).(3.19)

A contraction argument (compare again Cox and Griffeath (1986)) now shows

Pϕn
[
τ ≤ 1

rn

]
n→∞−→ 1 − qα̂(m;m) = 1 − α(m

2 )t.

So we are done. 2

3.3 Scaling Properties of η̃n(t) on Ξn

We now turn to finite systems. Here also particles coalesce asymptotically independently but
the ”hitting probabilities” are different.

Proposition 3.4 (Scaling Limit, Finite Case)

Pϕn [#η̃n(tsn) = k]
n→∞−→ q2t+α̂(m; k)(3.20)
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Proof

We prove the statement for α = 1. The general case then can be obtained from this as follows.

As in the proof of Lemma 3.3 we can choose a sequence (s′n) with s′n
sn

n→∞−→ 0 slowly enough that

Pϕn [X(i, u) ∈ Ξn ∀u ≤ s′n,∀ i and X(i, s′n) −X(j, s′n) ∈ Ξ(1, n)∀ i 6= j]
n→∞−→ 1(3.21)

and
Pϕn [#η̃(tsn) = k]

n→∞−→ qα̂(m; k).

Since given the event in (3.21) η̃n(s
′
n) = η̃(s′n) and since tsn ∼ tsn − s′n we have

Pϕn [#η̃n(tsn) = k] =
m∑

l=k

Pϕn [#η̃(tsn) = l] · q2t(l; k) + ε(n)(3.22)

=

m∑

l=k

qα̂(m; l)q2t(l; k) + ε(n) = q2t+α̂(m; k) + ε(n).

The last equality is of course the Chapman-Kolmogorov equality.
Hence we assume now α = 1. Note that X(i, t)−X(j, t) is a random walk running at double

speed. So by Proposition 2.7 the analogue of (3.12) is (recall τn(i, j) and τn are the finite objects
corresponding to those defined in (3.9))

Pϕn [τn(i, j) ≤ tsn]
n→∞−→ 1 − e−2t.(3.23)

Thus we replace α by e−2t in the proof of Lemma 3.3 to obtain

Pϕn [τn ≤ tsn]
n→∞−→ 1 − e−2t(m

2 ).(3.24)

Now the induction argument cited above yields

Pϕn [#η̃n(tsn) = k]
n→∞−→ q2t(m; k).(3.25)

2

3.4 Case a Recurrent, Comparison of η(t) and η̃(t)

Let X(t) (or a) be recurrent. We show that in our space and time scaling delayed and instan-
taneously coalescing random walks η and η̃ (resp. ηn and η̃n) are equivalent in the following
sense:

For ϕ ∈ Φ let ϕ∗ = ϕ ∧ 1 denote the projection to Φ̃ and ηϕ(t) resp. η̃ϕ
∗
(t) the systems

started in ϕ resp. ϕ∗. Fix m and m∗ and choose (ϕn) such that #ϕn = m, #ϕ∗
n = m∗ and (ϕ∗

n)
is an α-spaced sequence in the sense of (3.6).

Lemma 3.5 (Comparison)
Under these conditions

P
[
η̃ϕ

∗
n(sn) = ηϕn(sn)

]
n→∞−→ 1(3.26)

P
[
η̃n
ϕ∗
n(tsn) = η

ϕn
n (tsn)

]
n→∞−→ 1, t > 0.(3.27)
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Proof

We shall only show (3.26) since (3.27) is similar. Let

T ni = inf
{
t ≥ 0 : #η̃ϕ

∗
n(t) = m∗ − i

}
i = 0, 1, . . . m∗ − 1

the time points of coalescence and note that

T ni+1 − T ni
n→∞−→ ∞ P-a.s.

Hence by recurrence the particles that meet at time T ni coalesce in ηϕn until time T ni+1 asymp-
totically P-a.s. 2

Combining Proposition 3.2 and 3.4 and Lemma 3.5 we have proved

Proposition 3.6 (Scaling Limits)

Lϕn(t)(#η(t))
t→∞
=⇒ Lm∗

(Dα̂)

Lϕn(#ηn(tsn))
n→∞
=⇒ Lm∗

(D2t+α̂) for t > 0 fixed.

2

3.5 Case a Transient, Comparison of η(t) and ηn(t)

We now look into the case a transient. The comparison lemma does not hold here because it
did depend heavily on the recurrence property of a. We used that once a pair meets, it meets
infinitely often in the large time scale and finally coalesces. So we have to do some more subtle
computations now in the transient case.

Fix a sequence tn ↑ ∞, tn ≪
(∑
k>n

rk

)−1

, then (by (2.30)) tn ≪ N−n and

P [Xn(t) = X(t) ∀ t ≤ tn]
n→∞−→ 1.(3.28)

Let τ
(0)
n = 0 and

τ (i+1)
n = inf

{
t > τ (i)

n + tn : Xn(t) = 0
}
.(3.29)

Since
sup
x∈Ξn

Ex[G(0,Xtn )] = E0[G(0,Xtn )]
n→∞−→ 0(3.30)

and by Proposition 2.7 we get

L
[
τ

(i+1)
n − τ

(i)
n

G|Ξn|

]
n→∞
=⇒ E(1).(3.31)

Let B(t) a Poisson process with rate 1. Then for t > 0

L
[
max

{
k :

τ
(k)
n

G|Ξn|
≤ t

}]
n→∞
=⇒ L[B(t)].(3.32)

Recall

V = E0

[
exp

(
−1

2

∫ ∞

0
1I{Xs=0}ds

)]
(3.33)

and let
pϕ(k) := lim

t→∞
Pϕ[#η(t) = k].(3.34)
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Note that
V = p(0,0)(2).(3.35)

By (3.28) and (3.32) we get

lim
n→∞

P(ζ,ξ)[#ηn(tGN
n) = 1] = 1 − p(ζ,ξ)(2)e

−2t(1−V ).(3.36)

Now proceeding as above we get that the pairs of particles coalesce (asymptotically) inde-
pendently. Thus if we put

sn =
G

1 − V
Nn(3.37)

we obtain

Proposition 3.7

Pϕ[#ηn(tsn) = k]
n→∞−→

∑

l

pϕ(l)q2t(l; k).(3.38)

2

4 Proof of Theorem 1,3 and 4

4.1 Proof of Theorem 1 and 4

Since parts a) are immediate consequences of parts b), we will only show b). We first look into
the special case where we start in the product measure πθ and where g(x) = bx(1 − x), b > 0.

4.1.1 Special case g(x) = bx(1 − x) and Product Measure

Since we will have to work with various diffusion coefficients g we add g or b as superscript
where necessary. Let now η(t) be a system of coalescing random walks with delay 1

b and let

zϕ :=
∏

ξ∈Ξ

(zξ)
ϕξ , z ∈ [0, 1]Ξ, ϕ ∈ Φ.

Our main tool is the following duality relation between mixed moments of interacting diffu-
sions and delayed coalescing random walks

Ez

[(
X
b(t)
)ϕ]

= Eϕ
[
zη(t)

]
(4.1)

which is also true for finite systems. For a proof see Shiga (1980), Lemma 2.3.
Since the state space is compact it suffices to show convergence of (mixed) moments. Thus

we fix ϕ = k11Iξ1 + . . . + km∗1Iξm∗ ∈ Φ, m∗ ∈ N, k1, . . . , km∗ ∈ N, ξi 6= ξj , i.e. a point in Φ with
kj particles at site ξj. Let ϕn = S−1

fα(n)ϕ be the spaced version of ϕ. We have to show

Eπθ

[(
fαX

b(t)
)ϕ]

= Eπθ

[(
X
b(t)
)ϕn(t)

]
t→∞−→ Eθ

[
(Yα̂)

m∗
]

(4.2)

Eπθ

[(
fαX

b
n(n)

)ϕ]
= Eπθ

[(
X
b
n(tsn)

)ϕn] n→∞−→ Eθ
[
(Y2t+α̂)m

∗
]

(4.3)

By (4.1) and Proposition 3.6 the l.h.s. of (4.2) equals
∫

Eϕn(t)
[
zη(t)

]
πθ(dz) = Eϕn(t)

[
θ#η(t)

]

t→∞−→ Em∗
[
θDα̂

]
= Eθ

[
(Yα̂)m

∗
]
.

The last equality is a well known duality between the Fisher-Wright diffusion and the pure death
process introduced in Definition 3.1. The proof of (4.3) is fairly the same.
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4.1.2 Generalization to Ergodic Measures

Here we want to generalize the result to ergodic start measures µ with intensity θ. We do so by
coupling techniques, i.e. we show that two versions X

1 and X
2 of our interacting system with

ergodic initial laws µ and ν with same intensity θ can be defined on one probability space such

that E[|x1
0(t) − x2

0(t)|]
t→∞−→ 0. Define the four-valued process (X1,X2,X1

n,X
2
n) as the solution of

dxiξ(t) =
∑

z∈Ξ

a(ξ, ζ)(xiζ(t) − xiξ(t))dt +
√
bxiξ(1 − xiξ) dWξ(t), i = 1, 2(4.4)

dxin,ξ(t) =
∑

z∈Ξn

a(ξ, ζ)(xin,ζ(t) − xin,ξ(t))dt +
√
bxin,ξ(1 − xin,ξ) dWξ(t), i = 1, 2(4.5)

with one set of Brownian motions and the initial common law given by

L((X1(0),X2(0)) = µ⊗ ν

and
(X1

n(0),X
2
n(0)) = (X1(0),X2(0))

∣∣∣
Ξn

(µ⊗ ν)-a.e.

Here µ and ν are spatially ergodic with same intensity θ. Let ∆ξ(t) = x1
ξ(t) − x2

ξ(t), ∆n,ξ(t) =

x1
n,ξ(t) − x2

n,ξ and ∆n
ξ (t) = x1

n,ξ(t) − x1
ξ(t).

We will rely on the following lemma which is due to Cox and Greven (1994a), Lemma 4 in
the case a transient and due to Fleischmann and Greven (1994), Proposition 5.11 in the case a
recurrent. (Fleischmann and Greven only deal with the case a critical but the proof they give
actually works for any a recurrent. In fact a slight modification of their proof yields a unified
approach to both cases, a recurrent and a transient.)

Lemma 4.1 (Successful coupling, Infinite systems)
Assume a(·, ·) to be either transient or recurrent. Then

E[|∆0(t)|] t→∞−→ 0(4.6)

This yields the analogue of (4.2) if we put ν = πθ. So we are done with the infinite case.
We polish off the finite case by deriving based on this

Lemma 4.2 (Successful coupling, Finite systems)
Under the same conditions as in Lemma 4.1

E[|∆n,0(tsn)|] n→∞−→ 0(4.7)

Proof

Since the infinite systems can be coupled successfully we have to show that the finite and the
infinite system do not diverge for sufficiently large time and that finite systems stay close once

that they got close. Fix a sequence tm ↑ ∞ such that tm ≪
( ∑
k>m

rk

)−1

(recall rk from (1.5)).

Then
sup
n≥m

E[|∆n
ξ (tm)|] m→∞−→ 0.(4.8)

To see this we may proceed as Yamada and Watanabe (1971). We approximate the | · |-function

by functions fn(x) =
√

1
n + x2 to which the Itô-formula can be applied and obtain

d|∆n
ξ (t)| = sgn(∆n

ξ (t))d∆
n
ξ (t).(4.9)
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Then

dE|∆n
ξ (t)| ≤ E


∑

ζ∈Ξn

a(ξ, ζ)(|∆n
ζ (t)| − |∆n

ξ (t)|)


 dt(4.10)

+ E


∑

ζ /∈Ξn

a(ξ, ζ)(|xζ(t)| + |xξ|Ξn
(t)|)


 dt

The first term vanishes by translation invariance (Ξn � Ξ subgroup!) and the second term is
bounded by (2

∑
k>n

rk)dt.

By Lemma 4.1 the infinite systems are close at time tn, i.e. E[|∆0(tn)|] = ε(n), and so are
the finite systems. Hence it is enough to show

dE[|∆n,ξ(t)|] ≤ 0.(4.11)

This is however true since as above

dE[|∆n,ξ(t)|] ≤ E


∑

ζ∈Ξn

a(ξ, ζ)(|∆n,ζ(t)| − |∆n,ξ(t)|)


 dt = 0(4.12)

2

4.1.3 Generalization to Admissable g(x)

Finally we generalize the diffusion coefficient. Fix an admissable g (recall (1.2)). The idea is to
sandwich g between two Fisher-Wright-type diffusion coefficients. We will then infer that the
moments are also sandwiched by quantities that have the same limiting behaviour according to
the discussion in the last two subsections.

Fix 1
2 > ε > 0 and ϕ and let

f(x) = x(1 − x)

f ε(x) = [(x− ε)(1 − x− ε)]+

Choose b, bε > 0 such that
gε := bεf ε ≤ g ≤ bf.

Denote by X
g(t),Xgε

(t) and X
bf (t) the solutions of (1.1) driven by g,gε and bf respectively and

with the same initial law µ. The crucial point is the comparison of the mixed moments of these

Eµ
[
(Xgε

(t))ϕ
]
≤ Eµ

[
(Xg(t))ϕ

]
≤ Eµ

[
(Xbf (t))ϕ

]
∀ t ≥ 0,(4.13)

which is due to Cox, Fleischmann and Greven (1994), Theorem 1.
We introduce the linear map

Lε : [ε, 1 − ε]Ξ → [0, 1]Ξ

(xξ) 7→
(
xξ − ε

1 − 2ε

)

and its inverse Hε. Let µε := Hεµ and note that 〈x0, µ〉 − 〈x0, µ
ε〉 = O(ε). Observe that the

coupling of the last subsection (in particular (4.11)) adapted to this setting yields

Eµε
[
(Xgε

(t))ϕ
]
− Eµ

[
(Xgε

(t))ϕ
]

= O(ε).(4.14)
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Note that LεXgε
(t) is again of the Fisher-Wright-type for X(0) concentrated on [ε, 1 − ε]Ξ.

Observe that (Hε(z))0 − z0 = O(ε) where the O-constants only depend on m = #ϕ. So the
discussion of the last two subsections yields

lim sup
ε→0

lim sup
t→∞

sup
#ϕ=m

∣∣∣Eµ
[
(Xgε

(t))ϕ
]
− Eµ

[
(Xbf (t))ϕ

]∣∣∣ = 0.(4.15)

This finishes the proof.

4.2 Proof of Theorem 3

Assume now a(·, ·) to be transient. Since the coupling of finite systems is successful (Lemma
4.2) we may assume

L[X(0)] = πθ.

Recall the definition of pϕ from (3.34) and note that

Eνθ
[
zϕ
]

=
∑

k

pϕ(k)θk.(4.16)

We proceed as above and use Proposition 3.7 to conclude Theorem 3

Eπθ

[
(Xn(tsn))

ϕ
]

= Eϕ
[
θ#ηn(tsn)

]
(4.17)

=
∑

l

pϕ(l)
∑

k

q2t(l; k)θ
k

=
∑

l

pϕ(l)El
[
θD2t

]

=
∑

l

pϕ(l)

∫
Q2t(θ, dρ)ρ

l

=

∫
Q2t(θ, dρ)E

νρ
[
zϕ
]
. 2

5 Proof of Theorem 2 and 5

We only consider the case g(x) = x(1−x) and L[X(0)] product measure, since the generalizations
work as in Section 4. Again we first have to do some random walk analysis. We start with the
construction of the limit object of space and time scaled random walks on Ξ. From this we
conclude part a) and b) of Theorem 2 and 5. Then we obtain c) via a duality to the discrete
time nonlinear death process of Definiton 3.1.

5.1 Limit Process of Scaled Random Walks

In this subsection we ”extend Ξ resp. Ξn to the left”, i.e. by points of short distance, to Γ resp.
Γ′ defined below. On these extended groups we will define the weak limits of rescaled random
walks on Ξ resp. Ξn.

Definition 5.1 Let

Γ :=
{
δ = (δk)k∈Z : δk ∈ {0, . . . , N − 1} , ‖δ‖ <∞

}
(5.1)

Γ−n := {δ ∈ Γ : δk = 0∀ k ≤ −n}(5.2)
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where ‖δ‖ := inf{k ∈ Z : δk = 0∀ l > k}. Γ is an abelian group with addition component wise

modulo N . Γ herits the product topology from {0, . . . , N − 1}Z.
The finite objects will be indicated by a prime and are defined as

Γ′ := {δ ∈ Γ : ‖δ‖ ≤ 0} Γ′
−n := {δ ∈ Γ−n : ‖δ‖ ≤ 0}.

Further let µ resp. µ′ be the Haar measures on Γ resp. Γ′ normed to µ(Γ′) = µ′(Γ′) = 1 (sic!),
i.e. the weak limits of N−n-times counting measure on Γ−n resp. Γ′

−n as n→ ∞.

The shift operators Sk (recall (1.10)) naturally extend to these objects. Note that we may
identify Ξ with Γ0 and observe

Sn(Ξ) = Γ−n
Sn(Ξn) = Γ′

−n.

Since most of what follows is the same for the finite and infinite objects we suppress the
prime where possible and only stress the occuring differences.

We obtain random walks γn(t) on Γ by shifting a random walk X(t) on Ξ and rescaling time

γn(t) := Sn
(
X(t(Nc)n+1)

)
.(5.3)

Intuitively we extend X(t) ”to the left” by allowing jumps of short distances at high rates.
The same way we obtain the system of instantaneously coalescing random walks β̃n on Γ

β̃n(t) := Sn
(
η̃
(
t(Nc)n+1

))
.(5.4)

Denote by Gn the generator of γn defined on C(Γ−n) the set of continuous functions on Γ−n.
We will identify C(Γ−n) with Ĉ(Γ−n) = {f ∈ C(Γ), f(ξ) = f(ζ) if ‖ξ − ζ‖ < −n}. Denote by

Ĝn the linear operator on Ĉ(Γ−n) with (Ĝnf)
∣∣∣
Γ−n

= Gn(f
∣∣∣
Γ−n

). Note that for k ≤ n

Ĝn|Ĉ(Γ−k) = Ĝk.(5.5)

By d(δ, ε) := 2‖δ−ε‖ a metrics is given on Γ that induces the product topology on Γ. Note
that Ĉ(Γ) :=

⋃
n∈N

Ĉ(Γ−n) is dense in C(Γ).

Definition 5.2
Let Ĝ be the linear operator on Ĉ(Γ) such that

Ĝ|
Ĉ(Γ−n)

= Ĝn.(5.6)

The closure G of Ĝ is a Markov generator. We denote by γ(t) the random walk induced by G.
By β̃(δ1, . . . , δm; t) we denote the corresponding system of of instantaneously coalescing random
walks started in (δ1, . . . , δm).

Proof

By (5.5) Ĝ is well defined and has a dense domain. Hence G is a well defined (unique valued)
linear operator. Fix λ > 0. Since Gn is a Markov generator for each n ∈ N we have R(λ−Ĝn) =
Ĉ(Γ−n). So the range of λ − G is dense, R(λ − G) = Ĉ(Γ), and hence G is recognized as a
Markov generator. (For a treatment of this point see Liggett (1985), Chapter I). 2



5 PROOF OF THEOREM 2 AND 5 29

We assume (γ(t), γ1(t), γ2(t), . . .)) to be defined on one probability space such that

γn(t) = γ(t)|Γ−n
.(5.7)

Now it is immediate that

(γn(t)t≥0)
n→∞−→ (γ(t)t≥0) uniformly and a.s. in D([0,∞[).(5.8)

Lemma 5.3

β̃n(δ1, . . . , δm; t)
n→∞−→ β̃(δ1, . . . , δm; t) in distribution ∀ t ≥ 0.

Proof

Let

τn = inf{t ≥ 0 : γn(t) ≡ 0}(5.9)

τ = inf{t ≥ 0 : γ(t) ≡ 0}.(5.10)

Now by (5.8) and right continuity of paths

τn ↑ τ a.s.(5.11)

Since we can assume that the systems β̃, β̃1, β̃2, . . . are coupled so that

β̃1 ≥ β̃2 ≥ . . . β̃(5.12)

and since τ has no atoms a simple induction argument yields the conclusion. 2

5.2 Proof of Theorems 2 and 5, Part a)

By compactness of the state space it suffices to show convergence of moments

E
∏

m∈Z

(Θn−m(X(tsn)))
ψm n→∞−→ Mψ(5.13)

where ψ ∈ N
Z
0 finite and Mψ is some real number. The martingal property then follows easily

by symmetry.
Thus let

ψ = 1Il1 + . . .+ 1Ilr , l1 ≤ . . . ≤ lr ∈ Z(5.14)

and denote

Γ(ψ) =
{
(δ = (δ1, . . . , δr) ∈ Γr : ‖δi‖ ≤ li

}
(5.15)

Γ−n(ψ) = Γ(ψ) ∩ (Γ−n)
r.

Then

E
[
(Θn−·(X(tsn)))

ψ
]

= E




r∏

j=1

Θn−lj(X(tsn))


(5.16)

=




r∏

j=1

#Ξn−lj




−1

E


 ∑

‖ξ1‖≤n−l1
· · ·

∑

‖ξr‖≤n−lr
xξ1(t(Nc)

n+1) · · · xξr(t(Nc)n+1)



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By the duality lemma and the comparison lemma this equals

=




r∏

j=1

#Ξn−lj




−1

E


 ∑

‖ξ1‖≤n−l1
· · ·

∑

‖ξr‖≤n−lr
θ#η̃

{ξ1,...,ξr}∗
n (t(Nc)1+n)


+ ε(n)(5.17)

=

∫
Eδ

∗ [
θ#β̃n(t)

]
µr
(
dδ|Γ−n(ψ)

)
+ ε(n).

By Lemma 5.3 this tends to

Mψ :=

∫
Eδ

∗
[θ#β̃(t)]µr

(
dδ|Γ(ψ)

)
. 2(5.18)

5.3 Proof of Theorems 2 and 5, Part b)

It suffices to show (recall τ from (5.10) and note that here d plays the role of m in Theorem 2
and 5)

Pδ(τ < t) →
{

0 as d = ‖δ‖ → ∞
1 as d = ‖δ‖ → −∞ ∀ t > 0(5.19)

since then (recall Mψ from (5.18))

Mm·1Id
→
{
θm as d→ ∞
θ as d→ −∞ .

A straightforward computation using (2.16) and abbreviating v = Nc
Nc−1 + 1

N−1 yields

Ede−λτ = lim
n→∞

Ede−λτn =

∞∑

m=d−1

N−m

ϑv(Nc)−m + λ
− N

N − 1

N1−d

ϑv(Nc)1−d + λ

∞∑

m=−∞

N−m

ϑv(Nc)−m + λ

(5.20)

whereas

Ede−λτ
′
= lim

n→∞
Ede−λτ

′
n(5.21)

=

0∑

m=d

N1−m

v(Nc− 1)(Nc)−m − 1 + λ
− N

N − 1

N1−d

v(Nc− 1)(Nc)1−d − 1 + λ
+

N

N − 1

1

λ

0∑

m=−∞

N1−m

v(Nc − 1)(Nc)−m − 1 + λ
+

N

N − 1

1

λ

.

Now (5.19) follows from

lim
d→−∞

Ede−λτ = lim
d→−∞

Ede−λτ
′
= 1 ∀λ <∞(5.22)

and
lim
d→∞

Ede−λτ = 0 ∀λ > 0. 2(5.23)
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5.4 Proof Theorems 2 and 5, Part c)

We let N → ∞ and indicate quantities with a superscript N . Observe

Ede−λτ
N ∼

0∑
m=d−1

N−m

(Nc)−m+λ

0∑
m=−∞

N−m

(Nc)−m+λ

as N → ∞(5.24)

Ede−λτ
′N ∼

0∑
m=d−1

N−m

(Nc)−m−1+λ

0∑
m=−∞

N−m

(Nc)−m−1+λ

as N → ∞(5.25)

Thus

Ede−λτ
N (Nc)−a N→∞−→





1 − cd−a +
(c− 1)cd−a−1

1 + λ/c
if d− a ≤ 0

0 if d− a > 0
(5.26)

The same holds for τ ′N if a < 0 whereas if a = 0 and d < 0

Ede−λτ
′N N→∞−→ 1 − cd +

cd

1 + λ
c−1

.(5.27)

Denote by E(m) the exponential distribution with mean m. Then

Ld[τN (Nc)−a]
N→∞
=⇒

{ (
1 − cd−a

)
δ0 + (c− 1)cd−a−1E

(
1
c

)
+ cd−a−1δ∞ if d ≤ a

δ∞ if d > a
(5.28)

as well as in the finite case if a < 0. On the other hand for a = 0 and d < 0

Ld[τ ′N ]
N→∞
=⇒

(
1 − cd

)
δ0 + cdE

(
1

c− 1

)
.(5.29)

Introduce the first exit times of Γ(d) := {δ ∈ Γ : ‖δ‖ ≤ d}

σNn := inf{t ≥ 0 : γN (t) /∈ Γ(n)}.(5.30)

As in (3.14) we obtain

Ld[σNn (Nc)−n] =

{
E(1) if d ≤ n
δ0 if d > n

(5.31)

Thus

lim
N→∞

Pδ[‖γ(t(Nc)n‖ = 1 + n] =(5.32)

1 − lim
N→∞

Pδ[‖γ(t(Nc)n‖ ≤ n] = 1 − e−t if‖δ‖ ≤ n.

By (5.28)

Pd
[
σNa ≤ τN ≤ t(Nc)a

] N→∞−→ 0

and thus

Pd
[
τN ≤ σN

] N→∞−→ c− 1

c
.

Hence we get
lim
N→∞

Pd[τN ≤ t(Nc)d|τN ≤ σNd ] = 1 − ce−ct.(5.33)
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The picture is as follows: For large N a particle at level d jumps in time scale (Nc)d at rate
1 to level d + 1. Before it succeeds in doing so it attempts to hit the origin with rate c − 1 in
this scale.

Now consider the coalescing random walks. For ψ = 1Id1 + . . . + 1Idr
as above let

∆N (ψ) = {(δ1, . . . , δr) ∈ Γr : ‖δi − δj‖ = di ∧ dj}.

All starting points for β̃N (t) in ∆N (ψ) are equivalent by symmetry so we indicate quantities
with a superscript ψ. Let further

LNd (t) = #{δ ∈ β̃N (t) : ‖δ‖ ≤ d}(5.34)

UNd (t) = #{δ ∈ β̃N (t) : ‖δ‖ > d}.(5.35)

The same type of argument as in Section 4 now yields that the

(
LNd0(t)

2

)
pairs of particles

of level d1 coalesce asymptotically independently at rate 2(c − 1)(Nc)−d1 . Independent of this
each of the LNd1 particles of level d1 jumps to level d1 + 1 at rate (Nc)−d1 .

The limiting behaviour of this will be modelled by

Definition 5.4 (Death-Escape Process)
Let (At, Bt) be the N × N-valued Markov process with generator

G ((a1, b1), (a2, b2)) =





2(c − 1)

(
a1

2

)
if a2 = a1 − 1 , b2 = b1

a1 if a2 = a1 − 1 , b2 = b1 + 1

−a1 − 2(c− 1)

(
a1

2

)
if a2 = a1 , b2 = b1

(5.36)

and let Gt(m) = At +Bt if (A0, B0) = (m, 0).

Particles in the first box (A) die with the same rate as they do in the pure death death
process Dt of Definition 3.1. Here however they have a chance to escape to the second box (B)
and remain there. Recall the definition of the Fisher-Wright diffusion Xθ

t with drift towards θ
in (1.17). One easily checks the following duality relation

Lemma 5.5 (Duality)

E(m,0)
[
θGt
]

= E
[
(Xθ

t )
m
]
.(5.37)

2

Let
ψd = #{δ ∈ β̃(0) : ‖δ‖ = d} and ψ+

d =
∑

k>d

ψk.

Then
Lψ

[
LNd1(t(Nc)

d1), UNd0 (t(Nc)
d1)
]
N→∞
=⇒ Lψ

[
(Xt, Yt)|X0 = ψd1 , Y0 = ψ+

d1

]
.

Thus
Lψ

[
#β̃N (t(Nc)d1)

]
N→∞
=⇒ Lψ

[
ψ+
d1

+G∞(ψd1)
]
.

Iterating the argument and noting that XN
d

(
t(Nc)0.5+d

) N→∞−→ 0 we get

Lψ
[
#β̃N

(
Nc−0.5

)] N→∞
=⇒ Lψ

[
ψ+
−1 +G∞(ψ−1 +G∞(ψ−2 + . . .+G∞(ψd1) · · ·).

]
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Finally we get for the infinite system

Lψ
[
#β̃N (t)

]
N→∞
=⇒ Lψ

[
ψ+

0 +Gt(ψ0 +G∞(ψ−1 +G∞(ψ−2 + . . .+G∞(ψd1) · · ·)
]
.(5.38)

In the last step the finite system differs from the infinite one since in the former is σ0 ≡ ∞ and
thus by (5.29) particles coalesce at rate c − 1. Let G′

1 = D2(c−1)t . With this (5.38) transforms
to

Lψ
[
#β̃′N (t)

]
N→∞
=⇒ Lψ

[
ψ+

0 +G′
t(ψ0 +G∞(ψ−1 +G∞(ψ−2 + . . .+G∞(ψd1) · · ·)

]
.(5.39)

Denote by qt(ψ,m) and q′t(ψ,m) the distribution

qt(ψ,m) = Pψ
[
ψ+

0 +Gt(ψ0 +G∞(ψ−1 +G∞(ψ−2 + . . .+G∞(ψd1) · · ·) = m
]

(5.40)

in (5.38) and (5.39) respectively and observe

(
µN
)r

(∆(ψ)|Γ(ψ))
N→∞−→ 1.(5.41)

Hence
MN
ψ

N→∞−→
∑

m

qt(ψ,m)θm(5.42)

and
M ′N
ψ

N→∞−→
∑

m

q′t(ψ,m)θm.(5.43)

By the duality lemma 5.5 the mixed moments of the Markov chains (Ztm) and (Z̃tm) defined in

(1.20) and (1.28) are given by the right hand sides of (5.42) and (5.43). Since [0, 1]Z is compact
the convergence of the mixed moments in (5.42) and (5.43) yields the assertions of Theorem 2
and 5, part c).

2
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