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Abstract. Classical super–Brownian motion (SBM) is known to take values in the
space of absolutely continuous measures only if d = 1. For d ≥ 2 its values are almost
surely singular with respect to Lebesgue measure. This result has been generalized to
more general motion laws and branching laws (yielding different critical dimensions) and
also to catalytic SBM.

In this paper we study the case of a catalytic measure–valued branching process in
Rd with a Feller process ξ as motion process, where the branching rate is given by a
continuous additive functional of ξ, and where also the (critical) branching law may vary
in space and time.

We provide a simple sufficient condition for absolute continuity of the values of this
process. This criterion is sharp for the classical cases. As a partial converse we also give
a sufficient condition for singularity of the states.

1. Introduction

1.1. Motivation. Classical super–Brownian motion (SBM) is a (time–homogeneous) Mar-
kov process that takes values in the spaceMf (Rd) of finite measures on Rd. It arises as the
high–density short–lifetime (diffusive) limit of critical binary branching Brownian motion.
There is a vast literature on this issue and we only briefly refer to Dawson (1993) for an
overview.

A fundamental question is whether the states Xt are absolutely continuous with respect
to Lebesgue measure ` or if they are singular. It is well known for classical SBM (see
Dawson and Hochberg (1979)) that for fixed positive time, Xt � ` almost surely if d < 2
and Xt ⊥ ` if d ≥ 2. The aim of this paper is to give a sufficient condition for absolute
continuity for a broader class of measure–valued spatial branching processes.

1.2. Earlier Results. The model of classical SBM allows for some generalizations. In
order to describe these generalizations properly we have to give a more detailed description
of SBM first (see [Daw93] for a more intense treatment). Let s ∈ R and µ ∈ Mf (Rd).
Denote by Ps,µ (respectively Es,µ) the probability distribution of (respectively the expec-
tation with respect to) the process (Xt)t≥s when started at time s in µ. For fixed x ∈ Rd,
t > s and a test function f ∈ B+

b (Rd) (the space of bounded non–negative Borel functions
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on Rd) define the log–Laplace transform

(1.1) u(s, t, x; f) = − log(Es,δx [exp(−〈Xt, f〉)]).
(Note that u(s, t, x; f) = u(0, t− s, x; f), however we use the inhomogeneous notation in
order to prepare for a time–inhomogeneous situation) Here δx denotes the Dirac measure
in x and 〈µ, f〉 :=

∫
f dµ. By the branching property we have multiplicativity of the

process (Xt), that is

(1.2) − log(Es,µ[exp(−〈Xt, f〉)]) = 〈µ, u(s, t, · ; f)〉.
In particular, the knowledge of the initial measure and of u determines the law of X.
The function u is the (unique non–negative) solution of a simple semi–parabolic partial
differential equation (or reaction–diffusion equation)

(1.3)
− d

ds
u(s, t, x; f) =

1
2
∆u− u2, s < t,

u(t, t, x; f) = f(x).

We can rewrite (1.3) as the integral equation

(1.4) u(s, t, x; f) = Pt−sf(x)−Es,x

[∫ t

s
u(r, t,Wr; f)2 dr

]
, s ≤ t,

where Es,x denotes the expectation with respect to the Brownian motion W that is started
at time s in x and (Pr) denotes the family of heat kernels on Rd.

Essentially three generalizations have been studied:

Motion process. Instead of Brownian motion (Wt) as spatial process for the “infin-
itesimal particles” one could consider any Feller process (ξt) in Rd. This process might
even be time–inhomogeneous. In this case, one has to replace in (1.4) the homogeneous
kernel Pt−s by a Ps,t. Of course, the question of absolute continuity of XT does not make
sense if the transition probabilities do not have densities.

Special attention has been paid to the case of a spherically symmetric α–stable motion
process (α ∈ (0, 2]), that is, with generator ∆α := −(−∆)α/2.

Branching law. Instead of critical binary branching for the approximating branching
particle system one could consider more general offspring laws. In (1.3) we have to replace
the reaction term u2 by ψ(u) where ψ : [0,∞) → [0,∞) is the log–Laplace transform
of a centered infinitely divisible random variable. That is, ψ has a Lévy–Khintchine
representation

(1.5) ψ(u) = au2 +
∫ ∞

0
(e−zu − 1− zu)n(dz),

where a ≥ 0 and n is a measure on (0,∞) with
∫

(z ∧ z2)n(dz) <∞. (Note that we could
add another term bu for some b ∈ R which leads to non–critical branching. However this
does not change the absolute continuity properties of the model. Hence for simplicity we
stick to critical branching.)

Special attention has been paid to the case where ψ(u) = u1+β for some β ∈ (0, 1].
The corresponding offspring distribution has moments of order smaller than 1+β only. It
occurs, for example, as the limit of the branching particle system with offspring distribution
(pn)n∈N0 given by p0 = 1/2, p1 = (1− β)/2, and pn = 1

2(−1)n
(
1+β

n

)
for n = 2, 3, . . ..
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Fleischmann showed (see the appendix of [Fle88]) that in the case of a motion with gen-
erator ∆α and with ψ(u) = u1+β the states of Xt are almost surely absolutely continuous if
d < α/β. On the other hand the states are almost surely singular (given non–extinction)
if d ≥ α/β. For d = α/β this follows from the self–similarity of the process (see, for
example, the appendix of [Fle88]). For d > α/β it is a simple consequence of the deeper
result that the carrying dimension of the states is almost surely (given non–extinction)
equal to α/β (see Section 7.2 of Dawson (1992)).

Branching rate. Instead of changing the branching law one can also change the
branching rate. That is, instead of u2 in (1.3) write %(s, x)u2, where the non–negative
function % is the branching rate. More generally, one could replace the function % by a
measure in time and space. The suitable way to do so is to take a continuous additive
functional A(dr) of Brownian motion Wr. (If A is absolutely continuous it can be written
in the form A(dr) = %(r,Wr)dr.) We define u as the solution of

(1.6) u(s, t, x; f) = Pt−sf(x)−Es,x

[∫ t

s
u(r, t,Wr; f)2 A(dr)

]
.

The reader has to be warned that this generalization does not work for all A but one
has to make strong assumptions on A in order that there exists a SBM with log-Laplace
transforms given by (1.6). See, e.g., Dynkin (1991) or Fleischmann and Klenke (1999).

Let us give a short overview over the literature dealing with the question of absolute
continuity of the so–called catalytic SBM (CSBM). (A survey with a broader scope can
be found in [Kle99].) Delmas (1996) considers the case where A is time–homogeneous,
that is, A is the collision local time of Brownian motion with a measure ν on Rd, the so–
called Revuz measure. Usually ν is considered as the distribution of a mass that catalyzes
the branching. Delmas gives a capacity–type condition on ν such that X is well–defined.
Furthermore he shows that off the support of ν, Xt has a smooth density that solves the
heat equation.

Of special interest has also been the case where A is the collision local time of Brownian
motion with a second (autonomous) super-Brownian motion. For d = 1, Dawson and
Fleischmann (1997) show absolute continuity. The more surprising result of absolute
continuity in this model even for d = 2, 3 can be found in [FK99]. (For d ≥ 4 the process
is trivial: the reactant is just the heat flow.) Here it is used that the catalyst itself lives on
such a thin set that there is enough smoothing to obtain absolute continuity. In [FK00]
it is shown that in dimension d = 3 the density is (given non–extinction) strictly positive
almost everywhere. This is not the case in d = 1 and is an open problem for d = 2.

In [DF95] absolute continuity is shown for somewhat more general branching functionals.
However, in that article very restrictive moment assumptions on A are made (see their
Definition 2.4.7). A major goal of this paper is to relax these conditions. Finally, we like
to mention that absolute continuity of CSBM was considered for a very special class of
catalysts in [DFR91].

1.3. Our Model. As the motion process we consider a (possibly) time–inhomogeneous
Feller process (ξt)t∈[L,T ] in Rd during the fixed time interval [L, T ] ⊂ R for some L < T .
We denote its transition kernels by Ps,t, s < t, and assume that Ps,T (x, dy) has a density
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ps,T (x, y) for all s < T . This technical requirement is not really severe. It is met, for
example, by Brownian motion, strictly elliptic diffusions, and Lévy processes with infinite
Lévy measure in all coordinates (such as spherically symmetric stable processes). This
assumption allows us to define for a finite measure ν on Rd the function ps,T ν(x) =
〈ν, ps,T (x, · )〉. Clearly, for ν with density f , we have ps,T ν = Ps,T f .

We also allow a general branching rate as well as a general branching law that might
even be time–space dependent. More precisely, we assume that (s, x) 7→ ψ(s, x; · ) is
measurable and that for fixed s and x, the map ψ(s, x; · ) : [0,∞) → [0,∞) is the log-
Laplace transform of a centered infinitely divisible random variable. That is, we assume
that ψ can be written in the Lévy–Khintchine form

(1.7) ψ(t, x; u) = a(t, x)u2 +
∫ ∞

0
(e−zu − 1 + zu)n(t, x; dz).

Here we assume that a is measurable, bounded and non–negative and that n is a kernel
such that (t, x) 7→

∫∞
0 (z ∧ z2)n(t, x; dz) is bounded.

A is a continuous non–negative additive functional of ξ. We also assume that for x ∈ Rd

(1.8) EL,x

[∫ T

L
A(ds)

]
<∞.

Suppose that A is a branching rate functional for the function ψ. That is, we assume
that there exists a multiplicative measure–valued (time–inhomogeneous) Markov process
X such that (for every test function f ∈ B+

b (Rd)) its log–Laplace functionals uA (defined
as in (1.6)) solve the equation

(1.9) uA(s, t, x; f) = Ps,tf(x)−Es,x

[ ∫ t

s
A(dr)ψ(r, ξr; uA(r, t, ξr; f))

]
,

for all x ∈ Rd and s, t ∈ [L, T ] with s ≤ t. Finally, we assume that the solution of (1.9) is
unique for any f ∈ B+

b (Rd) and t ∈ [L, T ]. Clearly uA(s, t, · ; f) ∈ B+
b (Rd). Note that uA

has the semigroup property

(1.10) uA(s, t, x; f) = uA(s, r, x; uA(r, t, · ; f)), L ≤ s ≤ r ≤ t ≤ T.

In fact, if we define for fixed t the function v(s, x) = u(s, t, x; f), then by writing
∫ t
s =∫ r

s +
∫ t
r we see that

(1.11) v(s, x) = Ps,rv(r, · )(x)−Es,x

[ ∫ r

s
A(dr′)ψ(r′, ξr′ ; v(r′, ξr′))

]
.

On account of the uniqueness assumption we have v(s, x) = u(s, r, x; u(r, t, · ; f)). Note
that we have not used the uniqueness at time t but only at time r. Hence we also have
the semigroup property even if we do not have uniqueness of solutions of (1.9) with t = T
a priori. In particular, if we replace f by a measure ν, then any solution of (1.9) has the
semigroup property.

1.4. Results. A first step towards checking absolute continuity is to determine whether
in (1.9) we can replace the test function f by a finite measure. Brézis and Friedman show
(see [BF83]) for ξ = W , A(ds) = ds and ψ(u) = uγ , γ > 0, that equation (1.9) has a
solution with f replaced by δ0 if and only if γ < 2/d. Hence it is clear that we will need
extra conditions.
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Definition 1.1. A measure ν ∈ Mf (Rd) is called regular if for all r ∈ [L, T ) the map
x 7→ pr,T ν(x) is bounded and for almost all x ∈ Rd

(1.12) EL,x

[∫ T

L
A(dr)ψ(r, ξr; pr,T ν(ξr))

]
<∞.

We state the following intermediate result that is of some analytical interest in its own.

Proposition 1.2. Assume that ν is a regular measure. Then for every λ ≤ 1 there exists
exactly one solution of (1.9) with f replaced by λν. This solution has the property

(1.13) lim
λ↓0

λ−1uA(s, T, x; λν) = ps,T ν(x).

It is quite clear that if δy is regular for almost all y ∈ Rd, the statement of Proposition 1.2
is pretty close to yielding absolutely continuous states. Though for technical reasons we
need a slightly stronger condition here.

Assumption 1.3. Assume that for almost all y ∈ Rd the measure δy is regular. Further
let µ ∈ Mf (Rd) fulfill the assumption: There exists a bounded continuous function ϕ :
Rd → [0,∞) with

∫
ϕ(x) dx = 1 such that for µ⊗ `–almost all (x, y)

(1.14) lim
s↑T

lim sup
γ↓0

EL,x

[ ∫ T

s
A(dr)ψ(r, ξr; Pr,T (τyϕγ)(ξr))

]
= 0.

where ϕγ(z) := γ−dϕ(γ−1z) and τy denotes the shift by y.

Notice that this assumption implies in particular that the densities ps,T (x, y) are bounded
as functions of x. Note also that a simple application of Jensen’s inequality shows that
(1.14) holds if the left hand side in (1.12) is bounded in y with ν = δy.

Now we come to formulate the main result of this paper. Recall that [L, T ] is the fixed
time interval in which X lives.

Theorem 1. Under the Assumption 1.3, the random measure XT is PL,µ–almost surely
absolutely continuous w.r.t. Lebesgue measure.

Remark Our Assumption 1.3 is really a less restrictive condition than the one of [DF95],
Definition 2.4.7, where, essentially, in addition to our condition that the first moment
vanishes, it is assumed that all moments vanish.

It is not hard to check that for the cases considered in Section 1.2 the conditions for
absolute continuity are equivalent to (1.14). In this sense (1.14) is sharp. Clearly, one
cannot expect an “if and only if” statement here, since due to the non–homogeneity of
the problem we may have absolute continuity in one part of the space and singularity in
another part. However, we can formulate a partial converse. Recall that ps,T (x, y) is the
transition density of ξT .

Theorem 2. Suppose that µ ∈Mf (Rd) and that for µ⊗ `–almost all (x, y) the solutions
uA(L, T − ε, x; pT−ε,T ( · , y)) of (1.9) vanish as ε → 0. Then PL,µ–almost surely, XT is
carried by a Lebesgue null set.
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Our condition in Theorem 2 implies non–existence of a solution of (1.9) with a Dirac
measure as terminal condition. The condition is met, for example, in the case where
ξ = W , A(ds) = ds, ψ(u) = u1+β if and only if β ≥ 2/d (see [BF83, Theorem 2]).
This brings back the classical result that super–Brownian motion with branching law
determined by ψ(u) = u1+β has states that are almost surely singular to Lebesgue measure
in dimension d ≥ 2/β.

Of course, every generalization of a theorem asks for new examples that justify the effort.
Our focus, however, lies more on the simplification of the conditions and the proofs. The
reader is invited to think about interesting new examples.

1.5. Techniques and Outline. In earlier papers absolute continuity has been proved
using moment computations. (In fact, these computations were also used to construct the
processes and to investigate their path properties.) This approach forced to make strong
assumptions on the moments of A. In our proofs the main tool is the maximum principle
for the solutions of equation (1.9). We only have to consider the first moment. This allows
us to relax the assumptions that were made on A considerably and to shorten the proof
to a minimum.

In the next section we recall the maximum principle and then prove Proposition 1.2
and Theorem 1 and 2.

2. Proofs

The main ingredient to the proofs to come is the maximum principle for the solutions
of (1.9). Define Aε(dr) = 1[L,T−ε](r)A(dr) for ε ≥ 0. Note that Aε is the branching rate
functional of the super–process Xε derived from X by switching off the branching after
time T − ε. More precisely Xε

t = Xt for t ≤ T − ε and Xε
t = XT−εPT−ε,t for t > T − ε,

where we used the notation µPs,t(dy) =
∫
µ(dx)Ps,t(x, dy). It is hence clear that Aε meets

the assumptions made for (1.9). In fact, in order to see that uAε(s, t, · ; f) is uniquely
defined by (1.9), observe first that this is clear for t ≤ T −ε or s ≥ T −ε. For t ∈ (T −ε, T ]
and s ∈ [L, T − ε) note that by (1.9)

uAε(s, t, x; f) = Ps,T−ε(PT−ε,tf)(x)−Es,x

[∫ T−ε

s
A(dr)ψ(r, ξr; uAε(r, t, ξr; f))

]
.

Hence by assumption on A, the solution of this equation is unique and can be expressed
as uAε(s, t, x; f) = uA(s, T − ε, x; PT−ε,tf).)

Lemma 2.1 (Maximum Principle). Assume that f1 ≤ f2 and 0 ≤ ε1 ≤ ε2. Then

(2.1) uAε1
(s, t, x; f1) ≤ uAε2

(s, t, x; f2), s ≤ t, x ∈ Rd.

Proof. From equation (1.1) it is clear that

(2.2) uA(s, t, x; f1) ≤ uA(s, t, x; f2).

This yields the claim for s ≤ t ≤ T − ε2. Now let t ∈ (T − ε2, T ]. For s ∈ [T − ε2, t] clearly

(2.3) uAε2
(s, t, x; f2) = Ps,tf2(x) ≥ Ps,tf1(x) ≥ uAε1

(s, t, x; f1).
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For s ∈ [L, T − ε2) use (2.2), (2.3) and the semigroup property to get

(2.4)

uAε2
(s, t, x; f2) = uA

(
s, T − ε2, x; uAε2

(T − ε2, t, · ; f2)
)

≥ uA

(
s, T − ε2, x; uAε1

(T − ε2, t, · ; f1)
)

= uAε1
(s, t, x; f1).

�

Proof of Proposition 1.2. Clearly λν is regular whenever λ ∈ [0, 1] and ν is regular. Hence
for showing existence and uniqueness we can restrict ourselves to the case λ = 1.

We construct approximate solutions of (1.9) and use the maximum principle to show
convergence to a solution as well as uniqueness of the solution. The maximum principle
will also be used to compute the derivative at 0 (equation (1.13)).

Existence. Our aim is to construct a solution uA of (1.9) with f replaced by ν via
an approximation scheme. We want to show that for ε > 0 solutions uAε of (1.9) with f
replaced by ν exist and converge as ε→ 0 to a solution uA of (1.9).

We can define (recall that ps,T ν(x) = 〈ν, ps,T (x, · )〉)

(2.5) uAε(s, T, x; ν) =

{
ps,T ν(x), s ≥ T − ε,

uAε(s, T − ε, x; pT−ε,T ν), s < T − ε.

Clearly uAε(s, T, x; ν) is a solution of (1.9) (A replaced by Aε and f by ν). Note that
by an application of the maximum principle ε 7→ uAε(s, T, x; ν) is increasing. Hence we
can define uA(s, T, x; ν) = lim

ε↓0
uAε(s, T, x; ν) as the pointwise decreasing limit.

Clearly uAε(s, T, x; ν) ≤ ps,T ν(x). Furthermore ψ(t, x; u) is a monotone increasing
function of u. Thus, by the assumption (1.12) and the dominated convergence theorem
we get

(2.6)

uA(s, T, x; ν) = lim
ε↓0

uAε(s, T, x; ν)

= ps,T ν(x)− lim
ε↓0

Es,x

[∫ T

s
Aε(dr)ψ(r, ξr; uAε(r, T, x; ν))

]
= ps,T ν(x)−Es,x

[∫ T

s
A(dr)ψ(r, ξr; uA(r, T, x; ν))

]
.

Concluding we see that uA(s, T, x; ν) is a solution of (1.9).
Uniqueness. Let vA(s, x), s ∈ [L, T ], x ∈ Rd, be a solution of (1.9) (with f replaced

by ν). Let ε > 0 and note that from (1.9) (and the definition of uAε(s, t, · ; ν) in (2.5))
it is immediately clear that

(2.7) uAε(T − ε, T, · ; ν) ≥ vA(T − ε, · ).

Recall that we did not use uniqueness at the terminal time T to show the semigroup
property (1.10) for solutions of (1.9). In particular, for any r ∈ (s, T ) we have

(2.8) vA(s, x) = uA(s, r, x; vA(r, · )), x ∈ Rd.
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Now use the maximum principle applied to the terminal time T − ε and the functions
in (2.7): For all s < T − ε,

(2.9)

uAε(s, T, · ; ν) = uA(s, T − ε, · ; pT−ε,T ν)

≥ uA(s, T − ε, · ; vA(T − ε, · ))

= vA(s, · ).

Thus uA ≥ vA. However, plugging this in the right hand side of (1.9) gives that also
uA ≤ vA, thus we have uniqueness.

Derivative at 0. Note that ψ(r, x; 0) = 0 and that u 7→ ψ(r, x; u) is convex. Hence
u 7→ u−1ψ(r, x; u) is increasing. Further note that

(2.10) lim
u↓0

u−1ψ(r, x; u) = 0, r ∈ [L, T ], x ∈ Rd.

Clearly uA(r, T, x; λν) ≤ λpr,T ν(x). Hence by assumption (1.12) we can apply the domi-
nated convergence theorem to obtain

(2.11)

lim sup
λ↓0

λ−1Es,x

[∫ T

s
A(dr)ψ(r, ξr; uA(r, T, ξr; λν))

]
≤ lim sup

λ↓0
Es,x

[∫ T

s
A(dr)λ−1ψ(r, ξr; λpr,T ν(ξr))

]
= 0.

This clearly implies (1.13). �

Proof of Theorem 1. In order to show absolute continuity of XT it is sufficient to show
that {y 7→ 〈XT , τyϕγ〉, γ > 0} is PL,µ–almost surely uniformly integrable (in Rd). This
is clearly the case if it holds for PL,δx for µ–almost all x. To this end it suffices to
show pointwise convergence plus convergence of the mean. Our strategy is to check the
assumptions by using the log–Laplace transforms uA and Proposition 1.2.

Let us first formulate the condition for absolute continuity as a lemma. The simple
proof is omitted here (see, for example, [DF95, Lemma 2.7.1]).

Lemma 2.2. Assume that

(i) Z is a random measure on Rd and E[Z] is absolutely continuous with density z.
(ii) For almost all y ∈ Rd, the limit in distribution ζ̃(y) := lim

γ↓0
〈Z, τyϕγ〉 exists and

E[ζ̃(y)] = z(y).

Then for almost all y ∈ Rd, the almost sure limit ζ(y) := lim
γ↓0
〈Z, τyϕγ〉 exists and Z is

almost surely absolutely continuous with density ζ.

Corollary 2.3. Assume that (i) holds and that for λ > 0 and y ∈ Rd,

(2.12) v(y, λ) = lim
γ↓0

(
− log(E[exp(−〈Z, λτyϕγ〉)]

)
exists and fulfills

(2.13) lim
λ↓0

λ−1v(y, λ) = z(y) for almost all y ∈ Rd.

Then the implication of Lemma 2.2 holds.
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Proof. Note that (2.13) implies continuity of v(y, λ) at λ = 0, hence (2.12) implies that ζ
exists and that v(y, λ) = − log E[exp(−λζ(y))]. From (2.13) we get E[ζ(y)] = z(y). �

In order to proof Theorem 1 we have to check that XT fulfills the assumptions of the
corollary. Apparently EL,µ[XT ] = µPL,T is absolutely continuous (recall that µPL,T (dy) =
〈µ, PL,T ( · , dy)〉). To show (2.12) and (2.13) first note that by assumption `(dy)–almost
all δy are regular. Hence there exists uA solving (1.9) with ν = δy. Fix x, y ∈ Rd as in
Assumption 1.3. With a view to Proposition 1.2, equation (1.13), it is enough to show
that

(2.14) uA(s, T, x; δy) = lim
γ↓0

uA(s, T, x; τyϕγ).

We proceed similarly as in the proof of Proposition 1.2. Let ε > 0 and note that

(2.15) uA(s, T, x; τyϕγ) ≤ uAε(s, T, x; τyϕγ), γ > 0,

and

(2.16) lim
γ↓0

uAε(s, T, x; τyϕγ) = uAε(s, T, x; δy).

Thus
lim sup

γ↓0
uA(s, T, x; τyϕγ) ≤ uA(s, T, x; δy).

On the other hand, note that (since uAε ≥ uA)
(2.17)

uA(s, T, x; τyϕγ) ≥ Ps,T (τyϕγ)(x)−Es,x

[ ∫ T

s
A(dr)ψ(r, ξr; uAε(r, T, x; τyϕγ))

]
= uAε(s, T, x; τyϕγ)−Es,x

[ ∫ T

T−ε
A(dr)ψ(r, ξr; Pr,T (τyϕγ)(ξr))

]
.

Thus by (1.14) and (2.16) we have (as in the proof of Proposition 1.2)

(2.18)

uA(s, T, x; δy) = lim
ε↓0

uAε(s, T, x; δy)

= lim
ε↓0

lim
γ↓0

uAε(s, T, x; τyϕγ)

≤ lim inf
γ↓0

uA(s, T, x; τyϕγ).

This shows (2.14) and finishes the proof. �

Proof of Theorem2. We keep the notation from the previous proofs. Note that with this
notation the assumption of the theorem can be written as

(2.19) lim
ε↓0

uAε(L, T, x; δy) = 0, µ⊗ `–almost all (x, y).

Hence by (2.15) and (2.16) for every continuous bounded function ϕ : Rd → [0,∞) with∫
ϕ(x) dx = 1

(2.20) lim
γ↓0

uA(L, T, x; τyϕγ) = 0, µ⊗ `–almost all (x, y).

As in Corollary 2.3 this implies that limγ↓0〈XT , τyϕγ〉 = 0 in probability. Hence XT is
supported by a Lebesgue null set. �
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