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Abstract

We construct a catalytic super process X (measure-valued spatial branching pro-
cess) where the local branching rate is governed by an additive functional A of the
motion process. These processes have been investigated before but under restrictive
assumptions on A. Here we do not even need continuity of A. The key is to introduce
a new time scale in which motion and branching occur at a varying speed but are
continuous.

Another aspect is to consider X in the generic time scale of the branching - and
not of the motion process. This allows to give an explicit construction of X using the
Brownian snake. As a by-product this yields an almost sure approximation by the
corresponding branching particle systems.
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1 Introduction

1.1 Motivation

Consider a spatial branching particle system where particles move (independently) ac-
cording to some Markov process ξ in Rd. After an exponential lifetime a particle either
splits into two particles or dies - either choice with probability 1

2 . The offspring particles
follow the same dynamics. It is well known that one can perform a diffusion limit (of small
particle masses and short lifetimes) to obtain a measure-valued branching process. These
so-called super-processes are a well-studied object and we only briefly refer to Dawson
[Daw93] or Etheridge [Eth00] for reference.

Picking up a classical idea, in the last years there has been growing interest in a
situation where the rate at which the branching occurs varies in time and space. The very
basic idea is that the rate of the branching is proportional to the concentration of some
(hypothetical) matter that catalyzes the process of branching. Thus these processes in
a space-time varying (maybe random) medium are known as catalytic spatial branching
processes. See Dawson and Fleischmann [DF00] or [Kle00] for an overview on catalytic
branching.

A slightly different point of view is the following: Once a particle is born it gets an
individual exponentially distributed lifetime with a fixed mean. Furthermore each particle
has an individual clock A that runs at a varying speed (governed by the medium). When
the clock reaches the lifetime the particle dies or splits. Technically, this clock A is an
increasing additive functional of the motion process ξ of the particle.

A situation where each (infinitesimal) particle has its own independent clock which
follows a time-homogeneous increasing Lévy process (so-called branching with subordi-
nation, see [BLGLJ97]) has been considered by several authors. By expanding the state
space of the motion process one can consider branching with subordination as a special
case of catalytic branching, though with a clock that is too irregular (in particular discon-
tinuous) to fit in the general framework of catalytic branching considered so far. We will
see in this paper that the assumptions on the clock can be relaxed so that branching with
subordination indeed fits into the framework of catalytic branching.

So far one had to make strong assumptions on A in order to construct the catalytic
super process (see Dynkin [Dyn94, Chapter 3.2], Dawson [Daw93, Chapter 4.2], or Dawson
and Fleischmann [DF97]). In particular, continuity of A was needed. Here we can drop
all assumptions on A by taking a different point of view on the process. The means is to
introduce in a first step an auxiliary process in a new time scale γ(t) = t + A(t). This is
the time a computer would need to move and branch a particle. In this new time scale
particles move and branch at a varying speed. However, both t and A(t) are Lipschitz
continuous functions of γ and hence we are in the framework of [Dyn94] and [Daw93].
Note that in this time scale, the particle simply stands still for a while if A makes a jump.

In a second step one has to make the inverse time-change to get back the original model.
This time-change is a bit involved since each particle needs a different time-change. We will
see that this problem can be solved using exit measures and the so-called special Markov
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property. Note that if A makes a jump, after the inverse time-change we can observe the
process only after that jump. If also the motion has a point of discontinuity the particles
first make the spatial jump and then use their branching time. We can observe only the
random number of particles at the destination of the spatial jump after the branching.
There is no choice for the order in which these things happen as long as one wants a cadlag
process.

A third aspect (after the motion’s generic time scale t and the universal time scale
γ) is to consider the generic time of the branching process as the time scale. Thus we
get particles that branch at constant rate one but move at a varying speed. Again a
discontinuity of A simply means that the particle stands still for a while. Also, in order to
obtain a cadlag process, we have to arrange things in such a way that in cases of ambiguities
particles first move and then branch. This time scale allows to give an explicit pathwise
construction of the time-changed process by means of Le Gall’s Brownian snake process
(see [LG91, LG94, LG99]). In this approach one first samples the complete genealogy of
all particles for all times and then adapts the motion processes to this genealogy. As a
spin-off one gets a nice almost sure approximation result for the catalytic super process
by the corresponding particle systems with short life times.

Note that our method differs from approaches to time changed catalytic branching that
have been made before. Fleischmann and Le Gall [FLG95] obtain a nice description of one-
dimensional super Brownian motion with a single point catalyst in terms of a subordinator
and excursions from the catalytic point. Delmas [Del96] has generalized this to a higher
dimensional situation. Bertoin, Le Jan and Le Gall [BLGLJ97] consider a situation where
A does not depend on the spatial motion and is a subordinator. They also assume that the
motion process in the branching time scale is continuous (assumption (H) on page 43 of
[BLGLJ97]). This assumption allows them to work with a topology in which there exists
a continuous version of the snake. However without that assumption the snake need not
even to be measurable (see the example below our Theorem 3).

A very nice representation of a catalytic branching process in terms of a modified snake
process is due to Dhersin and Serlet [DS00]. In their description the lifetime process of
the snake (which encodes the genealogy) is not reflected Brownian motion but a diffusion
process with diffusion coefficient depending on the current endpoint of the spatial paths
(the positions the infinitesimal particles). In particular, the genealogy cannot be described
autonomously before knowing the spatial motion. The approach of [DS00] is based on a
stochastic calculus treatment of the snake process. In terms of regularity of the clock
it requires A to be continuously differentiable with the derivative bounded and bounded
away from 0.

Our description of catalytic super-Brownian motion in terms of the Brownian snake is
more similar to the construction given in [DFM01]. However, they consider only a very
special catalyst and a special motion process such that the motion process in the branching
time scale is continuous. In particular, their catalyst is not allowed to have gaps. Here we
aim at the most general situation where the catalyst is allowed to be virtually anything.
Also the construction and almost sure convergence of the embedded particle system is
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new.

1.2 Background

We start by collecting the ingredients of the processes to be constructed. Let (ξt)t≥0 be
a (possibly time-inhomogeneous) Feller process with values in a locally compact Polish
space E. By (Ps,x, s ≥ 0, x ∈ E) we denote the family of probability measures on the
Skorohod space D(R+, E) associated with the process ξ started at time s in the point x
(and with the convention that ξr = x for r ≤ s). We will use the notation x≤t to denote
the path up to time t that is constant at x ∈ E. Let Cb(E) [C+

b (E)] denote the space
of [nonnegative] bounded continuous functions on E and let Mf (E) denote the space of
finite Borel measures on E. For f ∈ Cb(E) and µ ∈Mf (E) we write 〈µ, f〉 :=

∫
f dµ. We

fix a complete metric d on E and for an interval I we denote by D(I, E) the Skorohod
space of cadlag functions I → E.

We assume that A is an increasing additive functional of ξ. That is, A(ξ, dt) is an
adapted locally finite measure on R+: For every s ≤ t, A(ξ, (s, t]) is measurable with
respect to σ((ξr)r∈(s,t]). A is the clock that governs the branching of a particle following
the path ξ. We will assume A({0}) = 0 and use the notation A(t) := Aξ(t) = A(ξ, (0, t])
for the time the clock shows if initially set at zero.

For the moment let us assume that A is a so-called “branching functional”. Essen-
tially this means that A is continuous and fulfills certain moment conditions (see Dynkin
[Dyn94]). We will later only need that A is a branching functional if t 7→ Aξ(t) is Lip-
schitz continuous (with constant 1). For branching functionals one can construct catalytic
spatial branching processes Xh, h > 0, with the following rules

• New particles independently get assigned lifetimes that are exponentially distributed
with parameter 1/h.

• Particles move independently according to the ξ–motion.

• Assume that a particle is born at time s and has lifetime λ. At the time t when the
individual (branching) age A((s, t]) first exceeds λ, the particle performs a critical
binary branching event.

For B ⊂ E Borel we write

Xh
t (B) = #{particles in B at time t}. (1.1)

Thus Xh is a Markov process with values in Mf (E).
If we perform the limit of high densities and short lifetimes, i.e., if we let h → 0

(and assume that the initial conditions hXh
0 converge) then hXh converges to a so–called

catalytic super processX with values inMf (E) (see, e.g., [Daw93] or [Dyn93, Thm. I.3.1]).
This X is a multiplicative Markov process which can be characterized by its log-Laplace
transforms

u(s, t, ϕ; x) := − log Es,δx [exp(−〈Xt, ϕ〉)] , s ≤ t. (1.2)
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Here ϕ ∈ C+
b (E) is a test function and Es,δx denotes the expectation when Xs = δx

almost surely. (We will use the symbol Ps,δx for the corresponding probability.) In fact,
multiplicativity means that for µ ∈Mf (E)

− log Es,µ [exp(−〈Xt, ϕ〉)] = 〈µ, u(s, t, ϕ)〉. (1.3)

Under the above conditions on A, u is the unique non-negative solution of the cumulant
equation

u(s, t, ϕ;x) = Es,x

[
ϕ(ξt)−

∫ t

s
A(ξ, dr)u2(r, t, ϕ; ξr)

]
. (1.4)

Note that in this setting one cannot drop the assumption that r 7→ A(ξ, (s, r]) is a con-
tinuous function (else there might be no solution of (1.4)). The approach of Dawson and
Fleischmann [DF97] is to show that (1.4) can be solved uniquely if A is a “nice branching
functional” and then to construct X by means of Kolmogorov’s extension theorem.

The same equation (1.4) occurs as Kolmogorov’s backward equation for the Laplace
transforms of the particle system Xh. For µ ∈ Mf (E) denote by H(µ) the probability
measure onMf (E) which is the law of a Poisson point process on E with intensity measure
µ. Further let Ps,H(µ) and Es,H(µ) denote probability and expectation of Xh if the initial
state Xh

s has distribution H(µ). Then

− log
(
Es,H(µ)

[
exp(−〈Xh

t , ϕ〉)
])

= 〈µ, uh(s, t, 1− e−ϕ)〉, (1.5)

where
uh(s, t, ϕ;x) := hu(s, t, ϕ/h). (1.6)

Note that, formally at least, h−1uh(s, t, 1− e−hϕ) → u(s, t, ϕ) as h→ 0, which means just
that X is the limit of hXh.

1.3 The Universal Time Scale

In this section we assume only that A is an increasing additive functional of ξ but do not
impose additional assumptions.

Both the motion’s and the branching’s generic time scales have one disadvantage:
They might result in discontinuous behavior of the complementary mechanism. If A has
constant intervals, then the motion process has jumps if seen from the branching time
scale. If A has jumps, then there is a discontinuity in the branching if viewed from the
motion’s time scale.

The Time Change

The easy way out comes in sight if one thinks of how to program the model on a computer.
If motion and branching consume the same amount of CPU time, the amount of time
needed to simulate an individual particle up to time t is

γ(t) = t+A(t). (1.7)
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If we denote by t(γ) the time the computer uses to move the particle and by T (γ) the
time the computer uses to branch it, then we have

t(γ) = inf
{
s : A(s) + s > γ

}
T (γ) = γ − t(γ).

(1.8)

Hence if A is continuous in the point t(γ), then

γ = t(γ) + T (γ) = t(γ) +A(t(γ)). (1.9)

Note that both γ 7→ t(γ) and γ 7→ T (γ) are Lipschitz continuous with constant 1.
Define

ζγ = (ζξ
γ , ζ

t
γ , ζ

∆
γ ), (1.10)

where
ζξ
γ = ξt(γ)

ζt
γ = t(γ)

ζ∆
γ = A(t(γ))− T (γ).

(1.11)

The third coordinate keeps track of the remaining branching time if A has a jump. That
is, t(γ) = t(γ + ζ∆

γ ) and t(γ) < t(γ′) for γ′ > γ + ζ∆
γ . This book keeping is necessary to

make ζ a Markov process. In fact, (ζγ)γ≥0 is a time-homogeneous Markov process.
Clearly γ 7→ γ − t(γ) is the distribution function of a “nice branching functional”.

We denote by T ′(γ) = 1 − dt(γ)
dγ its derivative. Thus we can use the theory of [Daw93,

Chapter 4.2] or Dynkin [Dyn94, Chapter 3] to define the corresponding catalytic super
process (Zγ)γ≥0 and the corresponding particle system (Zh

γ )γ≥0. The processes Z and Zh

are also time-homogeneous and the log-Laplace transform uZ(γ1, γ2, ϕ) = uZ(γ2 − γ1, ϕ)
is the unique non-negative solution of

uZ(%, ϕ; (x, t,∆)) = E(x,t,∆)

[
ϕ(ζ%)−

∫ %

0
dγ T ′(γ)u2

Z(%− γ, ϕ; ζγ)
]
. (1.12)

By the semigroup property of u and the fact that ζγ = (ζξ
0 , ζ

t
0, ζ

∆
0 − γ) for γ ∈ [0, ζ∆

0 ) we
get

uZ(%+ ∆, ϕ; (x, t,∆)) = uZ(%, ϕ; (x, t, 0))−
∫ ∆

0
dr u2

Z(%+ ∆− r, ϕ; (x, t,∆− r)). (1.13)

This integral equation (with ∆ as variable) can be solved explicitly:

uZ(%+ ∆, ϕ; (x, t,∆)) = (∆ + u−1
Z (%, ϕ; (x, t, 0)))−1 (1.14)

where (∆ + u−1)−1 is understood to be 0 if u = 0.
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The Inverse Time Change

Having constructed these branching processes we want to get back the catalytic branching
processes (in the motion’s time scale) that we were originally interested in. To this end
we have to make the inverse time transformation on the level of the individual particles.
Technically this can be done by introducing the exit measures for particles stopped when
their motion time exceeds a given value t.

We introduce the stopping time for ζ

τt := inf
{
γ : ζt

γ > t
}
. (1.15)

Note that τt = A(t)+t and that ζτt

d= (ξt, t, 0). Now we can build the exit measures Zh
τt

and
Zτt . For a rigorous and extensive treatment see, e.g., [Dyn93]. Heuristically, the random
measure Zh

τt
∈ Mf ((E × (R+)2)) is obtained by stopping the particles of Zh individually

when the motion time t(γ) exceeds the value t. Stopped particles neither move nor branch.
The measure Zh

τt
keeps track of the points ζτt where the particles get stopped. (This is

the usual way to define the exit measures in the time-homogeneous setting.) For the exit
measure Zτt one has the same heuristics for infinitesimal particles.

More formally the exit measures can be characterized by their log-Laplace transforms

uZ, t(ϕ; (x, s,∆)) := − log E(x,s,∆)

[
e−〈Zτt ,ϕ〉

]
. (1.16)

(for ϕ ∈ C+
b (E × (R+)2)) which are the unique nonnegative solutions of the integral

equation

uZ, t(ϕ; (x, s,∆)) = E(x,s,∆)

[
ϕ(ζτt)−

∫ τt

0
dγ T ′(γ)u2

Z, t(ϕ; ζγ)
]
. (1.17)

Multiplicativity of Zτt is tantamount to

〈µ, uZ, t(ϕ)〉 = − log Eµ

[
e−〈Zτt ,ϕ〉

]
, µ ∈Mf (E × (R+)2). (1.18)

Though also for the particle systems the formulas for the log-Laplace transforms of the
exit measures are not difficult we give it here only for the case of Poisson initial data H(µ)
with intensity measure µ as they take then a particularly appealing form (see [Dyn93,
Section I.2.4])

− log EH(µ)

[
e−〈Zτt ,ϕ〉

]
= 〈µ, uZh, t(1− e−ϕ)〉, (1.19)

where (compare (1.6))
uZh, t(ϕ) = huZ, t(ϕ/h). (1.20)

Again, since ζγ = (ζξ
0 , ζ

t
0, ζ

∆
0 − γ) for γ ∈ [0, ζ∆

0 ) we see that

uZ, t(ϕ; (x, s,∆))

= E(x,s,0)

[
ϕ̃(ζτt)−

∫ τt

0
dγ T ′(γ)u2

Z, t(ϕ; ζγ)
]
−

∫ ∆

0
u2

Z, t(ϕ; (x, s, γ))dγ
(1.21)
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with the unique solution (compare (1.14))

uZ, t(ϕ; (x, s,∆)) =
(
∆ + u−1

Z, t(ϕ; (x, s, 0))
)−1

. (1.22)

As a consequence of Dynkin’s so-called special Markov property (see [Dyn91, Theorem
1.5] or [Dyn93, Theorem I.1.3 on page 1195]) we have

(Zτt)t≥0 and (Zh
τt

)t≥0 are Markov processes. (1.23)

Now we can define for B ⊂ E Borel

Xt(B) = Zτt(B × (R+)2) = Zτt(B × {t} × {0}),
Xh

t (B) = Zh
τt

(B × (R+)2) = Zh
τt

(B × {t} × {0}).
(1.24)

These measures keep track only of the spatial distribution of the stopped particles. In
general, projections of Markov processes need not be Markov processes again. However
here the situation is different. Since the motion time is by construction t and since of
the branching time only the increments are important these measures again form Markov
processes (see the proof of Theorem 1 for details).

In order to formulate our first theorem we will also need the right continuous inverse
A−1 of A

A−1(ξ, T ) := inf
{
t > 0 : A(ξ, (0, t]) > T

}
∈ [0,∞]. (1.25)

We also use the abbreviation ∆(T ) = A(A−1(T )) − T ∈ [0,∞] and agree that (∆(T ) +
u−1)−1 = 0 if either ∆(T ) = ∞ or u = 0. Note that

∆(T (γ)) = ζ∆
γ . (1.26)

Theorem 1 (i) X and Xh are multiplicative Markov processes. Their log-Laplace trans-
forms are non-negative solutions of

u(s, t, ϕ;x) = Es,x

[
ϕ(ξt)−

∫ A(ξ,t)

A(ξ,s)
dT

(
∆(T ) + u−1(A−1(T ), t, ϕ; ξA−1(T ))

)−2

]
(1.27)

and uh(s, t, ϕ) = hu(s, t, ϕ/h), where ϕ ∈ C+
b (E).

(ii) If A is continuous, then (1.27) is equivalent to (1.4). In this case, X and Xh

are just the ordinary catalytic super process and the catalytic branching particle system,
respectively.

Remark 1.1 (i) At this point we were not able to show uniqueness of the solutions of
(1.27).

(ii) Note that in the case where A is continuous the term ∆(T ) vanishes. Hence in
this case the integral in (1.27) equals∫ A(ξ,t)

A(ξ,s)
dT u2(A−1(T ), ϕ; ξA−1(T )). (1.28)
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Thus the substitution formula for integrals yields the equivalence of (1.27) to (1.4).
(iii) If A has discontinuities then branching happens while particles stand still. In this

case the local number of particles forms an ordinary Galton Watson process (or Feller’s
branching diffusion, respectively). For this the backward equation du

dT = −u2 has the
explicit solution u(T ) = (T + u−1)−1. This explains the extra term ∆(T ) in (1.27).

Example 1.2 We want to derive from Theorem 1 a formula obtained in [BLGLJ97] for
catalytic super processes with subordination. That is, A is independent of ξ and is a
subordination process (increasing Lévy process). Of course, for two infinitesimal particles
the clocks run independently. Technically, to fit this into our framework, we have to
consider a subordinator η that is independent of ξ and consider as the new motion process
the bivariate process ξ′ := (ξ, η) on E× [0,∞). The additive functional A of ξ′ is simply
the second coordinate A((s, t]) = η(t) − η(s). Theorem 1 tells us how to construct the
corresponding super process X ′. We further define X for t ≥ 0 and B ⊂ E Borel by

Xt(B) = X ′
t(B × [0,∞)).

It is clear (due to the independence of ξ and η) that X is again a multiplicative Mf (E)–
valued Markov process whose log-Laplace transforms solve (1.27).

For simplicity let us now assume that η is stable with index α ∈ (0, 1). That is, there
exists a constant c > 0 such that for all t ≥ s and all λ ≥ 0

− log E[exp(−λ(η(t)− η(s)))] = (t− s)λα · cΓ(1− α)
α

= (t− s)λα · c
∫ ∞

0
(1− e−z)z−1−α dz.

Thus
W :=

∑
t:A(t)−A(t−)>0

δ(t,A(t)−A(t−))

is a Poisson point process on [0,∞)× (0,∞) with intensity cz−1−αdtdz and

A([s, t)) = η(t)− η(s) =
∫

[s,t]×(0,∞)
zW (dr, dz).



A. Klenke Catalytic Branching and the Brownian Snake 10

Hence, abbreviating ur = u(r, t, ϕ; ξr) we get

Es,x

∫ A(t)

A(s)

(
∆(T ) + u−1(A−1(T ), t, ϕ; ξA−1(T ))

)−2

= Es,x

∫
[s,t]×(0,∞)

W (dr, dz)
∫ z

0
dR (R+ u−1

r )−2

= Es,x

∫
[s,t]×(0,∞)

W (dr, dz)
(
ur − (z + u−1

r )−1
)

= Es,x

∫ t

s
dr

∫ ∞

0
dz cz−1−α z u2

r

z ur + 1

=
c π

sin(πα)
Es,x

∫ t

s
dr u1+α

r .

(1.29)

Concluding we get that u is the solution of

u(s, t, ϕ;x) = Es,x

[
ϕ(ξt)−

∫ ∞

0
dr ψ(u(r, t, ϕ; ξr))

]
, (1.30)

where
ψ(u) =

c π

sin(πα)
u1+α.

It is well known that (1.30) has a unique solution. Thus X is the super process with
branching rate 1 and (infinite variance) branching law defined by ψ. This result was first
obtained in [BLGLJ97, Theorem 8].

1.4 The Branching Time Scale

In some situations it is convenient to have a process with constant branching rate. For
example, genealogical considerations are easier in this case. Similarly as in the last section
we perform a time change to obtain such a process with constant branching and then do
the inverse change to get back the original process.

The Time Change

Now we change from the motion’s generic time scale to the generic time scale of the
branching. Let (VT )T≥0 be the process defined by

VT = ((ξt)t≤A−1(T ), A
−1(T ),∆(T )), (1.31)

where ∆(T ) = A(A−1(T )) = inf{S > 0 : A−1(S) > A−1(T )}. To avoid technical com-
plications we assume that almost surely A(t) ↑ ∞ as t → ∞. (Otherwise we could
assume that A(t) eventually exceeds some fixed value R almost surely and define VT for
T ≤ R only.) Then the process V is a well defined Markov right process with values in
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V := D(R+, E) × [0,∞) × R+. (We will use the convention v = (vξ, vt, v∆) for generic
points in V.) Hence we can define the branching particle system Y h where particles branch
at rate 1/h and move according to V . We can also define the corresponding super process
Y with constant branching rate 1.

Note that here we have assumed only that A is an increasing additive functional. We
did not use continuity or other regularity assumptions.

The Inverse Time Change

In order to get back to the generic time scale of the motion process we introduce the
following stopping times for V

τt := inf
{
T > 0 : VT 6∈ D(R+, E)× [0, t)× R+

}
, t ≥ 0. (1.32)

Clearly, for this process the exit measures (Yτt)t≥0 and (Y h
τt

)t≥0 form Markov processes by
Dynkin’s special Markov property. Note that Yτt and Y h

τt
are concentrated on {v ∈ V :

v∆ = 0}.
The final step is to define

Xt(C) = Yτt({(ξ, σ,∆) : ξt ∈ C}), t ≥ 0. (1.33)

and
Xh

t (C) = Y h
τt

({(ξ, σ,∆) : ξt ∈ C}), t ≥ 0. (1.34)

Theorem 2 (i) (Xt)t≥0 is a multiplicative Markov process with values in Mf (E). Its
log-Laplace transforms u(s, t, ϕ) solve (1.27). X is a version of the process described in
Theorem 1. If A is continuous, then X is the classical catalytic super process.

(ii) (Xh
t )t≥0 is a version of the catalytic branching particle system described in Theo-

rem 1 whose log-Laplace transforms are uh(s, t, ϕ) = hu(s, t, ϕ/h).

1.5 The Brownian Snake Construction

We want to profit from the equivalence of the computer time scale γ and the branching time
scale T by making an explicit construction of the catalytic processes using the Brownian
snake. With this construction we will get

• a pathwise construction of the processes,

• almost sure convergence of the embedded particle system to the super process.

The key is a construction known as the Brownian snake which goes back to Le Gall
(see [LG91, LG93, LG99]). In this construction the path of a reflected Brownian motion
serves as the (abstract) coding of (i) a series of branching particle systems and (ii) the
limiting super process.
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Defining the Brownian Snake

Let us start with recalling the Brownian snake. Let (Ba)a≥0 be a reflected Brownian
motion started at B0 = 0. We say that B has an upcrossing of height h (starting) in (a, t)
if Ba = t and if there exists a b > a such that Bb = Ba + h and Bc > Ba for all c ∈ (a, b).

For h, T, a > 0 we write

Nh,T
a = #{upcrossings of height h in (b, T ), b ≤ a}. (1.35)

It is an observation of Neveu and Pitman [NP89a, NP89b] that in a Brownian excursion
there is a critical binary branching process encoded. To formulate this coding, let α =
inf{a > 0 : Nh,0

a = 1} be the starting point of the first excursion of B beyond the level h
and let β = inf{b > α : Bb = 0} be the end of this excursion. Then (Nh,T

β )T≥0 is a critical
binary branching process with rate h−1 and with one ancestor.

If we denote by LT
a the local time of B up to time a at level T then by the classical

result of Lévy
LT

a = 2 lim
h↓0

hNh,T
a almost surely. (1.36)

If for z > 0 we let
α(z) = inf{a > 0 : L0

a > 2z}, (1.37)

then (Nh,T
α(z))T≥0 is a critical binary branching process with Nh,0

α(z) being Poisson mean z.
Thus (

hNh,T
α(z)

)
T≥0

h→0−→
(

1
2
LT

α(z)

)
T≥0

almost surely, (1.38)

and (1
2L

T
α(z))T≥0 is Feller’s continuous state branching diffusion starting at z.

The point of this construction of a branching process is that the genealogy is encoded
in B. Every a ∈ [0, α(z)] is the label of an infinitesimal particle alive only at time Ba.
Two particles a and b with a < b have a most recent common ancestor c ∈ [a, b] defined
(almost surely uniquely) by

Bc = ma,b := inf{Bd : d ∈ [a, b]}. (1.39)

Of course, this definition of c is ambiguous if the infimum is zero. In this case, the particles
a and b are in different excursions of B and are not related at all.

In order to construct a spatial (super) branching process one has to assign to every
particle a a path (ξa

s )s∈[0,Ba] of the underlying motion process. This has to be done in
such a way that for two particles a and b the paths ξa and ξb coincide up to the time ma,b

when their most recent common ancestor lived.
The above reasoning leads to the following definition.

Definition 1.3 (Brownian Snake) The Brownian snake associated with the process V
(defined in (1.31)) that starts in v is the Markov process (Ba,Vv

a)a≥0 with the properties

1. (Ba)a≥0 is a reflected Brownian motion.
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2. For every a, given Ba, (Vv
a(T ))T∈[0,Ba] is a stopped path in D([0, Ba], D(R+, E) ×

(R+)2) with the same distribution as (VT )T∈[0,Ba] with V0 = v.

3. For a < b, Vv
a(T ) = Vv

b (T ) for all T ≤ ma,b.

4. For a, b, given Ba, Bb and Vv
a(T ), T ≤ ma,b, the paths Vv

a and Vv
b are independent.

It is easily established by Kolmogorov’s extension theorem that such a process exists. If
A−1 is Lipschitz continuous and if ξ fulfills minimal regularity assumptions, then there
exists a continuous version of Vv that is strong Markov. In general, ifA−1 is not continuous,
one cannot hope for a continuous version of Vv. In fact, in important examples, the
property that a 7→ Va is measurable is not even an event (since it is not measurable in
the underlying probability space). We will see in a minute what problems arise in this
situation.

Regular Version of the Brownian Snake

Let us now formulate conditions that ensure the existence of a continuous, respectively a
measurable, version of the Brownian snake. Recall that d is a complete metric on E, let
d̄ be the corresponding Skorohod metric on D(R+, E) and define

d̃(v, w) = d̄(vξ, wξ) + |vt − wt|+ |v∆ − w∆|.

In [BLGLJ97] a weaker metric is used instead of d̃. This allows them to obtain a continuous
version of the snake without additional assumptions. Note however that they assume that
V is continuous. Without that assumption their metric is too weak to distinguish paths
of V appropriately.

The following condition ensures via Kolmogorov’s lemma that there exists a (Hölder-)
continuous version of the snake which is also strong Markov (see [LG99, Chapter IV.4]).
Condition (C) There exist constants C, p > 2, and ε > 0 such that for every v ∈ V and
every t ≥ 0

Ev

[
sup{d̃(v, Vr), r ∈ [0, t]}p

]
≤ Ct2+ε. (1.40)

The continuity of Vv would be needed to construct exit measures via the Brownian
snake and to derive the special Markov property. However we do not stress this point
here. For the purpose of a representation of the Y -process in terms of local times and the
Brownian snake the following condition (compare [LG99, Chapter IV.1, equation (1)]) will
be sufficient.
Condition (D) For every ε > 0,

lim
δ→0

sup
s,x

Ps,x

[
sup

r∈[s,s+δ]
d(x, ξr) > ε

]
= 0

lim
δ→0

sup
s,x

Ps,x

[
sup{% : A([s, s+ %]) < δ} > ε

]
= 0.

(1.41)
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This condition implies
lim
δ→0

sup
v

Pv

[
sup
T≤δ

d̃(v, VT ) > ε
]

= 0. (1.42)

It is well known (see [LG99, Lemma IV.1.1 and the subsequent discussion]) that (1.42)
implies that (B,Vv) has a measurable (in the time coordinate) version. We will henceforth
assume that this version is chosen when (D) is in place.

Representation of the Branching Process

Now we formulate how the branching particle system and the super process associated
with V can be constructed from the Brownian snake. Let us agree that daN

h,T
a means

integration with respect to the point measure Nh,T
a in the variable a. Similarly we use the

notation daL
T
a .

Theorem 3 (i) For every h > 0 the process defined by

Y h
T :=

∫ α(z)

0
daN

h,T
a δVv

a(T ) (1.43)

is a version of the branching particle system associated with V and with the initial state
Y h

0 being H(h−1zδv).
(ii) For every T ≥ 0 the almost sure limit YT = lim

h→0
hY h

T exists and Y is a version of the

super process associated with the motion process V .
(iii) Define the random measure Y T on V × (0,∞) by Y T (C × [h,∞)) = Y h

T (C). Then,
given Y , Y T is a Poisson point process with intensity measure YT (dw)dh

h2 .
(iv) If condition (D) holds, then YT can be represented in terms of the local times of B at
T as

YT =
1
2

∫ α(z)

0
daL

T
a δVv

a(T ). (1.44)

Remark 1.4 If condition (C) is in place, then one can define the local time

Lτt
a = 2 lim

h→0
h

∑
b≤a

N
h,τb

t

{b} , (1.45)

where Nh,τa
t

{b} = 1 if B has an upcrossing of height h at (b, τ b
t ) and

τ b
t = inf{T > 0 : Vb

R 6∈ D(R+, E)× [0, t)× R+}.

The exit measures Yτt and Y h
τt

can then be defined analogously as in the theorem but with
Nh,T

a and LT
a replaced by Nh,τt

a and Lτt
a respectively. (See [LG99, Theorem IV.4.6] for

details for the case Yτt .) As pointed out in [LG94, end of Section 3] the special Markov
property can then be derived from the strong Markov property of the Brownian snake.
(For the case where spatial motion is Brownian motion, this was carried out in detail in
[LG95, Section 2.3].)
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Note however that the special Markov property holds even without condition (C) by
results of [Dyn91]. In fact, for the particle system Y h this is elementary and for the super
process Y one could perform the diffusion limit to obtain the special Markov property.

Example for a Non-measurable Snake

Let us now consider an example that displays the difficulty in the case where condition
(D) does not hold. Assume that ξ is constant in the time interval [0, 1] and is a Brownian
motion in the interval [1,∞). Further let A(dt) = 1[0,1]∪[2,3](t)dt. That is, branching takes
place with rate one for t ∈ [0, 1] or t ∈ [2, 3] and there is no branching at any other time.
Hence A−1(T ) = T if T < 1 and A−1(T ) = T + 1 if T ∈ [1, 2). Thus we have

VT =

{ (
(ξ0)t≤T , T, 0

)
, if T ∈ [0, 1),(

(ξt)t≤T+1, T + 1, 0
)
, if T ∈ [1, 2).

(1.46)

For daL
1
a ⊗ dbL

1
b–almost all points a, b we have P[ma,b < 1 |L1] = 1. (In fact, only

countably many points b are endpoints of excursions above level 1. However dbL
1
b does

not have atoms, thus for dbL
1
b–almost all b and all ε > 0 we have mb−ε,b < 1.) Hence the

spatial coordinates ((V0
a(1)ξ)1 and ((V0

b(1)ξ)1 are independent normal random variables.
However since measurability depends on uncountably many values of a, this implies that
measurability of the map supp(L1) → R, a 7→ V0

a(1) is not an event and hence we cannot
define the integral on the l.h.s. of (1.44).

Note however that there is no problem in defining h
∫
daN

h,1
a δV0

a
which is just the em-

pirical measure of independent random variables with spatial coordinates being Brownian
paths in [1, 2]. Thus by the law of large numbers as h → 0 this integral converges to the
Wiener measure on C([1, 2]) times the total mass L1

α(z).

1.6 Outline

In the following three subsections we provide the proofs of the theorems one by one.

2 Proof of Theorem 1

Part (ii) was shown in Remark 1.1, hence it remains to show part (i). This amounts to
show that

(a) X is a Markov process,

(b) the log-Laplace transforms of X solve (1.27).
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(a) Let t > s ≥ 0 and ϕ ∈ C+
b (E) and set ϕ̃(x, t,∆) = ϕ(x).

E
[
e−〈Xt,ϕ〉

∣∣Xr, r ∈ [0, s]
]

= E
[
E

[
e−〈Zτt ,ϕ̃〉∣∣Zτr , r ∈ [0, s]

] ∣∣Xr, r ∈ [0, s]
]

= E
[
e−〈Zτs ,uZ, t(ϕ̃)〉∣∣Xr, r ∈ [0, s]

]
= E

[
exp

(
−

∫
Xs(dx)uZ, t

(
ϕ̃; (x, s, 0)

)) ∣∣Xr, r ∈ [0, s]
]

= exp
(
−

∫
Xs(dx)uZ, t

(
ϕ̃; (x, s, 0)

))
,

= exp
(
− 〈Xs, u(s, t, ϕ)〉

)
.

(2.1)

Thus X is a multiplicative Markov process.

(b) As shown above the log-Laplace transforms of X are

u(s, t, ϕ;x) = uZ, t(ϕ̃; (x, s, 0)). (2.2)

Hence

u(s, t, ϕ;x) = E(x,s,0)

[
ϕ̃(ζτt)−

∫ τt

0
dγ T ′(γ)u2

Z, t(ϕ̃; ζγ)
]
. (2.3)

The integral equals (see (1.22))∫ τt

0
dγ T ′(γ)

(
ζ∆
γ + u−1

Z, t

(
ϕ̃; (ζξ

γ , ζ
t
γ , 0)

))−2

=
∫ τt

0
dγ T ′(γ)

(
∆(T (γ)) + u−1

Z, t

(
ϕ̃; (ξt(γ), t(γ), 0)

))−2
.

(2.4)

Note that t(γ) = A−1(T (γ)) for all γ with T ′(γ) 6= 0. Thus (2.4) can be continued by∫ τt

0
dγ T ′(γ)

(
∆(T (γ)) + u−1

Z, t

(
ϕ̃; (ξA−1(T (γ)), A

−1(T (γ)), 0)
))−2

=
∫ τt

0
dγ T ′(γ)

(
∆(T (γ)) + u−1

(
A−1(T (γ)), t, ϕ; ξA−1(T (γ))

))−2
.

(2.5)

Performing the substitution γ for T yields that (2.5) equals∫ A(t)

A(s)
dT

(
∆(T ) + u−1

(
A−1(T ), t, ϕ; ξA−1(T ))

))−2
, (2.6)

which shows that u solves (1.27).

2
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3 Proof of Theorem 2

We do the proof only for X since the case Xh is even simpler.
Multiplicativity is immediate from the construction. Thus we have to show

(a) that X is Markov

(b) that
u(s, t, ϕ;x) := − log Es,δx [exp(−〈Xt, ϕ〉)], s ≤ t, x ∈ E, (3.1)

solves (1.27),

(c) that X is a version of the process described in Theorem 1.

The procedure is quite similar as in the case of the universal time scale. We begin with
some notation and a preliminary lemma.

For v = (vξ, vt, v∆) define the log-Laplace transforms of the Y process (which is time-
homogeneous)

uY (T, φ; v) = − log Eδv [exp(−〈YT , φ〉)]. (3.2)

Then uY is the unique non-negative solution of

uY (T, φ; v) = Ev

[
φ(VT )−

∫ T

0
dRu2

Y (T −R,φ;VR)
]
. (3.3)

We further define the log-Laplace transforms of the exit measures Yτt by (compare (1.16)ff)

uY,t(φ; v) = − log Eδv [exp(−〈Yτt , φ〉)] . (3.4)

Then

uY,t(φ; v) = Ev

[
φ(Vτt)−

∫ τt

0
dRu2

Y,t(φ;VR)
]

(3.5)

and (recall (1.22))

uY,t(φ; (vξ, vt, v∆)) =
(
∆ + u−1

Y,t(φ; (vξ, vt, 0))
)−1

(3.6)

Let φ̃ ∈ Cb(E × R+). Define φ(v) = φ̃(vξ
vt , v

t) and Msφ̃ : E → R by

Msφ̃(x) = Es,x

[
φ̃(ξA−1(A(s)), A

−1(A(s)))
]
. (3.7)

Note that A−1(A(s)) = inf{t > s : A((s, t]) > 0} < ∞ by the assumption that A(t) ↑ ∞
almost surely. Thus Ms gauges the particles stopped at the first contact with the catalyst.
Also note that A−1(A(s)) = τs, Ps,x–almost surely. Thus, if v = (vξ, s, 0) ∈ V denotes
an arbitrary point with vξ

s = x then by the expectation formula for exit measures (see
[Dyn91, (1.50)] or [Dyn93, (I.1.20)])

Msφ̃(x) = 〈Yτs , φ〉 Ps,δv – a.s. (3.8)
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By the Markov property of ξ and since φ̃ depends only on the actual position and not on
the whole path integrating (3.8) w.r.t. Xs(dx) yields

〈Yτs , φ〉 = 〈Xs,Msφ̃〉. (3.9)

Furthermore, for ϕ ∈ Cb(E) define

ϕt(v) =

{
ϕ(vξ

vt) if t ≤ vt,

0 else.
(3.10)

Then by the definition of X

〈Yτt , ϕt〉 = 〈Xt, ϕ〉. (3.11)

Lemma 3.1 The function v 7→ uY,t(ϕt; v) depends only on (vξ
vt , v

t, v∆). In particular,
there exists a map (s, x) 7→ ũY,t(s, ϕ;x) such that

ũY,t(vt, ϕ; vξ
vt) = uY,t

(
ϕt; (vξ, vt, 0)

)
. (3.12)

Moreover
ũY,t(s, ϕ) = MsũY,t( · , ϕ, · ). (3.13)

Proof This is immediate from (3.5) and the Markov property. 2

Corollary 3.2 For t ≥ s ≥ 0 with the above notation

E
[
e−〈Xt,ϕ〉

∣∣∣Yτr , r ∈ [0, s]
]

= e−〈Xs,ũY,t(s,ϕ)〉. (3.14)

Proof By the previous lemma almost surely

〈Yτs , uY,t(ϕt)〉 = 〈Yτs , ũY,t(s, ϕ)〉
= 〈Xs,MsũY,t( · , ϕ, · )〉
= 〈Xs, ũY,t(s, ϕ)〉,

where we used (3.9) in the second equality. Thus using (3.11) and the Markov property
of (Yτr)r≥0 the l.h.s. of (3.14) equals

E
[
e−〈Yτt ,ϕt〉

∣∣Yτr , r ∈ [0, s]
]

= E[e−〈Yτt ,ϕt〉
∣∣Yτs ]

= e−〈Yτs ,uY,t(ϕt)〉 = e−〈Xs,ũY,t(s,ϕ)〉.

2
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Now we come to showing (a) and (b).

(a) We prove the Markov property of X. Let ϕ ∈ C+
b (E) and let t ≥ s ≥ 0. Then

E
[
e−〈Xt,ϕ〉

∣∣∣Xr, r ∈ [0, s]
]

= E
[
E

[
e−〈Xt,ϕ〉

∣∣∣Yτr , r ∈ [0, s]
]∣∣∣Xr, r ∈ [0, s]

]
= e−〈Xs,MsũY,t(s,ϕ)〉

(3.15)

Thus X is Markov.

(b) From Corollary 3.2 we get (recall (3.6))

u(s, t, ϕ;x) = ũY,t(s, ϕ)
= uY,t(ϕt; (x≤s, s, 0, 0))

= Es,x

[
ϕ(ξt)−

∫ τt

0
dRu2

Y,t(ϕt; (ξr)r≤A−1(R), A
−1(R),∆(R)))

]
= Es,x

[
ϕ(ξt)−

∫ τt

0
dR

(
∆(R) + u−1(A−1(R), t, ϕ; ξA−1(R))

)−2
]

= Es,x

[
ϕ(ξt)−

∫ A(t)

A(s)
dR

(
∆(R) + u−1(r, t, ϕ; ξr)

)−2
]
.

(3.16)

However this is exactly what we wanted to show.

(c) As long as we do not have uniqueness of the solutions of the integral equation (1.27)
we have to use other means to show that X and Xh coincide with the processes described
in Theorem 1.

For any finite measure µ let H(µ) denote the Poisson point process with intensity µ.
Further let L denote the law of a random variable. From (1.19) we get that for h > 0

LH(µ/h)[Z
h
τt

] = Eµ[H(h−1Zτt)]. (3.17)

In other words, for Poisson initial data the particle system’s exit measure coincides in law
with the Poisson process with intensity given by Zτt . Using the law of large numbers we
get

LH(µ/h)[hZ
h
τt

] −→ L[Zτt ], h→ 0. (3.18)

Hence for X as in Theorem 1 with initial state ν

LH(ν/h)[hX
h
t ] −→ Lν [Xt], h→ 0. (3.19)

The same reasoning with Z replaced by Y shows that (3.19) also holds for X from Theo-
rem 2. Thus the transition kernels of these Markov processes coincide if the approximating
particle systems coincide.

Note that the construction of the two particle systems involves only a finite number
of branching points and paths in between these points. It is thus a piece of elementary
combinatorics to show that the particle systems coincide. We omit the tedious details. 2
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4 Proof of Theorem 3

Part (i) is a direct consequence of the construction and the fact that (Nh,T
α(z))T≥0 is a

binary branching process.
For the case where V is a diffusion process, a detailed proof of this statement can be

found in [LG99, page 1423ff]. Clearly, the proof given there does not depend on the special
assumption on V but works for any Markov process V . Thus here we content ourselves
by giving an outline of the underlying idea.

For T ≥ 0 let CT = supp(Nh,T ) denote the set of those points a ≥ 0 where an
upcrossing of height h above Ba = T starts. The points a ∈ CT are interpreted as
abstract labels of particles alive at time T . Recall that for a ≤ b

ma,b = inf{Bt, t ∈ [a, b]}.

For a > b we write ma,b = mb,a to have a symmetric notation. For a ∈ CT and S ≥ T we
let

Da
T,S = {b ∈ CS , b ≥ a, ma,b = T}.

Da
T,S is interpreted as the set of (labels of) descendants of particle a who are alive at time

S.
Also for a ∈ CT and t ∈ [0, T ] we define

αa
t = sup{b ≤ a : Bb = t, ma,b = t}.

Thus αa
t is the unique b ∈ Ct with a ∈ Db

t,T and is interpreted as the ancestor of a which
is alive at time t. By construction, for a, b ∈ CT , a 6= b,

αa
t = αb

t ⇐⇒ t < ma,b.

Thus ma,b is the time when the most recent common ancestor of a and b splits into two
particles αa

ma,b
and αb

ma,b
. Note that the fact that αa

ma,b
6= αb

ma,b
reflects the right continuity

of the branching particle system.
As noted by Neveu and Pitman (see [NP89a, NP89b]), though with a slightly different

formulation, givenNh,T , the processes ((Da
T,S−a)S≥T , a ∈ CT ) are independent identically

distributed. Each (|Da
T,S |)S≥T is a critical binary branching process with mean lifetime h.

By construction, for T > 0 and a ∈ CT ,

Vv
a(t) = Vv

αt
(t), t ∈ [0, T ].

Thus the motion of a and all its ancestors has followed a path of the V process. Further,
by construction, for a, b ∈ CT the paths Vv

a and Vv
b coincide until time ma,b

Vv
a(t) = Vv

b (t), t ≤ ma,b.

The evolutions after time ma,b are independent given Vv
a(t), t ≤ ma,b. However, this

is exactly what happens in a branching particle system when the most recent common
ancestor of two particles dies and places two children at its present location.
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Part (ii)
For notational simplicity let us assume without loss of generality that almost surely

we can distinguish the particles in Y h
T by their positions, this is

Y h
T =

∑
w∈supp(Y h

t )

δw. (4.1)

If this was not the case, we could always enhance the motion process by, say, an indepen-
dent Brownian motion to get (4.1). Later one could remove the extra Brownian motion
by a projection.

Let `(w) = `T,h(w) denote the remaining lifetime until extinction of w and all its
descendants. This is, if

Y h
S =

∑
w∈supp(Y h

t )

Y h,w
S−T , S ≥ T,

where (Y h,w, w ∈ V) is an independent (also independent of Y h
T ) family of branching

particle systems with rate h−1 and Y h,w
0 = δw, then

`(w) := inf{t ≥ 0 : Y h,w
t = 0}.

In the snake construction, if a is such that w = Vv
a(T ), then `(w) can be expressed in

terms of the height of the excursion of B starting in a and above level T :

`(w) = sup{Bb, b ≥ a, ma,b = a} − h− T.

Hence in the snake construction for g ≥ h, the measures Y g
T and Y h

T are coupled in such
a way that

Y g
T (dw) = Y h

T (dw)1{`(w)≥g−h}. (4.2)

Clearly {`(w), w ∈ V} is an iid family and is independent of Y h
T . Thus for n ∈ N and for

disjoint sets I1, . . . , In ⊂ [h,∞) the measures

Y h,k
T :=

∫
Y h

T (dw)1{`T,h(w)+h∈Ik}δw, k = 1, . . . , n,

form an independent family given Y h
T . In particular, if P[`T,h(w) + h ∈ Ik] = 1

n , k =
1, . . . , n, then (Y h,k

T , k = 1, . . . , n) is an exchangeable family.
Finally, note that the distribution of `(w) is well-known and is

P[`T,h(w) > x] =
h

h+ x
, x ≥ 0.

After these general considerations, let us be specific. We fix ε > 0, n ∈ N and let
h = ε/n as well as

I1 = [ε,∞)

Ik =
[
ε

k
,

ε

k − 1

)
, k = 2, . . . , n.
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Hence
P[`T,ε/n(w) + ε/n ∈ I1] = P[`T,ε/n(w) ≥ n− 1

n
ε] =

1
n
.

Similarly we get P[`T,ε/n(w) + ε/n ∈ Ik] = 1
n , k = 1, . . . , n. We thus have that (Y ε,k

T , k =
1, . . . , n) is exchangeable. However, from (4.2) we know that

Y ε,1
T = Y ε

T and Y ε,k
T = Y

ε/k
T − Y

ε/(k−1)
T .

Thus the definition of Y ε,k
T is independent of n and (Y ε,k

T , k = 1, . . . , n) extends to an
exchangeable family (Y ε,k

T , k ∈ N).
Hence, choosing ε = 1, there exists the almost sure limit

lim
n→∞

1
n

n∑
k=1

Y 1,k
T = lim

n→∞

1
n
Y

1/n
T . (4.3)

By definition h 7→ Y h
T is monotone decreasing, hence (4.3) implies that

YT := lim
h↓0

hY h
T

is well-defined.

Part (iii) Let C ⊂ V be measurable and d > c > 0. By the discussion of Part (ii), for
h ∈ (0, c), given Y h

T (C), the distribution of Y T (C × (c, d)) is binomial with parameters
Y h

T (C) and P[`T,h(w) ∈ (c, d)] = h(d−1 − c−1). It is thus a simple exercise to check that
given YT (C) = limh↓0 hY

h
T (C), the distribution of Y T (C×(c, d)) is Poisson with parameter

(d−1 − c−1)YT (C). Furthermore, for disjoint C1, C2 ⊂ V, given Y h
T (C1) and Y h

T (C2),
the random variables Y T (C1) and Y T (C2) are independent (as the (`T,h(w), w ∈ V) are
independent). Hence, given YT , the random measure Y T (dw, dh) is a Poisson point process
with intensity measure YT (dw)dh

h2 .

Part (iv) In order that the integral

ỸT :=
1
2

∫ α(z)

0
daL

T
a δVv

a(T ) (4.4)

exists, it is necessary and sufficient that a 7→ Vv
a(T ) is measurable. However this is implied

by condition (D) (see [LG99, Lemma IV.1.1 and the discussion following the lemma]).
The rest of this proof consists of showing that given ỸT , the random measure Y h

T is
a Poisson point process with intensity measure h−1ỸT . The strong law of large numbers
then yields h−1Y h

T
h→0−→ ỸT almost surely, hence ỸT = YT almost surely.

Note that (Ba)a∈[0,α(z)] consists of a finite number of excursions (from 0) that exceed
level T . Clearly, for a and b in different such excursions, ma,b = 0, thus Vv

a and Vv
b are

then independent given B. Hence we only have to consider one such excursion of B here.
Our aim is to obtain a convenient construction of such an excursion in terms of excur-

sions of B above and below level T . To this end we start with recalling the decomposition
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of a Brownian motion W (started in W0 = 0) according to its excursions from 0. For
details and proofs see [RY99, Chapter XII.2].

An excursion e = (ζe, (et)t∈[0,ζe]) consists of a lifetime ζe > 0 and a continuous function
[0, ζe] → R with e−1({0}) = {0, ζe} (where e−1 is the inverse function). Let E denote the
space of such excursions which can be made a Polish space in a canonical way. Let H be
a Poisson point process on [0,∞)× E with intensity measure λ⊗ n, where λ is Lebesgue
measure and n is Ito’s excursion measure. Define

A(t) =
∫

[0,t]×E
H(ds, de) ζe,

(which is almost surely finite as n({e : ζe > x}) ∼ x−1/2) and A−(t) = lims↑tA(t). Note
that A is strictly increasing as n(E) = ∞. The idea is to glue together the excursions
sampled by H in “chronological order”. Thus A−(t) will be the starting time and A(t) the
end time of an excursion e in the process to be constructed. In order to specify that e we
introduce the inverse of A

L(a) = inf{t > 0 : A(t) > a}.

We will consider L also as a measure L(da) on R+. Note that A(L(a)) ≥ a ≥ A−(L(a))
for all a ≥ 0 and

a ∈ supp(L) ⇐⇒ A−(L(a)) = a.

In the opposite case a 6∈ supp(L), there exists a unique atom eL(a) of H({L(a)} × · ).
Clearly

ζeL(a)
= A(L(a))−A−(L(a)).

We define

Wa =

{
e
L(a)
a−A−(L(a))

, a 6∈ supp(L),
0, else

Then (Wa)a≥0 is a Brownian motion and L is its local time at 0 (see [RY99, Proposition
XII.2.5]). Denote

e− = inf{es, s ∈ [0, ζe]}
e+ = sup{es, s ∈ [0, ζe]}.

and note that e−e+ = 0. Let

H− =
∫
H(dt, de)1{e−<0} δ(t,e)

H+ =
∫
H(dt, de)1{e+>0} δ(t,e).

and note that H = H− +H+ and H− and H+ are independent Poisson point processes.
Further let a1 := inf{a > 0 : (eL(a))− ≤ −T} and t1 := L(a1), that is

t1 = inf
{
t > 0 : H([0, t]× {e : e− ≤ −T}) > 0

}
.
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In words, a1 is the last time W is in 0 before it first descends to −T .
Now let us come back to our reflected Brownian motion B. Let

σ0 := inf{a > 0 : Ba = T}
σ2 := inf{a > σ0 : Ba = 0}
σ1 := sup{a < σ2 : Ba = T}.

Clearly

L[(Vv
a : a ∈ [0, σ2], Ba = T )

∣∣B] = L
[
(Vv

a : a ∈ [σ0, σ1], Ba = T )
∣∣σ0, σ1, (Ba)a∈[σ0,σ1]

]
.

Now let us assume that the crucial part of B was constructed from W :

Ba+σ0 = Wa, a ∈ [0, σ1 − σ0],

and a1 = σ1 − σ0 while (σ0, (Ba)a∈[0,σ0]) and W are independent. Note that

Ỹ e
T :=

1
2

∫ σ2

0
daL

T
a δVv

a+σ0
(T ) =

1
2

∫ a1

0
L(da)δVv

a+σ0
(T ) =

1
2

∫ t1

0
dt δVv

A(t)+σ0
(T ).

Also note that (Vv
A(t)+σ0

)t∈[0,t1] does not depend on the details of the excursions but only
on σ0, t1 and (

e− : (t, e) ∈ supp(H) ∩ [0, t1]× E
)
.

In particular,
(Vv

A(t)+σ0
)t∈[0,t1] and H+ are independent. (4.5)

Observe that (almost surely)

supp(NT,h) ⊂ supp(L)

and that Vv
A−(t)+σ0

= Vv
A(t)+σ0

if Wa > 0 for (some) a ∈ (A−(t), A(t)), that is, if a positive
excursion starts in A−(t). Thus

Y e,h
T :=

∫ σ2

0
daN

T,h
a δVv

a+σ0
(T ) =

∫
H(dt, de)1{t1>t}1{e+≥h}δVv

A(t)+σ0
(T )

=
∫
H+(dt, de)1{t1>t}1{e+≥h}δVv

A(t)+σ0
(T ).

By (4.5), Y e,h
T is a Poisson point process with intensity measure 2Ỹ e

T · n({e : e+ ≥ h}),
given Ỹ e

T . However, it is well known that n({e : e+ ≥ h}) = (2h)−1. So we have shown for
a single excursion of B that exceeds level T that Y e,h

T is a Poisson process with intensity
measure h−1Ỹ e

T . Adding the corresponding (independent) point processes for the finitely
many excursions of B that exceed level T yields that Y h

T is a Poisson process with intensity
measure h−1ỸT and we are done. 2
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