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Abstract

In many infinite interacting particle systems in Rd the ergodic behaviour is dimension
dependent. In high dimensions these systems are stable (i.e. non-trivial equilibria exist)
while so-called clustering occurs in low dimensions. Roughly speaking, we say that the
clustering is diffusive if the clusters (i.e. regions in which the system is “near” a constant
state) grow in time at a random order of magnitude.

The main goal of this work is to illustrate that diffusive clustering is a phenomenon
occurring in a wide range of models of interacting infinite particle systems. To this
end we investigate two models in great detail. One model is (critically binary) branching
Brownian motion on Rd and its high density limit, the so-called Dawson-Watanabe process.
The other model considered here is linearly interacting diffusions with state space [0, 1]
and indexed by the so-called hierarchical group Ξ. Here a certain parameter c in the
interaction terms plays the role played by the dimension in the models with eucledian site
space. The (countable Abelian) hierarchical group Ξ pays respect to the biological notion
of different degrees of relationships between individuals.

We show that in the critical dimension, i.e. d = 2 resp. c = 1, diffusive clustering
occurs in both models. Thus we demonstrate that the phenomenon of diffusive clustering
is not intrinsic to properties such as compactness of the state space or eucledian geometry
of the index set. It is rather the fact that in the critical dimension the recurrent potential
kernel is a slowly varying function that leads to diffusive clustering. This point is studied
in detail for the hierarchical group.

Thus for diffusive clustering we obtain a universality in the diffusive term, the index
set, and the initial law. As the only essentials for the occurrence of diffusive clustering
we will recognise certain potential theoretic properties of the migration mechanism.

The second aim of this work is to relate the behaviour of our models to their “finite
version”. These are defined on bounded subsets of the index set. In this context we give
a description in the fashion of the “finite systems scheme” introduced by Cox and Greven
(1990) for the (stable) high dimensional cases d ≥ 3 resp. c < 1. The scheme will be
modified to cope with the critical dimension cases d = 2 resp. c = 1. We can show
that diffusive clustering occurs even in the finite version models and we give a precise
qualitative description.
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Introduction

Preface

This work consists of three parts, one of introductory nature and and two more technical
parts. Part II deals with interacting diffusions on the hierarchical group while Part III
treats the branching models on Rd. The two latter parts are completely self-contained
and can be read independently. The introduction is written so as to encourage the non
specialists to read it (specialists may skip it). It gives an overview of the topics treated,
illustrates the basic ideas and exhibits the results in their most simple form. It shall serve
mainly as to put the results of Part II and III in perspective. Those who are apprehensive
for missing hints such as “existence and uniqueness were shown by ...” are referred to
Part II and III, as well as those who are looking for information about the history of the
treated problems or related ones.

I would like to express my gratitude to my supervisor Prof. A. Greven for introduc-
ing me to the subject and for his many helpful comments and suggestions during the
preparation of this doctoral thesis.
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4 INTRODUCTION

1 The models

We shall give a short description of the models considered in this thesis. More details can
be found in the respective chapters. Certain inconsistencies in the notation have historical
reasons. We will stick to those and hope that this does not lead to any confusions.

We shall mainly consider spatial models for population growth and population compo-
sition as they occur in mathematical models in biology. The models cover the two cases of
unbounded resources and independent evolution of families and a case of fixed resources
and constant population size.

1.1 Branching models

The following (possibly infinite) particle system (ηt)t≥0 on Rd will be called (critical bi-
nary) branching Brownian motion (shorthand BBM).

• Each particle has a random life time distributed according to an exponential mean
c−1 (c > 0) random variable.

• During its life time each particle moves according to a d-dimensional standard Brow-
nian motion.

• At the end of its life each particle disappears. It gives rise to a random number of
offspring located at the parents’ position. The two possibilities, no offspring or two
offspring, shall occur each with probability 1

2
.

• All random mechanisms are independent.

We consider ηt as a (random) measure on Rd by associating with each particle a unit mass
at the respective position.

The Dawson-Watanabe process is the high density short life time limit of branching
Brownian motion: For each c > 0 let (cηt)t≥0 be a BBM(Rd) with life time parameter c.
Assume that the following limit of the initial configurations exists

L[
1

c
cη0]

c→∞
=⇒ L[ζ0].

(By “=⇒” we denote weak convergence and by “L” the law of a random variable.) Then
there exists a Feller process (ζt)t≥0 with state space in the Borel measures on R

d such that

L[(
1

c
cηt)t≥0]

c→∞
=⇒ L[(ζt)t≥0]

(see Dawson (1993), Section 4.4 ff). This process (ζt) will be referred to as the Dawson-
Watanabe process or super Brownian motion (shorthand SBM).

1.2 Voter Model

The voter model is that model for which diffusive clustering has first been studied (Cox
and Griffeath (1986)). Also the relation of finite to infinite systems is well known in the
case of the voter model (Cox (1989) and Cox and Greven (1990) and (1991)). Here the
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voter model will serve as an example to illustrate the basic ideas of diffusive clustering
and finite systems.

The voter model (V(t))t≥0 = (vi(t), i ∈ S)t≥0 is a continuous time model with site
space S = Zd. Each site i ∈ S is occupied by a person (the voter) capable of one opinion
vi in Σ = {0, 1}. Each person changes its opinion at rate equal to 1

2d
times the number of

(nearest) neighbours being in disagreement. This is, the person at site i ∈ S changes its
opinion vi(t) to 1 − vi(t) at rate

1

2d

∑

j∈S,|j−i|=1

|vi(t) − vj(t)|.

To be somewhat more general we let a(i, j) the transition kernel of a symmetric random
walk on a countable Abelian group S. We define the rate at which a person at i changes
its opinion to be ∑

j∈S
a(i, j)|vi(t) − vj(t)|.

We will refer to this model as the voter model on S with interaction kernel a(i, j). The
special case of a Bernoulli random walk on S = Zd is that of our nearest neighbour
interaction defined above.

1.3 Interacting Diffusions

Consider a large population of individuals labelled by 1, . . . , n. Each individual has geno-
type either A or B, say. Pairs of individuals interact in the following way. For each
ordered pair (i, j) of individuals at rate 1 j changes its genotype to that of i. We may
interpret this as “individual j dies at rate n and is replaced by an offspring of one of the
remaining n− 1 individuals chosen at random”. This is the so-called Moran model.

Of course, this model can also be considered as a (speeded up) voter model on
{1, . . . , n} without spatial structure, i.e. with a(i, j) = 1/n ∀ i, j ∈ {1, . . . , n}.

As n → ∞ the process of empirical frequencies converges to the so-called Fisher-
Wright diffusion (Yt)t≥0. This is the diffusion process on [0, 1] with generator

1

2
g(x)

∂2

(∂x)2
,

where g(x) = x(1 − x) is called the diffusion coefficient. Assume now that at each site
i ∈ S there is located one (large) colony with empirical frequency xi(t). We will allow
each colony to re-sample according to the procedure described above. In addition we
will impose an interaction by allowing a migration between the colonies. The strength
of migration shall be described by the kernel a(i, j) of a random walk on S. Thus our
system X(t) = (xi(t), i ∈ S) of interacting diffusions is the Markov process on [0, 1]S with
generator

∑

i,j∈S
a(i, j) (xj − xi)

∂

∂xi
+
∑

i∈S

1

2
g(xi)

∂2

(∂xi)2
.

Here the diffusion coefficient g(x) may be allowed to be somewhat more general but for
simplicity we will defer this point to the more detailed description in Part II.



6 INTRODUCTION

We will be particularly interested in S = Ξ to be the hierarchical group defined below.
Henceforth we will always assume X(t) to be defined on Ξ. Thus we refer to X(t) as the
system of hierarchically interacting diffusions. The hierarchical group Ξ is defined by

Ξ := {ξ = (ξm)m∈N : ξm ∈ {0, . . . , N − 1}, ξm 6= 0 only for finitely many m}

with addition component wise modulo N (N = 2, 3 . . . is some fixed parameter) and
distance ‖ξ‖ := max{k : ξk 6= 0} ∨ 0. For n ∈ N0 = N ∪ {0} we denote by Ξn the finite
subgroup

Ξn := {ξ ∈ Ξ : ‖ξ‖ ≤ n}.
We restrict ourselves to the case, where the interaction kernel a(ξ, ζ) depends only on

the hierarchical distance ‖ξ − ζ‖ and put for k = ‖ξ − ζ‖

rk := a(ξ, ζ)Rk with Rk := #{ξ ∈ Ξ : ‖ξ‖ = k} = (N − 1 + 1I0(k))N
k−1. (1)

In particular we will be concerned with the geometrical kernels ac defined by rk = ϑck, k =
0, 1, . . . (ϑ a normalising constant). These are known to be recurrent iff c ≥ 1.

The idea is that the colonies are organised according to different degrees of relationship.
N colonies form a family, N families form a clan, N clans form a tribe, and so on. Thus
ξ = (ξ1, ξ2, ξ3, . . .) is the ξ1th member of the ξ2th family of the ξ3th clan etc. We measure
the degree of relationship between two colonies ξ and ζ by ‖ξ − ζ‖. If, for example
‖ξ − ζ‖ = 2, then ξ and ζ are in the same clan, tribe etc. but in different families. The
flow of migration between two colonies shall depend only on their degree of relationship.
The total flow of migration from ξ to all relatives of degree k is rk. The flow spreads
uniformly on the sites of degree k relatives (k = 1, 2, . . .).

2 Basic Ergodic Theory

Voter Model and Interacting Diffusions

Consider the voter model (V(t)) in Zd, started in the product measure L[V(0)] = πθ with
parameter θ for some θ ∈]0, 1[. This is, all components are independent and have intensity

θ = Eπθ [vi(0)] ∀ i ∈ Z
d.

A natural question to ask is whether for large times the voters are locally in consensus or
not. This is, we ask if for finite A ⊂ Zd

Pπθ [vi(t) = 1, ∀ i ∈ A] + Pπθ [vi(t) = 0, ∀ i ∈ A]
t→∞−→ 1

holds. It is easily shown (see e.g. Liggett (1985)) that consensus will be obtained iff the
transition kernel a(i, j) generates a recurrent random walk and that the following holds

Lπθ [V(t)]
t→∞
=⇒ (1 − θ)δ0 + θδ1. (2)

Here δ0 and δ1 are the Dirac measures on the configurations 0, 1 ∈ {0, 1}Z
d

with all
components 0 or 1. (We assume all product spaces to be equipped with the Tychonov
topology. Hence weak convergence amounts to a local statement.) The behaviour is called
clustering because there are growing clusters of voters in consensus.
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On the other hand, if a(i, j) generates a transient random walk, then there exists a
family (νθ, θ ∈ [0, 1]) of invariant (under the dynamics) and shift ergodic measures with
intensity

∫
x0νθ(dx) = θ such that

Lπθ [V(t)]
t→∞
=⇒ νθ. (3)

This existence of non-trivial equilibrium states in the latter case is referred to as stability
of the particle system. For the nearest neighbour interaction stability occurs iff d ≥ 3. In
this case there exists for each θ ∈]0, 1[ a positive (bounded away from 0) probability of
local disconsensus, lim inf

t→∞
Pπθ [vi(t) 6= vj(t)] > 0 ∀ i 6= j.

In fact, it is not important that we have defined the voter model on the state space
S = Zd. Any countable Abelian group will do it. The only point of the dichotomy between
clustering and stability is that of recurrence or transience of a(i, j).

Cox and Greven (1994a) have shown that this is true also for our systems (X(t)) of
linearly interacting diffusions with state space [0, 1]. This is, (2) holds for (X(t)) if a(i, j)
is recurrent. If a(i, j) is transient then (3) holds with an, of course, different family
(νρ, ρ ∈ [0, 1]).

Branching Models

In order to discuss the long time behaviour of the branching models we have to talk about
local extinction rather than consensus. We start with (ηt) BBM(Rd). It is well known that
a family generated by one particle at time t = 0 eventually dies out. This is due to the
criticality of the branching mechanism. So we may ask whether δ0 (the Dirac measure on
the empty configuration 0) is the only invariant measure for (ηt). Indeed Bramson et al.
(1993) and (1995) have shown that this is true iff d ≤ 2. Moreover in this case for initial
configurations with asymptotic finite intensity (i.e. lim sup

R→∞
R−dE[η0([−R,R]d)] < ∞) we

have

L[ηt]
t→∞
=⇒ δ0. (4)

On the other hand the branching system is stable if d ≥ 3. This is there exists a one
parameter convolution semigroup (νρ, ρ ≥ 0) of invariant (random) measures on Rd with
intensity ρ = |A|−1

∫
η(A)νρ(dη). Moreover if we start in L[η0] = H(ρ) := Poisson point

process with intensity ρ then

LH(ρ)[ηt]
t→∞
=⇒ νρ. (5)

This behaviour is also called persistence since the intensity ρ is preserved in the limit.

As can be expected from the construction SBM shows the same ergodic behaviour as
BBM with stability / persistence if d ≥ 3 and extinction if d ≤ 2. In particular (5) holds
for SBM (for different νρ, of course) if we let η0 = ρ ·λ a.s. (λ the d-dimensional Lebesgue
measure).

Since BBM and SBM behave in a very similar manner in the sequel we will formulate
most results simultaneously. For this purpose we denote by (ψt)t≥0 either BBM or SBM.
M(ρ) will be H(ρ) resp. ρ ·λ. Thus, repeating the above statement, (ψt) becomes extinct
if d ≤ 2:

L[ψt]
t→∞
=⇒ δ0.
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For each d ≥ 3 there exists a family (νρ, ρ ≥ 0) of ergodic invariant (random) measures
on R

d with intensity ρ and such that

LM(ρ)[ψt]
t→∞
=⇒ νρ ∀ ρ ≥ 0.

This is, (ψt) is persistent iff d ≥ 3. The (νρ) form a convolution semigroup,

νρ+σ = νρ ∗ νσ, ρ, σ ≥ 0.

This latter property reflects the fact that particles were defined to move and branch
independently.

By the criticality of the branching mechanism the “expected total population” remains
constant. Thus local extinction goes along with the development of relatively slowly
growing, but densely populated, areas. These will be called clusters.

The main point is now to investigate the behaviour of such clusters in more detail as
a function of the diffusive part of the evolution, the structure of the site space (the index
set for the components of the system) and properties of the migration mechanism.

3 Diffusive Clustering

We consider our interacting particle systems in low dimension, i.e. in the clustering regime.
In order to better understand the clustering we may ask the following questions.

• How large is a cluster in terms of spatial extension? What is the law of growth?

• In the case of the branching models: How “high” is a cluster, i.e. how dense is the
population?

• How old is a cluster?

• Will a particular site eventually be swallowed up by a cluster of a certain opinion
resp. become depopulated?

In the case of diffusive clustering it will turn out that the answers to these questions are
universal for the classes of models considered here. The occurrence of diffusive clustering
does not rely on the details of the models but only on potential theoretic properties of
the interaction kernel. The condition of slow variance of the recurrent potential kernel
(explained below) ensures diffusive clustering. This condition also results in a close re-
lationship to re-normalisation. In the frame-work of re-normalisation universality might
seem to be more natural. For more on re-normalisation we refer to Dawson and Greven
(1993b) and (1995) and Baillon et al. (1995).

3.1 Concepts of Clustering

The latter question can be reformulated in terms of the occupation time Tt(i) of a site
i ∈ S resp. Tt(B) (B ⊂ Rd measurable and bounded) for the branching models. Tt(i) is
defined by

Tt(i) =

∫ t

0

vi(s) ds
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for the voter models resp.
∫ t
0
xi(s)ds for interacting diffusions. For (ψt) either BBM or

SBM we let

Tt(B) =

∫ t

0

ψs(B) ds.

So we reformulate our question to: Does the limit T (i) := lim
t→∞

t−1Tt(i), resp. T (B) :=

lim
t→∞

t−1Tt(B) exists? If it exists, are the random variables T (i) resp. T (B) trivial in the

sense that they are concentrated on {0, 1} resp. 0? Or does the limit exist and is almost
surely constant with a non-trivial value? This latter alternative implies of course that the
state of a particular site changes infinitely often.

This question has been dealt with by Cox and Griffeath (1983) for the voter model
(on Zd) and (1985) for BBM. Iscoe (1986), Thm. 4.3, treats the question for SBM. We
study interacting Fisher-Wright diffusions (X(t)) on Ξ in Part II, Section 6. It has been
shown for the low dimension (d = 1, resp. c > 1 for the geometrical kernel ac on Ξ,
defined above) that T (A) ≡ 0 for (ψt) and that there is no law of large number neither
for the voter model nor for interacting diffusions on Ξ. On the other hand, T (A) is non
degenerate if d = 2. For the voter model and interacting diffusions on Ξ in the critical
dimension (d = 2 resp. c = 1) we have a law of large number Lπθ [T (0)] = δθ. Indeed,
e.g. for interacting diffusions on Ξ we have Eπθ [t−1Tt(0)] = θ and our Proposition II.6.1
claims

Varπθ [t−1Tt(0)]
t→∞−→ 2θ(1 − θ)(1 − 2− log c/ log cN) for c ≥ 1.

The question concerning the age of the clusters has been raised only recently and is
studied in detail in Fleischmann and Greven (1995).

The first of the four questions raises the the problem to define the clusters more
precisely. In the case of the one dimensional voter model this is easy. Here a cluster is
a maximal interval {m, . . . , n} ⊂ Z containing only 0’s or 1’s. For the one dimensional
interacting diffusions we have the notion of ε-clusters. These are the maximal intervals
with all components in [0, ε[ or ]1 − ε, 1]. In higher dimensions and for Ξ there are no
satisfying precise definitions of clusters.

First we consider the voter model and interacting diffusions. Here we circumvent this
problem by investigating the following two, closely related, quantities:

• The correlation function of two components xi(t) and xj(t). The more xi(t) and
xj(t) are correlated the more we will be willing to say that i and j are situated in
the same cluster.

• The block average of a finite set A ⊂ S

ρA(t) =
1

#A

∑

i∈A
xi(t).

The closer ρA(t) is to either 0 or 1 we will be willing to say that A is contained in
a cluster.

For the branching models only slight modifications of these quantities are necessary.
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Figure 1. Simulation of the voter model on a 800×800 grid at time t = 100, 000
started with intensity θ = 1

2
.

3.2 Diffusive Clustering for the Voter Model

We illustrate the concepts with the example of the voter model on Z2. The results of this
subsection are taken from Cox and Griffeath (1986).

First consider both cases d = 1 and d = 2. In order to give an indication of the
speed at which clusters grow we introduce a scaling function fα(t) ↑ ∞, as t→ ∞, and a
decreasing function h(α), α ∈ I defined on an interval I ⊂ R. We hope to find fα(t) and
h(α) such that

Covπθ [vi(t), vj(t)] ∼ θ(1 − θ) · h(α), as t→ ∞, (6)

if i and j are points with increasing distance such that dist(i, j) ∼ fα(t) as t→ ∞. Here
h(α) measures “how much” or “how probably” the considered sites are in one cluster.
Finally the scaling function fα(t) describes the speed of growth of an area of sites being
correlated more than θ(1 − θ)h(α).

Consider the rescaled or thinned out system αV(t) = (αvz(t), z ∈ Rd), defined by

αvz(t) = v([zfα(t)])(t), z ∈ R
d

([zfα(t)] is the nearest lattice point to zfα(t) with some convention in case of ties). We
might even hope that (αvz(t), z ∈ Rd) converges to a limit field αV(∞) = (αvz(∞), z ∈
Rd) as t→ ∞.

Both hopes are in fact justified. In dimension d = 1 it turns out that fα(t) = α
√
t is
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the right scale where

h(α) =
1

π

∫ 1

0

e−α
2/4s

√
s(1 − s)

ds.

In fact even more is true. Arratia (1982) shows that the process of edges between clusters
of 0’s and clusters of 1’s in (v[zt1/2](st), z ∈ R)s≥0 converges as t → ∞ to a system of
annihilating Brownian motions.

The same scale appears if we investigate the block averages ρAt(t), where At = {i ∈
Z

2, |i| ≤
√
t }. In fact, the limit of ρAt(t) as t→ ∞ exists and is non degenerate.

Thus with some right we may say that in the one dimensional voter model the size of
clusters is of order

√
t .

Consider now the voter model on Z2. Here we have that (6) holds with I = [0, 1], fα(t) =
tα/2 and h(α) = 1− α. The same scale function fα(t) = tα/2 is crucial for the description
of the block averages. Let At = {i ∈ Z2, |i| ≤ tα/2}. Then

Lπθ [ρAt(t)]
t→∞
=⇒ Lθ[Yα̂],

where α̂ := − logα and (Ys)s≥0 is a Fisher-Wright diffusion. The convergence is known
to hold in the sense of finite dimensional distributions when regarded as processes in α.
The limit field αV(∞) exists, is exchangeable, and can be described explicitly by means
of its de Finetti representation

Lπθ [αV(∞)] =

∫ 1

0

Pθ[Yα̂ ∈ dρ]πρ,

where the latter πρ means the product measure on {0, 1}R2
with parameter ρ.

Thus the picture is somewhat different from the one dimensional case:

• Cluster growth is of order tα/2 for different α ∈ [0, 1], i.e. the clusters grow at a
random order of magnitude. (Note that this is qualitatively different from the d = 1
case. There clusters grow at a random multiple of the fixed scale t1/2.) This is the
property the word “diffusive” in the term “diffusive clustering” refers to.

• Going from large blocks (α = 1) to small blocks (α = 0) the block averages (in the
limit t→ ∞) evolve as a Markov process.

• The limit field is exchangeable and can be described in terms of the same Markov
process.

These three points are characteristic for diffusive clustering.

3.3 Diffusive Clustering for the Hierarchical Group

This subsection is devoted to show how the concepts of scaling, block averages etc. carry
over to the non eucledian site space Ξ. Except for the notation nothing changes, however,
by substituting interacting diffusions for the voter model. In fact, our Theorems II.1, II.2,
II.4 and II.5 also hold for the voter model on Ξ. Theorem II.3 holds for the voter model
with V = 0 in (1.29).
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(i) Scaled systems

For a systematic treatment we will also rescale the time by a monotone sequence (sn), sn ↑
∞, called the time scale. Thus for n ∈ N0 we consider sites of distance f(n) at time sn.
The monotone function f : N0 → N0, f(n) ↑ ∞ is called space scale. To keep time
continuous we also introduce the “inverse” of (sn)

n(t) = sup{n ∈ N : sn ≤ t} ∨ 0.

For f and (sn) fixed the rescaled system fX(t) is defined as follows.
Let the shift operators Sk : Ξ −→ Ξ, k = 0, 1, 2, . . ., be defined by

Sk((ξm)m∈N) = (ξm+k)m∈N

and let S−1
k be a fixed right inverse. Now fX(t) = (fxξ(t))ξ∈Ξ is defined by

fxξ(t) = xζ(t) where ζ = S−1
f(n(t))ξ.

(ii) Block averages

For n ∈ N let the nth block average be defined by

Θn : [0, 1]Ξ → [0, 1]

(xξ) 7→ N−n
∑

ξ∈Ξn

xξ.

Fleischmann and Greven (1994) have studied the case of geometrical kernels ac with
c = 1. They show that the clustering is diffusive in the sense of the three criteria given
in the last subsection. More precisely, they show for the following choice of scales

fα(n) = [αn] and sn = Nn

that the following holds

Lπθ [Θfα(n(t))(X(t))]
t→∞
=⇒ Lθ[Yα̂] (7)

and

Lπθ [fα(X(t))]
t→∞
=⇒ νθ(α̂) :=

∫ 1

0

Pθ[Yα̂ ∈ dρ]πρ. (8)

Note that the volume of a cluster described by fα(n) is N [αn]. Thus we see that clusters
grow indeed at random order of magnitude.

In Theorem II.1 we show that diffusive clustering occurs for the whole class of so-
called critical kernels. These are defined by the property (which we explain in terms of
potentials in a second) that (recall rk from (1))

log(k)[log(rkN
k) − log(rk+1N

k+1)] is bounded. (9)

These kernels are recurrent. In particular a1 is critical.
We will describe fα(n) in terms of the recurrent potential kernel

A(ζ, ξ) =
∞∑

m=0

(
a(m)(ζ, ζ)− a(m)(ζ, ξ)

)
.
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Here a(m)(ζ, ξ) denotes the m-step transition probabilities of the random walk generated
by a(ζ, ξ). Let also

A(n) = sup{A(0, ξ), ξ ∈ Ξn}.
Condition (9) guarantees that A(n) is slowly varying as n→ ∞. This means that the

large-scale properties of the model are in a sense slowly varying. Cluster growth turns out
to become random at the scale at which the recurrent potential varies. Thus (9) assures
cluster growth at a random order of magnitude.

In Theorem II.1 we show that (7) and (8) hold for fα(n) defined such that

α = lim
n→∞

A(fα(n))

A(n)

and with time scale sn = NnA(n).
The scales of cluster growth are diffusive in the sense that fα(n) − fβ(n)

n→∞−→ ∞ for
α > β. However, we observe different sizes of clusters for different choices of a(·, ·):

∗ small clusters when
fα(n)

n

n→∞−→ 0 for α < 1

∗ medium clusters when lim
n→∞

fα(n)

n
∈]0, 1[ for α ∈]0, 1[

∗ large clusters when
fα(n)

n

n→∞−→ 1 for α > 0.

For instance these above cases can occur if we choose

∗ rk = ϑkN−k and fα(n) = nα

∗ rk = ϑN−k and fα(n) = αn

∗ rk = ϑk− log kN−k and fα(n) = n
(
1 + logα

2 logn

)
.

The criticality of the kernel a(ξ, ζ) makes sure that A(n) is a slowly varying function
of the volume #Ξn. As we see in Section II.2 this point seems to be crucial for diffusive
clustering. Note also that for nearest neighbour interaction on Z2 and for Brownian
motion on R2 the corresponding recurrent potential kernel grows on a logarithmic scale.

For geometrical kernels ac with c > 1 the clusters are so large that it is suitable to
take fα(n) = n−α, α ∈ Z but in this case in the sequel we will not stick to that notation.
In this case a suitably modified version of (7) holds. Namely for fixed N the averages
over the blocks of size fα(n(t)) (in the limit t → ∞) form a discrete time martingale in
α. While this martingale is not Markov for fixed N , we show that it is Markov in the
re-normalisation limit N → ∞ and we determine its transition law. This is the content
of our Theorem II.2.

3.4 Branching Models

For the branching models we have to deal with the question of the height of a cluster. We
start with some heuristics for BBM(R2).

Consider at time t a particle located at, say, the origin. It is known that during its
life time it has given rise to an offspring of approximately t particles. We also pretend
that the time points s of branchings are distributed uniformly on [0, t]. Now that the



14 INTRODUCTION

transition density pt−s(x, y) of the Brownian motion on R2 is of order ∼ (t− s)−1 for t− s
large and |x− y| small, we see that the expected number of particles in [0, 1]2 should be
of order ∫ t−1

0

1

t− s
ds = log t.

Fleischman (1978) has the more precise statement for (ηt) BBM(R2)

log t

8π
PM(1)

[
ηt(B) >

log t

8π
|B|x

]
t→∞−→ e−x, x > 0, B ∈ B(R2).

Thus with probability ∼ 8π
log t

we see a cluster. If we see a cluster then it is of size log t
8π

times an exponential mean 1 random variable. So we have to do three things to describe
clusters in these branching models:

• Make sure that we see a cluster.

• Scale down its height to a non-trivial size.

• Impose the spatial rescaling introduced in the last subsection.

To make sure that we see a cluster we could follow Fleischman and condition on this
event. However, we prefer to take another approach. We start with more and more densely
populated initial configurations, an approach often used in statistical physics models. This
increase in density will be done so carefully that we do not loose too much information
caused by a possible overlap of clusters. The blow-up of the initial configuration also serves
to underline the similarities to other models of interacting particle systems or diffusions.
The parallels are exhibited most clearly in this blow-up picture.

These considerations motivate the following definitions.

(1) Blow-up
At time t > 1 we define

ψ̃t = ψ̃0
t :=

8π

log t
ψt (10)

with

L[ψ0] = M̃(t) := M

(
log t

8π

)
. (11)

(2) Spatial rescaling
For (ψt) BBM resp. SBM let I = [0, 1] resp. I =]−∞, 1]. For fixed α ∈ I we define

(ψ̃αt ) by

ψ̃αt (B) = t−αψ̃t(t
α/2B). (12)

As above we let ψ̃t = ψ̃0
t .

Now we can formulate the first result concerning the block averages. Our Theorem
III.1 says that for fixed α ∈ I

LM̃(t)[ψ̃αt ([0, 1[2)]
t→∞
=⇒ L1[Z1−α].
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Here and in the sequel (Zt)t≥0 is Feller’s continuous state branching diffusion. This is the
diffusion on [0,∞[ with generator

x
∂2

(∂x)2
. (13)

To formulate a finer result in the fashion of the rescaled limit field we have to intro-
duce the following object: For τ > 0 let (Zτ,1

t ), . . . , (Zτ,n
t ) be n (not independent) Feller

diffusions with the following properties: Zτ,1
t = Zτ,2

t = · · · = Zτ,n
t for all t ≤ τ . After time

t = τ the diffusions evolve independently. Thus the common distribution at time t ≥ τ is

Lρ
[(
Zτ,k
t

)
k=1,...,n

]
=

∫ ∞

0

Pρ[Zτ ∈ dρ′]
n⊗

k=1

Lρ′[Zt−τ ], (14)

where (Zt) is an ordinary Feller diffusion.
Now we are able to describe the asymptotic dependence structure between various

parts of the space, viewed in the tα/2-scale. Namely our Theorem III.2 says that for
mutually distinct points x1, . . . , xn ∈ R2 the following holds

LM̃(t)
[
(ψ̃t(t

α/2xk + [0, 1[2))k=1,...,n

]
t→∞
=⇒ L

[(
Z1−α,k

1

)
k=1,...,n

]
, α ∈ [0, 1]

LM̃(t)
[
(ψ̃αt ([0, 1[2))α∈I

]
t→∞
=⇒
fdd

L1
[
(Z1−α)α∈I

]
, B ∈ B(Rd),

(By “
t→∞
=⇒
fdd

” we denote weak convergence of the processes in the sense of their finite di-

mensional distributions).
Incidently, our Theorem III.2 gives an even more detailed description in terms of points

being spaced at multiple scales (see Figure III.1 on page 69). For simplicity, however, we
will not stress this point here.

Remarks

1. Note that this result is consistent with (8). In fact, we could replace in the def-
inition of (Zτ,1

t ), . . . , (Zτ,n
t ) the Feller diffusions by Fisher-Wright diffusions to get

(Y τ,1
t ), . . . , (Y τ,n

t ). With this notation (8) becomes

Lθ[(Y α̂,k

0̂
)k=1,...,n] = Lθ[(Y α̂,k

∞ )k=1,...,n] =

∫ 1

0

Pθ[Yα̂ ∈ dρ]π(n)
ρ ,

where π
(n)
ρ denotes the product measure on {0, 1}n with parameter θ.

2. The clustering is recognised to be diffusive in the sense of the criteria given in Section
4.2.

4 Finite systems

4.1 Motivation

The theory of interacting particle systems investigates models coming from biology, chem-
istry and physics. For some reasons physical laboratories are not suited to contain, say,
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crystals of infinite size. Similar problems are known to biologists and chemists. This
should be enough reason to study finite systems of interacting particle systems.

Most often however, it is analytically more convenient to study infinite systems. Thus
the idea is to first analyse the infinite system and the relate its behaviour to the finite
system. This has been suggested by Dobrushin (1971) in the context of spin flip systems.

Now imagine that for some reason an infinite particle system is an appropriate model
for something. Nevertheless computer simulations of this system have to be restricted to
finite versions of the model. So in order to be able to rely on computer simulations in this
case we have to know how much and how the finite systems differ from the infinite one.
(For more on this point see Durrett (1988).) This gives another justification to compare
finite systems with infinite ones.

4.2 Concepts, History of the Subject

The raised problem has been attacked by various methods. These include

• Asymptotics of extinction and trapping times. These have been studies for the
contact process by Griffeath (1981), Cassandro et al. (1984), Schonmann (1985),
Durrett and Liu (1987), Durrett and Schonmann (1988) and Durrett et al. (1989).
For the voter model this has been done by Donnelly and Welsh (1983) and Cox
(1989).

• Asymptotics of the tunnelling times from meta stable states to thermodynamically
stable states. See Dawson and Gärtner (1988).

In this work we will follow another approach, the so-called “finite systems scheme”.
This has been developed in Cox and Greven (1990), (1991), Cox, Greven and Shiga (1995)
and Dawson and Greven (1993). Roughly speaking this scheme postulates the existence
of a macroscopic system variable that dominates the behaviour of the finite system. Given
the value θ of this variable the system should be in a state near the equilibrium of the
infinite system corresponding to that value θ. The further investigation focuses on the
behaviour of this macroscopic variable. Of course this scheme may work in this form only
if we are in the stable case. For clustering models we will have to modify the scheme with
respect to the rescaling ideas introduced above, since we do not have equilibrium states.

4.3 Interacting Diffusions

We want to explain the ideas of the finite systems scheme with the example of interacting
diffusions on the hierarchical group. We start with the definition of the finite system.

Fix n ∈ N and let Ξn = {ξ ∈ Ξ, ‖ξ‖ ≤ n} as above. Let a(·, ·) be the interaction kernel
for the infinite system (X(t)). We define the finite system (of hierarchically interacting
diffusions) (Xn(t)) on Ξn to be the Markov process on [0, 1]Ξn with generator

∑

ξ∈Ξn

[
∑

ζ∈Ξn

an(ξ, ζ)(xn,ζ − xn,ξ)

]
∂

∂xξ
+
∑

ξ∈Ξn

1

2
g(xn,ξ)

∂2

(∂xξ)2
(ξ ∈ Ξn),

where
an(ξ, ζ) =

∑

ζ′∈Ξ
ζ′≡ζ(mod Ξn)

a(ξ, ζ ′).
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Y2t

Θn(V(t · nNn))

Figure 2. Block average Θn(V(t · nNn)) of a simulated voter model V on the finite hier-
archical group Ξn (with n = 10 and N = 2) and a sample path of the Fisher-
Wright-diffusion Y2t. The initial configuration is L[V(0)] = π1/2 resp. Y0 = 1

2
.

Here an is the interaction kernel restricted to Ξn with periodic boundary conditions. Since
an is recurrent, by the basic ergodic theorem for fixed n ∈ N

Lπθ [Xn(t)]
n→∞
=⇒ (1 − θ)δ0 + θδ1. (15)

Assume henceforth that a(·, ·) is transient. Then we may expect that for s′n ↑ ∞ very
slowly that the finite and the infinite systems agree, i.e. we expect

Lπθ [Xn(s
′
n)]

n→∞
=⇒ νθ.

On the other hand, by (15), if we take s′′n ↑ ∞ very fast then Lπθ [Xn(s
′′
n)]

n→∞
=⇒ (1−θ)δ0 +

θδ1, i.e. the finiteness is exhibited.
Somewhere between (s′n) and s′′n) we expect to find a time scale (sn) with a non-trivial

limit of Xn(sn).
Recall that Θn(Xn(t)) = (#Ξn)

−1
∑

ξ∈Ξn
xn,ξ(t) is the block average over Ξn. By the

above discussion we should have

Lπθ [Θn(Xn(s
′
n))]

n→∞
=⇒ δθ = Lθ[Y0]

(recall that νθ is shift ergodic) and

Lπθ [Θn(Xn(s
′′
n))]

n→∞
=⇒ (1 − θ)δ0 + θδ1 = Lθ[Y∞].

Thus we would like to choose (sn) such that the limit of the block averages is a non-trivial
random variable. In fact, Theorem II.3 (a) says that sn = const. ·Nn (with the constant
defined in (1.30)) is the right time scale. Moreover for t > 0

Lπθ [Θn(Xn(s
′
n))]

n→∞
=⇒ Lθ[Y2t],
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where as usual (Yt) is a Fisher-Wright diffusion (see Figure 2).
Now we explain the main point of the finite systems scheme. Increasing t we see that

the block average fluctuates at times of order sn. On the other hand at times of order
≪ sn our finite systems behave almost like the the infinite one. Thus we might expect
that given the value Θn = ρ our finite system (Xn(t)) relaxes towards a state near the
equilibrium νρ for (X(t)). We may also assume that this relaxation takes place faster than
the fluctuations of the block averages. Indeed, we can show (Theorem II.3 (b)) that an
integral statement of this holds. Namely

Lπθ [Xn(tsn)]
n→∞
=⇒

∫ 1

0

Pθ[Y2t ∈ dρ] νρ.

So far we have talked about the stable case in which a(·, ·) is transient. Let us now
turn to the case in which a(·, ·) is critically recurrent, i.e. diffusive clustering occurs.

From a systematic point of view the results are quite similar to those of the stable
case. In order to see this recall A(n), f(n), n(t) and s(n) = A(n) ·Nn from Section 4.3.
We define the rescaled finite system (fXn(t)) by

fxn,ξ(t) = xζ(tsn) where ζ = S−1
f(n)ξ.

It turns out that sn = A(n) ·Nn is the right time scale in the sense that

Lπθ [Θn(Xn(t · sn))] n→∞
=⇒ Lθ[Y2t].

In order to stress the similarity to the stable case we might vaguely formulate our
result as: “Given Θn(Xn(t · sn)) = ρ, the α-scaled finite system fαXn(t) relaxes fast to
the ‘equilibrium state’ νρ(α̂) (defined in (8)).” More precisely our Theorem II.4 says the
following

a) Lπθ
[
Θfα(n)(Xn(t))

] n→∞
=⇒

∫ 1

0

Pθ[Y2t ∈ dρ]Lρ[Yα̂] = Lθ[Y2t+α̂]

b) Lπθ
[
fαXn(t · sn)

] n→∞
=⇒

∫ 1

0

Pθ[Y2t ∈ dρ]νρ(α̂) =

∫ 1

0

Pθ[Y2t+α̂ ∈ dρ]πρ

The finite systems scheme is not applicable to the strongly recurrent case of geometrical
kernels ac, c > 1. Here the local properties are no more completely determined by the
macroscopic variable. In particular the process of block averages (going from large to
small blocks) is no more Markov. As indicated above re-normalisation brings back the
Markov property. Again we can recognise the chain. This will be done in Theorem II.5.

4.4 Branching Models

Once that we have understood the finite systems scheme and remembering the similarity
of the results in Section 4 we will not be surprised to see the results for the branching
models. In particular, the results by Cox and Greven (1990) concerning the finite systems
scheme for branching random walks on Zd, d ≥ 3, suggest that the scheme should apply
to this setting.

Here the most interesting point seems to be the techniques employed for the proofs.
We develop coupling techniques that allow a rather elegant handling of our branching
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processes. This shows a considerable progress over the methods used in Cox and Greven
(1990). In particular there should be versions of this strategy in resampling systems of
branching models with selection, mutation or even interaction between families (see Daw-
son, Greven and Vaillancourt (1995), Dawson and Greven (1995) and Cox, Dawson and
Greven (1995)). However, the point of the proofs is deferred to the corresponding chap-
ters. In particular, Section III.3 gives a general introduction to the coupling techniques
used in this work.

Due to the similarity of the scenario, here we will content ourselves with a short
description of the results.

Let Λd
t = Rd/(tZd) be the d-dimensional torus of size t > 0. Consider a Brownian mo-

tion on Λd
t . As above we may now define the critically binary branching Brownian motion

(ηt,s)s≥0 on Λd
t (shorthand BBM(Λd

t )). Also by the above high density limit procedure we
obtain the super Brownian motion (ζt,s)s≥0 on Λd

t (shorthand SBM(Λd
t )). These processes

will be referred to as the finite versions of our brancing processes (allthough “bounded”
might seem to be more appropriate in the continuum limit of the spatial structure). Either

process will be denoted by (ψt,s)s≥0. We denote by Mt(ρ), M̃t(s), etc. the restrictions

of M(ρ), M̃(s) etc. to Λd
t . We define the rescaled finite systems (ψ̃αt,s)s≥0 as above by

ψ̃αt,s(B) = s−αψ̃αt,s(s
α/2B) and ψ̃t,s(B) = 8π

log s
ψt,s(B).

Consider first the stable case d ≥ 3. Recall that (νρ) are the equilibria for (ψs)s≥0.
The behaviour of the empirical population densities (block averages) is well known

LMt(ρ)
[
t−dψt,σtd(Λ

d
t )
] t→∞

=⇒ Zσ/2, σ > 0,

where (Zs)s≥0 is Feller’s diffusion (recall (13)). Theorem III.3 states

LMt(ρ)
[
ψt,σtd

] t→∞
=⇒

∫ ∞

0

Pρ[Zσ/2 ∈ dρ′]νρ′ .

Continuing with d = 2 and letting β(t) = t2 log t we see

LM̃t(σ·β(t))
[
t−dψ̃t,σβ(t)(Λ

d
t )
]
t→∞
=⇒ L1[Z2πσ].

(Here we made use of the basic scaling property for Feller’s diffusion Lρ/α[αZβ] = Lρ[Zαβ].)
Consequently, with the notation of Theorems III.1 and III.2 our Theorems III.4 and

III.5 state

LM̃t(σβ(t))
[
(ψ̃t,s(s

α/2xk + [0, 1[2))k=1,...,n

]
t→∞
=⇒

∞∫

0

P1[Z2πσ ∈ dρ]Lρ
[
(Z1−α,k

1 )k=1,...,n

]
,

for α ∈ [0, 1] and

LM̃t(σβ(t))
[
(ψ̃αt,s([0, 1[2))α∈I

]
t→∞
=⇒
fdd

L1 [(Z2πσ+1−α)α∈I ] .

Remark: It is known that β(t) = t2 log t is the right time scale also to describe finite
versions of other interacting particle systems in R2 and Z2. More generally, as in the case
of the hierarchical group, the time scale has the form

volume of the box × recurrent potential maximised over the box.

It is again the blow-up technique employed here that emphasises this similarity.
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Part II
Hierarchically Interacting Diffusions

We study a system of interacting diffusions

dxξ(t) =
∑

ζ∈Ξ

a(ξ, ζ) (xζ(t) − xξ(t)) dt +
√
g(xξ(t)) dWξ(t) (ξ ∈ Ξ),

indexed by the hierarchical group Ξ, as a genealogical two genotype model (where xξ(t)
denotes the frequency of, say, type A) with hierarchically determined degrees of relation-
ship between colonies.

In the case of short interaction range it is known that the system clusters, i.e. locally
one genotype dies out. We focus on the description of the different regimes of cluster
growth which is shown to depend on the interaction kernel a(·, ·) via its recurrent potential
kernel. One of these regimes will be further investigated by mean-field methods.

For general interaction range we shall also relate the behaviour of large finite systems,
indexed by finite subsets Ξn of Ξ, to that of the infinite one.

On the way we will establish relations between hitting times of random walks and
their potentials.

21



22 PART II, HIERARCHICALLY INTERACTING DIFFUSIONS

1 Introduction and Main Results

1.1 Survey

In this part we analyse the pattern of cluster formation in systems of interacting diffusions
and study the behaviour of large finite versus infinite systems of interacting diffusions.

Our main point is to cover the full range of clustering models in a systematic way.
So far the treatment of clustering phenomena has been focused on particular interaction
kernels (see Arratia (1982), Cox and Griffeath (1986) and Fleischmann and Greven (1994))
or the system has been studied after taking a parameter of the dynamics to a limit (see
Dawson and Greven (1993). In fact, we shall investigate the question whether the mean-
field analysis of Dawson, Greven and Vaillancourt (1995) indeed yields the same result as
when we take the objects describing the cluster formation for a given interacting system
and then letting the interaction parameter approach its limit.

At the same time we are able to treat, in a likewise systematic way, the question of how
the behaviours of finite and infinite systems are related for systems on the hierarchical
group for the whole class of models considered. For a treatment of the lattice case see
Cox and Greven (1990), and Cox, Greven and Shiga (1995).

1.2 Introduction

We consider a system X(t) = (xξ(t))ξ∈Ξ of linearly interacting diffusions on [0, 1]Ξ defined
as the solution of the following system of stochastic differential equations (SSDE)

dxξ(t) =
∑

ζ∈Ξ

a(ξ, ζ)(xζ(t) − xξ(t))dt+
√
g(xξ(t)) dWξ(t) (ξ ∈ Ξ), (1.1)

indexed by the countable hierarchical group Ξ, where (Wξ) are independent Brownian
motions, a(·, ·) is the kernel of a random walk on Ξ and the diffusion coefficient g is
assumed to fulfill

g : [0, 1] → [0,∞[ is Lipschitz-continuous (1.2)

g(x) = 0 iff x ∈ {0, 1}.

Existence and uniqueness of the strong solution of (1.1) is assured by Shiga and Shimizu
(1980), Theorem 3.2.

The hierarchical group Ξ is defined by

Ξ := {ξ = (ξm)m∈N : ξm ∈ {0, . . . , N − 1}, ξm 6= 0 only for finitely many m} (1.3)

with addition component wise modulo N (N = 2, 3 . . . is some fixed parameter) and
distance ‖ξ‖ := max{k : ξk 6= 0} ∨ 0. Of course Ξ carries the discrete topology, induced
by the metrics ‖ · ‖. For n ∈ N0 = N ∪ {0} we denote by Ξn the finite subgroup

Ξn := {ξ ∈ Ξ : ‖ξ‖ ≤ n}. (1.4)

We restrict ourselves to the case, where a(ξ, ζ) depends only on ‖ξ − ζ‖ and put for
k = ‖ξ − ζ‖

rk := a(ξ, ζ)Rk with Rk := #{ξ ∈ Ξ : ‖ξ‖ = k} = (N − 1 + 1I0(k))N
k−1. (1.5)
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This model has been suggested by Sawyer (1976) to describe the evolution of gene
frequencies. Think of Ξ as the site space, each site ξ containing a (large) colony of
individuals. Then xξ(t) represents the frequency of some fixed allele, say A, at site ξ and
time t. By resampling, the frequency fluctuates at random, modelled by g. Additionally,
the frequency may change by migration.

Here the spatial structure of the site space becomes important. The idea is that the
colonies are organised according to different degrees of relationship. N colonies form a
family, N families form a clan, N clans form a tribe, and so on. Thus ξ = (ξ1, ξ2, ξ3, . . .)
is the ξ1th member of the ξ2th family of the ξ3th clan etc. We measure the degree of
relationship between two colonies ξ and ζ by ‖ξ − ζ‖. If, for example ‖ξ − ζ‖ = 2, then
ξ and ζ are in the same clan, tribe etc. but in different families. The flow of migration
between two colonies shall depend only on their degree of relationship. The total flow of
migration from ξ to all relatives of degree k is rk. The flow spreads uniformly on the sites
of degree k relatives (k = 1, 2, . . .).

Here and in the following µ = Lµ[X(0)] is assumed to be in Mθ (for some θ ∈ [0, 1])
given by

Mθ = {µ : µ is a spatially ergodic probab. measure on Ξ with intensity θ = 〈µ, x0〉}.
(1.6)

Note that spatial homogeneity of the starting measure is preserved under the dynamics.
It is known that X(t) clusters if a(·, ·) is recurrent, i.e.

Lµ[X(t)]
t→∞
=⇒ θδ1 + (1 − θ)δ0, (1.7)

where δ0, δ1 denote the (unit) point masses on 0, 1 ∈ [0, 1]Ξ.
In the case a transient, opposed to (1.7), there is a family (νθ|θ ∈ [0, 1]) of invariant

(under the dynamics) ergodic measures with intensity θ = 〈νθ, x0〉 such that for µ ∈ Mθ

Lµ[X(t)]
t→∞
=⇒ νθ. (1.8)

(See Cox and Greven (1994a) Theorem 1 and 2)
Of special interest are the geometrical kernels ac, c > 1

N
with rk = ϑc · (Nc)−k

(ϑc = Nc−1
Nc

is the normalising constant). One can easily verify that ac is transient iff
c < 1 (see (2.31)).
Notation We denote by L the law of a random variable, by =⇒ weak convergence and
let 〈µ, f〉 =

∫
fdµ. Thus θ =

∫
x0νθ(dx).

1.3 Clustering in Infinite Systems

We are now led to the question of how fast the clusters grow in the case a recurrent. It has
already been shown in the theory of interacting particle systems that this depends on the
strength of interaction (see Bramson and Griffeath (1980), Cox and Griffeath (1986)). In
our situation it depends on whether c = 1 or c > 1. In the first case, the so-called diffusive
case, clusters grow at random speed. This has been studied in great detail by Fleischmann
and Greven (1994). However, we shall see that the diffusive case is not as singular as it
seems at first glance by being sandwiched between c < 1 and c > 1. Namely, and this
is our main point, it will be broadened to transition kernels such that k 7→ log(Nkrk) is
slowly varying in a sense that will be made precise. Here the random speed of growth
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splits up into three regimes. We shall investigate this more closely in our Theorem 1. In
contrast, in the case c > 1, clusters grow with a fixed deterministic speed and we shall
study fluctuations in our Theorem 2.

In order to fix the notion of growing clusters we work with two concepts described in
(i) and (ii) below.

(i) Scaled systems

In order to get a more detailed description of the clustering of (1.7) we want to compare
sites with a distance growing in time. For a systematic treatment, however, we will also
rescale the time by a monotone sequence (sn), sn ↑ ∞, called the time scale. Thus for
n ∈ N0 we consider sites of distance f(n) at time sn. The monotone function f : N0 →
N0, f(n) ↑ ∞ is called space scale. To keep time continuous we introduce the “inverse” of
(sn)

n(t) = sup{n ∈ N : sn ≤ t} ∨ 0. (1.9)

For f and (sn) fixed the rescaled system fX(t) is defined as follows.
Let the shift operators Sk : Ξ −→ Ξ, k = 0, 1, 2, . . ., be defined by

Sk((ξm)m∈N) = (ξm+k)m∈N (1.10)

and let S−1
k be a fixed right inverse. Now fX(t) = (fxξ(t))ξ∈Ξ is defined by

fxξ(t) = xζ(t) where ζ = S−1
f(n(t))ξ. (1.11)

(ii) Block averages

For n ∈ N let the nth block average be defined by

Θn : [0, 1]Ξ → [0, 1]

(xξ) 7→ N−n
∑

ξ∈Ξn

xξ. (1.12)

The block averages are to be thought of as a macroscopic variable determining the
behaviour of the system up to a certain degree. So as to fully explore this concept we
have introduced the time scale sn in (i).

In order to formulate our results we need some more ingredients

(i). Let (Yt)t≥0 be a standard Fisher-Wright diffusion on [0, 1], i.e. the solution of

dYt =
√
Yt(1 − Yt) dWt (1.13)

(Wt is a standard Brownian motion), and let Qt(·, ·) be its transition semigroup.
It is known that 0 and 1 are accessible boundary points for Yt (see e.g. Ethier and
Kurtz (1986), Prop. 10.2.8). Hence lim

t→∞
Pθ[Yt = 1] = 1 − lim

t→∞
Pθ[Yt = 0] = θ.

(ii). It turns out that there are two main regimes of clustering. For their classification
we will need the recurrent potential kernel of the random walk induced by a

A(ζ, ξ) =
∞∑

m=0

(
a(m)(ζ, ζ)− a(m)(ζ, ξ)

)
. (1.14)
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Furthermore let A(n) = sup
ξ∈Ξn

A(0, ξ) = A(0, ζ) for any ζ with ‖ζ‖ = n. As usual, a(m)

denotes the m-step transition probability induced by a. The existence of the recur-
rent potential kernel is assured e.g. by Kemeny, Snell and Knapp (1976), Corollary
9-29. Note that an irreducible recurrent random walk on an infinite denumerable
Abelian group is null recurrent. (For random walks on Zd the existence is due to
Spitzer (1964), P12.1 and P28.4.)

The kernel a is called critical (or critically recurrent) if it is recurrent and

log(k)
[
log(rkN

k) − log(rk+1N
k+1)

]
is bounded. (1.15)

E.g. the geometrical kernel a1 is critical. On the other hand, the recurrent kernels
ac with c > 1 are called strongly recurrent.

(iii). In the case a critical and for α ∈ [0, 1] let the α-space-scale be a function fα : N0 →
N0 (depending only on the potential kernel) that is chosen such that

α = lim
n→∞

A(fα(n))

A(n)
(1.16)

and let the time scale be sn = NnA(n).

Theorem 1 (Cluster formations in the case a critical)
Suppose that (1.15) and (1.16) hold. Then

a) Lµ
[
Θfα(n(t))(X(t))

] t→∞
=⇒ Lθ[Yα̂]

b) Lµ
[
fα(X(t))

] t→∞
=⇒ νθ(α̂) :=

∫
Qα̂(θ, dρ)πρ

where µ ∈ Mθ, α̂ := − logα and πρ is the product measure concentrated on {0, 1}Ξ with
intensity ρ = 〈πρ, x0〉.

Remarks

(i). Theorem 1 states that for fixed α there exists one possible limit field ν(α̂) inde-
pendent of the particular choice of the (critical) a. X converges towards ν(α̂) when
rescaled with fα and (sn). The asymptotic behaviour of fα thus measures the speed
at which clusters grow. There are mainly (i.e. with some additional monotonicity
conditions) three sizes of clusters

∗ small clusters when
fα(n)

n

n→∞−→ 0 for α < 1

∗ medium clusters when lim
n→∞

fα(n)

n
∈]0, 1[ for α ∈]0, 1[

∗ large clusters when
fα(n)

n

n→∞−→ 1 for α > 0

For instance these above cases can occur if we choose

∗ rk = ϑkN−k and fα(n) = nα

∗ rk = ϑN−k and fα(n) = αn

∗ rk = ϑk− log kN−k and fα(n) = n
(
1 + logα

2 logn

)

(ϑ some normalizing constants).
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(ii). We can choose f0 ≡ 0. Hence (1.7) is included in b), since ν(0̂) = ν(∞) = (1 −
θ)δ0 + θδ1.

(iii). Note that the statements of Theorem 1 do not depend on the choice of g. This is
also true for the Theorems 2,4 and 5. The asymptotic behaviour of X(t) as t → ∞
is determined by the interaction kernel rather than by the diffusion coefficient. For
a detailed discussion of this point see Cox, Fleischmann and Greven (1995).

Let us now turn to the case a strongly recurrent. Here the picture is by far not as
complete as in the case a critical. In fact, a statement such as Theorem 1 (b) cannot be
expected. This case is the analogue to the d = 1 case for finite variance interaction kernels
on Zd. Despite this we cannot expect an invariance principle such as Arratia’s (1982) for
the voter model on Z. In fact this greatly depends on the linear structure of Z and on the
comparably simple structure of the voter model. Conceptually Arratia’s work is based
on nearest neighbour interaction. Recently extensions have been made to Arratia’s result
which are concerned with stochastic partial differential equations models (Tribe (1993),
Section 7) or more general interaction kernels in the voter model (Cox and Durrett (1994),
Thm. 4). But these still rely on the linear structure. In order to circumvent this problem
we use the idea of re-normalisation via block averages (recall (1.12)) and establish that
the limiting density chain

(ZN,t
m ) = w − lim

n→∞
Θn−m(X(tsn)) (with m as time parameter)

exists. In fact, the distribution of the limiting chain can be determined. Namely the
moments can be expressed in terms of a coalescing system with motion given by weak
limits γ(t) of rescaled random walks on Ξ. This is done in Section 5.

In order to bring some more light into the structure of (ZN,t
m ) we then let N → ∞

to obtain even a Markov chain. To describe the transition probabilities of this chain we
need the following diffusion Xθ

t on [0, 1] given by Xθ
0 = θ and

dXθ
t =

√
2(c− 1)Xθ

t (1 −Xθ
t ) dWt + (θ −Xθ

t )dt. (1.17)

L
[
Xθ
t

]
converges weakly to the unique invariant law of (1.17) as t → ∞ which is known

to be the β-distribution

L
[
Xθ

∞
]

= B

(
1

c− 1
θ ,

1

c− 1
(1 − θ)

)
, (1.18)

(see e.g. Ethier and Kurtz (1986), Chapter 10, Lemma 2.1).

Assume ac is strongly recurrent (c > 1). Here again NnA(n) would give the right time

scale. But since A(n) can be computed to be κ(N) · cn with κ(N)(Nc)−1 N→∞−→ 1 we prefer
therefore to let

sn = (Nc)n+1. (1.19)
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Theorem 2 (Cluster formations in the case a strongly recurrent)
a) For any N and t > 0 there exists a non-negative martingale (ZN,t

m )m∈Z such that

Lµ
[
(Θn−m(X(tsn)))m∈Z

] n→∞
=⇒ Lθ

[
(ZN,t

m )m∈Z

]

where µ ∈ Mθ. This martingale has the following properties

b) Lθ[ZN,t
m ]

m→∞
=⇒ θδ1 + (1 − θ)δ0

Lθ[ZN,t
m ]

m→−∞
=⇒ δθ

c) (Zt
m)m∈Z := w − lim

N→∞

[
(ZN,t

m )m∈Z

]
exists and is Markov.

The transition mechanism of (Zt
m) is given by

L
[
Zt
m|Zt

m−1 = ρ
]

=





δρ m < 0

L[Xρ
t ] m = 0

L[Xρ
∞] m > 0

(1.20)

Remarks

(i). At first glance the appearance of Xθ
t in Theorem 2 might be surprising. The key

for understanding its meaning is the duality (Lemma 5.5) of Xθ
t to the so-called

death-escape process. This is a modification of the pure death process (Definition
3.1) which is known to be dual to the Fisher-Wright diffusion with no drift.

(ii). (ZN,t
m ) is not Markov for fixed N since the influence of Θn−m+2 on Θn−m given

Θn−m+1 does not vanish as n → ∞. However, computer simulations show that
(ZN,t

m ) is even for small N not “too far off” from the limiting structure N → ∞.
(For more information on (ZN,t

m ) see Section 5.2, particularly (5.13) and (5.18).)

(iii). Dawson and Greven (1993b) obtain their “interaction chain” by letting N → ∞
for fixed n. A simple computation shows that letting n → ∞ for that chain and
rescaling time properly yields the same chain (Zt

m). Thus the order of the limits
can be interchanged. To see that the stable laws there approximate our L[Xθ

∞] one
needs Baillon et al. (1995), Theorem 1(a).

Theorem 2 asserts in particular that clusters grow all at “maximum speed”. Note the
difference between large clusters in the case a critically recurrent and clusters in the case
a strongly recurrent. In the former case fα(n) − n

n→∞−→ −∞ for α < 1, thus part b) of
Theorem 2 would not hold.

Occupation times

We could take another approach to describe clustering phenomena, this is the investigation
of occupation times. For t ≥ 0 and ξ ∈ Ξ we define the occupation time at ξ up to time t
by

Tt(ξ) =

∫ t

0

xξ(s) ds. (1.21)

We may investigate the asymptotic behaviour of 1
t
Tt(ξ). Several questions have been

dealt with in the literature such as: Does the limit exist? Is it non-degenerate? Does a
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central limit theorem hold? Can the space be properly re-scaled such that we obtain a
non-trivial limiting field? These questions have been studied for the voter model in Z

d

by Cox and Griffeath (1983), for critical branching Brownian motion on Rd by Cox and
Griffeath (1985) and for super Brownian motion on Rd by Iscoe (1986). The answers to
these questions are highly dimension dependent. In all cases it turns out that dimension
d = 2 “is closer to” the cases d ≥ 3 than to the case d = 1. We do not stress the point
of occupation times in this work but only give a proposition that underlines this latter
statement.

Proposition 1 Let µ ∈ Mθ and θ ∈ [0, 1].

(a). If the interaction kernel is strongly recurrent, i.e. ac with c > 1, then

Varµ[t−1Tt(ξ)]
t→∞−→ 2θ(1 − θ)(1 − 2− log c/ log cN). (1.22)

(b). If the interaction kernel is critically recurrent then

Varµ[t−1Tt(ξ)]
t→∞−→ 0. (1.23)

1.4 Finite Systems versus Infinite Systems

Since all computers known to the author so far (July 13, 2009) are of finite size, simulations
have to be restricted to finite versions of the model. On the other hand, finite systems
can be considered in their own right. They model a finite nature and the infinite system
can be regarded as an idealization for analytical convenience only. So the questions arise:
How well do finite systems approximate the infinite system (and vice versa)? How long
can a finite system be observed until it “feels” its finiteness and which effects of finiteness
do occur?

A number of approaches have been used in the literature for various models (see e.g.
Durrett and Schonmann (1988) or Dawson and Gärtner (1988)). We will proceed in the
fashion of the finite systems scheme suggested by Cox and Greven (1990) and (1994b): The
system is dominated by the macroscopic variable of the block averages. Roughly speaking
it relaxes to an “equilibrium state” with intensity θ, given that the block average is θ.
This relaxation takes place faster than the fluctuation of the block averages. In the case
a transient these equilibria are the invariant measures νθ while in the case a critical we
have to take the νθ(α̂) (introduced in Theorem 1) instead. In the case a strongly recurrent
however the finite systems scheme does not work. This is connected with the fact that
the intensity, that is the block averages of components, alone does not characterize the
system above any more. Hence the (macroscopic) associated process (Z̃N,t

m ) is not Markov.
We first define the finite system Xn(t) and (in case of criticality) the scaled finite

system fXn(t) as the solution of the restricted SSDE

dxn,ξ(t) =

(
∑

ζ∈Ξn

an(ξ, ζ)(xn,ζ(t) − xn,ξ(t))

)
dt+

√
g(xn,ξ(t)) dWξ(t) (ξ ∈ Ξn), (1.24)

where
an(ξ, ζ) =

∑

ζ′∈Ξ
ζ′≡ζ(mod Ξn)

a(ξ, ζ ′) (1.25)
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and
fxn,ξ(t) = xζ(tsn) where ζ = S−1

f(n)ξ (1.26)

Lµ[Xn(0)] = µn := µ
∣∣∣
Ξn

. (1.27)

Note that the space scale here does not depend on t as before, but on the finite system
size n.

By speeding up time by the factor sn we expect the intensity Θn(Xn(tsn)) to start

to fluctuate and to tend to some nontrivial process Ỹt. We even hope that Xn(t) (resp.
fαXn(t)) “relaxes” fast enough, so its limiting distribution given Ỹt = ρ is νρ (resp. νρ(α̂)).
In fact, an integral statement of this heuristics holds in the cases a transient or critical,
where Ỹt turns out to be a Fisher-Wright diffusion running at double speed.

In the case a transient a prominent role is played by the Green function

G(ξ, ζ) =
∞∑

m=0

a(m)(ξ, ζ). (1.28)

Its role is analogous to that of the recurrent potential kernel for the case a critically
recurrent.

Assume a to be transient, g(x) = x(1 − x) and let (νθ|θ ∈ [0, 1]) be the family of
invariant measures. Let G = G(0, 0) and

V := E0

[
exp

(
−1

2

∫ ∞

0

1I{Xs=0}ds

)]
(1.29)

where (Xs)s≥0 is the continuous time random walk associated with a(·, ·) (see Subsection
2.1).

Let the time scale be

sn =
G

1 − V
Nn. (1.30)

To put the latter discussion in perspective we give the following result for the transient
case.

Theorem 3 (Finite system, Case a transient)
Under these assumptions for t > 0 the following holds

a) Lµ [Θn(Xn(tsn))]
n→∞
=⇒ Lθ[Y2t]

b) Lµ [Xn(tsn)]
n→∞
=⇒

∫
Q2t(θ, dρ)νρ

where µ ∈ Mθ.

Remarks

(i). The condition on g can be dropped but then Ỹt (the limiting process of Θn(Xn(tsn)))
does not have such a simple form. We do not stress this point here. In the lattice
case a stronger version of Theorem 3 can be found in Cox, Greven and Shiga (1994),
Theorem 2.
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(ii). In the voter model a similar statement holds, when sn is replaced by GNn. For the
lattice case of this see Cox (1989), Theorem 2 and 3. For the case a critical see Cox
and Greven (1991), Theorem 1.

Assume now a to be critical. Again things happen to depend only on the recurrent
potential kernel.

Theorem 4 (Finite system, Case a critical)
Let α, fα and sn = NnA(n) be as in Theorem 1. Then for t > 0 the following holds

a) Lµ
[
Θfα(n)(Xn(t))

] n→∞
=⇒ Lθ[Y2t+α̂]

b) Lµ
[
fαXn(t · sn)

] n→∞
=⇒

∫
Q2t(θ, dρ)νρ(α̂) =

∫
Q2t+α̂(θ, dρ)πρ

where µ ∈ Mθ.

Let ac be strongly recurrent. Considerably less can be said in this situation since
Theorem 2 is weaker than Theorem 1. Again we use the slightly modified time scale

sn = (Nc)n+1.

Theorem 5 (Finite system, Case a strongly recurrent)

a) For any N and t > 0 there is a nontrivial martingale (Z̃N,t
m )m=0,1,... such that

Lµ [(Θn−m(Xn(tsn)))m=0,1,...]
n→∞
=⇒ Lθ

[
(Z̃N,t

m )m=0,1,...

]

where µ ∈ Mθ. This martingale has the following properties

b) Lθ
[
Z̃N,t
m

]
m→∞
=⇒ θδ1 + (1 − θ)δ0

c) (Z̃t
m)m=0,1,... := w − lim

N→∞

[
(Z̃N,t

m )m=0,1,...

]
exists and is Markov

The transition mechanism of (Z̃t
m) is given by

L
[
Z̃t
m|Z̃t

m−1 = ρ
]

=

{
L[Y ρ

2t] m = 0

L[Xρ
∞] m > 0

(1.31)

Remark
Compare (Z̃t

m) with (Zt
m). The transition mechanisms coincide except for m = 0. Here

the difference between the infinite and the finite system becomes clear. In the infinite
system there are blocks at level m = −1 with deterministic intensity θ that put a drift on
the fluctuation of (Zt

0)t≥0 while in the finite system these bigger blocks do not exist and
thus the drift is missing.

1.5 Outline

The rest of the part is organised as follows: Since the system considered is for g(x) =
x(1−x) in duality with delayed coalescing random walks we develop in Section 2 some first
hitting time asymptotics for random walks with scaled initial points on a rather general
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class of abelian groups by using Green function and recurrent potential properties. These
properties will be used in the investigation of systems of coalescing random walks in
Section 3. In Section 4 we do moment calculations in our original problem via a duality
relation in the special case g(x) = x(1 − x). Based on this, generalizations will be
obtained by coupling and comparison arguments. This will suffice to give the proofs of
Theorems 1,3,4. Since Theorem 2 and 5 are somewhat different, their proofs are deferred
to Section 5.

2 Random Walk Estimates

The goal of this section is to derive results on the asymptotic behaviour of hitting times
of 0 for sequences of initial points which typically move away from 0. The key result is
Proposition 2.7 in Subsection 2.4

2.1 Preparations

First we develop some more general results on random walks on a countably infinite
abelian group (Λ,+) and then give examples in Zd and Ξ.

Let (Gn) be a sequence of subgroups of Λ. Assume that we can choose for any n ∈ N

a complete system Λn ⊂ Λ of representatives for the quotient group Λ/Gn such that Λ1 ⊂
Λ2 ⊂ . . . and lim

n→∞
Λn = Λ. E.g. think of Λ = Zd, Gn = nZd and Λn =

(
] − n

2
, n

2
] ∩ Z

)d
.

Further let p(·, ·) be the transition kernel of an irreducible random walk on Λ. Let pn(·, ·)
be the kernel of the induced random walk on Λn, i.e. pn(x, y) =

∑
g∈Gn

p(x, y + g). By
(X(t))t≥0 resp. (Xn(t))t≥0 denote the induced continuous time random walks, i.e. with
transition probabilities

p(t; x, y) := P(X(t) = y|X(0) = x) = e−t
∞∑

k=0

tk

k!
p(k)(x, y) (2.1)

pn(t; x, y) := P(Xn(t) = y|X(0) = x) = e−t
∞∑

k=0

tk

k!
p(k)
n (x, y) (2.2)

= e−t
∞∑

k=0

tk

k!

∑

g∈Gn

p(k)(x, y + g).

The key role is played by the recurrent potential kernel (recall (1.14))

A(x, y) =

∞∑

m=0

(
p(m)(x, x) − p(m)(x, y)

)
(2.3)

which is well defined for either recurrent or transient random walk. In the latter case we
have in addition

A(x, y) = G(x, x) −G(x, y) = G−G(x, y) (2.4)

where G(x, y) =

∞∑

m=0

p(m)(x, y) and G = G(0, 0). Further let

A(n) = sup
x∈Λn

A(0, x) (2.5)
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and for later technical convenience let (an) be a sequence such that

lim
n→∞

an
A(n)

= 1. (2.6)

The purpose of this section is the investigation of the first hitting times of the origin

τ = inf{t ≥ 0|X(t) = 0} (2.7)

τn = inf{t ≥ 0|Xn(t) = 0}. (2.8)

Since the random walks will typically be started from initial points (xn) far away we shall
consider τ and τn but scaled with sn. Here

sn = an|Λn|. (2.9)

We have to make some more assumptions on the random walk.

Definition 2.1 (Diffusive Random Walk)
The random walk X(t) (and its kernel p(·, ·)) is called diffusive if the following assump-
tions hold

∃K <∞ : sup
m≥0,n≥0
x∈Λn

(
p(m)
n (0, x) − p(m)(0, x)

)
<

K

|Λn|
(2.10)

sup
x∈Λn

∣∣|Λn| · p([tsn])
n (0, x) − 1

∣∣ n→∞−→ 0 ∀ t > 0 (2.11)

There exists a sequence (cn) ≪ (an) such that

|Λn| · sup
m≥cn|Λn|t

p(m)(0, 0)
n→∞−→ 0 ∀ t > 0 (2.12)

1

an

cn|Λn|∑

m=0

p(m)(0, 0)
n→∞−→ 1 (2.13)

1

an
sup
x∈Λn

∣∣∣∣∣∣

∞∑

m=cn|Λn|
[p(m)(0, 0) − p(m)(0, x)]

∣∣∣∣∣∣
n→∞−→ 0 (2.14)

Here we used the notation (cn) ≪ (an) for
cn
an

n→∞−→ 0.

2.2 Scaled Limits of Hitting Times

Assume X(t) to be diffusive (either transient or recurrent) and let (xn)n∈N a sequence
with xn ∈ Λn, n ∈ N be such that

α := lim
n→∞

A(0, xn)

A(n)
(2.15)

exists. Denote by E(µ) the exponential distribution with mean µ. By Lx [Px, Ex] we
denote the law (probability, expectation) with respect to the initial point x. By δ∞ we
denote the unit mass at +∞ ∈ R ∪ {−∞,+∞}, i.e. P[X > x] = 1 ∀x ∈ R if L[X] = δ∞.
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Proposition 2.2 (Diffusive Random Walk on Λ)

(i) Lxn

[
τ

sn

]
n→∞
=⇒ (1 − α)δ0 + αδ∞

(ii) Lxn

[
τn
sn

]
n→∞
=⇒ (1 − α)δ0 + α · E(1)

Proof It is enough to show the convergence of the Laplace transforms Tn(λ) = Exn[e−λτ/sn ]
and T ′

n(λ) = Exn [e−λτn/sn]. We will show

Tn(λ)
n→∞−→ 1 − α

T ′
n(λ)

n→∞−→ 1 − α+
α

1 + λ
.

By a simple first hitting time decomposition we obtain

T ′
n(λ) =

∞∑

m=0

p(m)
n (0, xn)e

−λm/sn

∞∑

m=0

p(m)
n (0, 0)e−λm/sn

. (2.16)

We multiply by
1

an
and split the dividend in three parts

1

an

∞∑

m=0

[
p(m)
n (0, xn) − p(m)(0, xn)

]
e−λm/sn +

1

an

∞∑

m=0

[
p(m)(0, xn) − p(m)(0, 0)

]
e−λm/sn

+
1

an

∞∑

m=0

p(m)(0, 0)e−λm/sn (2.17)

The three sums are now estimated separately

(i)

lim
n→∞

sup
x∈Λn

∣∣∣∣∣
1

an

∞∑

m=0

[
p(m)
n (0, x) − p(m)(0, x)

]
e−λm/sn − 1

λ

∣∣∣∣∣ =

= lim
n→∞

sup
x∈Λn

∣∣∣∣|Λn|
∫ ∞

0

[
p([tsn])
n (0, x) − p([tsn])(0, x)

]
e−λtdt − 1

λ

∣∣∣∣ = 0

since the integrand is bounded by K
|Λn|e

−λt and is ∼ 1
|Λn|e

−λt (by (2.11) and (2.12)).

(ii)

lim
n→∞

1

an

∞∑

m=0

[
p(m)(0, 0) − p(m)(0, xn)

]
e−λm/sn

(2.14)
= lim

n→∞
1

an

cn|Λn|∑

m=0

[
p(m)(0, 0) − p(m)(0, xn)

]

(2.14)
= lim

n→∞
1

an

∞∑

m=0

[
p(m)(0, 0) − p(m)(0, xn)

]
= α
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(iii)

lim
n→∞

1

an

∞∑

m=0

p(m)(0, 0)e−λm/sn
(2.12)

= lim
n→∞

1

an

cn|Λn|∑

m=0

p(m)(0, 0)e−λm/sn

(2.13)
= 1

Putting the pieces together we obtain the convergence of the dividend to 1
λ
− α + 1. A

similar expansion yields that the divisor converges to 1
λ

+ 1. So we are done with the
finite case. For the infinite case note that the first term of the expansion vanishes. So the
convergence of the Laplace transform is obtained the same way. 2

Now look deeper into the case X(t) transient. Then an can be chosen to be ≡ G and
(2.13) and (2.14) trivially hold with any sequence cn >> |Λn|−1.

So assume X(t) to be transient and diffusive. Let

sn = G|Λn|. (2.18)

Assume that
γ = lim

n→∞
G(0, xn) (2.19)

exists.

Corollary 2.3 (Transient Diffusive Random Walk on Λ)
Under these assumptions

(i) Lxn

[
τ

sn

]
n→∞
=⇒ γ

G
δ0 +

(
1 − γ

G

)
δ∞

(ii) Lxn

[
τn
sn

]
n→∞
=⇒ γ

G
δ0 +

(
1 − γ

G

)
E(1)

2.3 Application to ZZ
d

As a first example we give a well known result on symmetric Bernoulli random walk on
Zd.

Let Λn =] − n
2
, n

2
]d ∩ Z

d, (bn) some real sequence n
2
> bn ↑ ∞ and

sn =

{
2
π
n2 log n if d = 2
Gnd if d ≥ 3

(2.20)

Proposition 2.4 (a). If d ≥ 3, then uniformly in all sequences (xn)n∈N with xn ∈
Λn, n ∈ N and such that |xn| > bn

Pxn(τn/sn > t)
n→∞−→ e−t

(b). If d = 2, let α ∈ [0, 1] and assume |xn| ∼ nα. Then

Pxn(τn/sn > t)
n→∞−→ αe−t

Pxn(τ/sn > t)
n→∞−→ α
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Remarks

1. Part (a) is Theorem 4 of Cox (1989) while (b) is a combination of this and a result
of Erdös and Taylor (1960) (equation (2.16)).

2. The Bernoulli random walk in Z
1 is not diffusive. Indeed A(0, x) = |x| (see Spitzer

(1964), E29.1) is not slowly varying.

Proof Since |Λn| = nd we can choose an = 2
π

logn if d = 2 (see P12.3 of Spitzer (1964)).
It remains to verify diffusiveness.

Since there exists a K <∞ such that

p(m)(0, x) ≤ Km− d
2 e−

d|x|2
2m (2.21)

(see e.g. P7.10, Spitzer (1964)), one easily derives (2.10). (2.11) is implied by Proposition
2.8 of Cox (1989), which is obtained by a Bhattacharya-Rao expansion. By (2.21)

mp(m)(0, x) ≤ Km1− d
2
m→∞−→ 0

if d ≥ 3. This implies (2.12).
Assume now d = 2. Let cn =

√
logn . (2.12) follows from (2.21). Since p(m)(0, 0) ∼ 1

π
1
m

we have
n2

√
logn∑

m=0

p(m)(0, 0) ∼ 1

π
log
(
n2
√

log n
)
∼ 2

π
log n, (2.22)

so (2.13) is valid. Again by (2.21)

∣∣p(m)(0, 0) − p(m)(0, x)
∣∣ ≤ K

1

m

(
1 − e−

|x|2
m

)
∀x,m, (2.23)

so ∞∑

m=M

∣∣p(m)(0, 0) − p(m)(0, x)
∣∣ ≤ 2K|x|2

M
. (2.24)

Putting M = n2
√

logn yields (2.14). 2

2.4 Application to Ξ

In order to apply Proposition 2.2 and Corollary 2.3 to random walks on Ξ we have to
calculate the m-step transition probabilities p(m). This is a relatively simple task due
to the special geometry of Ξ. We then compute the potential kernels and verify the
diffusiveness assumptions for the cases X(t) transient and critical separately.

Computation of the transition probabilities

Introduce
Ξ̂ := {(ak)k∈N : ak ∈ {0, . . . , N − 1}}

with addition componentwise modulo N and the scalar product

〈a, ξ〉 = exp

(
2πi

N

∞∑

k=1

akξk

)
.
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Ξ̂ is the character group of Ξ. Now some Fourier transformations yield the desired tran-
sition probabilities (see Fleischmann and Greven (1994), Section 2a).

For k = 1, 2, . . . let fk = r0 + . . . + rk−1 −
1

N − 1
rk. (Recall from (1.5) that a(ξ, ζ) =

rk/Rk for ‖ζ − ξ‖ = k.) Then

p(m)(0, ξ) = (N − 1)
∑

k>‖ξ‖
N−k(fk)

m + (1I{0}(ξ) − 1)N−‖ξ‖(f‖ξ‖)
m (2.25)

p(t; 0, ξ) = (N − 1)
∑

k>‖ξ‖
N−ke−t(1 − fk) + (1I{0}(ξ) − 1)N−‖ξ‖e−t(1 − f‖ξ‖) (2.26)

Write also p(m)(n) for p(m)(0, ξ) with ‖ξ‖ = n. By restricting the random walk to Λn := Ξn
(note |Ξn| = Nn) the rk transform to

rn,k =





rk

(
1 −

∞∑
l=n+1

rl

)−1

, k ≤ n

0 , else

(2.27)

Hence we put fn,k = rn,0 + . . .+ rn,k−1 −
1

N − 1
rn,k to obtain from (2.25) and (2.26) the

transition probabilities in the finite setting.

p(m)
n (0, ξ) = (N − 1)

n∑

k=‖ξ‖+1

N−k(fn,k)
m (2.28)

+(1I{0}(ξ) − 1)N−‖ξ‖(fn,‖ξ‖)
m +N−n

pn(t; 0, ξ) = (N − 1)
n∑

k=‖ξ‖+1

N−k exp {−t(1 − fn,k)} (2.29)

+(1I{0}(ξ) − 1)N−‖ξ‖ exp
{
−t(1 − fn,‖ξ‖)

}
+N−n.

Note that (2.10) is always valid by symmetry.

Case X(t) transient

Now look into the case X(t) transient in detail.

Lemma 2.5 (Transient random walk on Ξ)
A transient random walk on Ξ is diffusive in the sense of Definition 2.1.

Proof G can be explicitly expressed in terms of the fk. By (2.25) G equals

G = (N − 1)

∞∑

k=1

N−k

1 − fk
.

By transience G <∞ and hence

lim inf
n→∞

Nn
∞∑

k=n

rk = ∞. (2.30)



2. RANDOM WALK ESTIMATES 37

In particular let for c > 1/N be Gc(·, ·) the Green function associated with the geo-
metrical kernel ac. Let Gc = Gc(0, 0). Then

Gc =
Nc(N − 1)2

N2c− 1

∞∑

k=1

ck. (2.31)

Thus Gc <∞ iff c < 1. In this case

Gc =
Nc2(N − 1)2

(1 − c)(N2c− 1)
. (2.32)

Let Tn denote the first exit time of Ξn

Tn := inf {t ≥ 0 : X(t) ∈ Ξ \ Ξn} . (2.33)

Lξ[Tn] coincide for all ξ ∈ Ξn. Hence by the Markov property Lξ[Tn] = E(µ) for some
µ ≥ 0 (recall E(µ) is exponential with mean µ). Note that µ does not change if we replace
rn+1 by r′n+1 =

∑∞
k=n+1 rk and rk by 0 for k > n+1. Denote the corresponding transition

probabilities by p′. Then by (2.26) for t→ 0

∑

ζ∈Ξ\Ξn

p(t, 0, ζ) =
∑

ζ∈Ξn+1\Ξn

p′(t, 0, ζ) (2.34)

=
N − 1

N

(
1 − exp

{
−t N

N−1
r′n+1

})
= tr′n+1 + o(t).

Thus µ = r′n+1 and

Lξ[Tn] = E((

∞∑

k=n+1

rk)
−1) if ξ ∈ Ξn.

So (2.11) is true since by symmetry and by (2.30)

|Nnpn(tN
n, 0, ξ) − 1| ≤ Nn

n∑

l=1

P0(Tl ≥ tNn)N−l (2.35)

≤
n∑

l=0

Nn−l exp

(
−tNn

∞∑

k=l+1

rk

)
n→∞−→ 0.

Also (2.12) holds by (2.30) and (2.26). 2

Case X(t) critical

Recall that a recurrent random walk on Ξ is called critical if

log k
[
log(Nkrk) − log(Nk+1rk+1)

]
is bounded. (2.36)

This implies

∃ε > 0 : ε−1 >
Nkrk
N lrl

> ε ∀l ∀k ∈]l − log l, l + log l[. (2.37)
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Lemma 2.6 (Critical random walk on Ξ)
A critical random walk on Ξ is diffusive in the sense of Definition 2.1 and (cn) can be
chosen as

cn = 2
N − 1

N + 1

logn

Nnrn
. (2.38)

Proof Because of (2.37)

∞∑

k=n

rk =

∞∑

k=n

(Nkrk)N
−k ∼ N

N − 1
rn (2.39)

Thus (an) can be chosen as (recall (2.5) and (2.6))

an =
(N − 1)2

N + 1

n∑

k=1

1

Nkrk
, (2.40)

since by (2.25)

A(n) = (N − 1)

n∑

k=1

N−k

∞∑
j=k

rj + 1
N−1

rk

+
N−n

∞∑
j=n

rj + 1
N−1

rn

(2.41)

∼ (N − 1)
n∑

k=1

N−k

N+1
N−1

rk
+

N−n

N+1
N−1

rn

=
(N − 1)2

N + 1

n∑

k=1

1

Nkrk
+
N − 1

N + 1

1

Nnrn
∼ an.

Note that in particular
A(n + 1)

A(n)

n→∞−→ 1. (2.42)

Obviously (cn) ≪ (an). By (2.25)

1

an

∞∑

m=[cnNn]

[
p(m)(0) − p(m)(n)

]
=
N − 1

an

n∑

k=1

N−k f
[cnNn]
k

1 − fk
− 1

an
N−n f

[cnNn]
n

1 − fn
. (2.43)

Since

1 − fk ∼
N + 1

N − 1
rk (2.44)

we have ∞∑

k=1

1

ak

N−k

1 − fk
f ckN

k

k <∞.

Since by recurrence an ↑ ∞, applying Kronecker’s lemma to (2.43) yields (2.14).
Now by (2.25)

Nnp([cnNn])(0, 0) = (N − 1)
∞∑

k=1

Nn−kf [cnNn]
k (2.45)

∼ (N − 1)
∞∑

k=1

Nn−k exp

(
−2

Nkrk
Nnrn

log(n)Nn−k
)
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Split up the sum in three parts

n−logn∑

k=1

+

n+logn∑

k=n−logn

+

∞∑

k=n+logn

and observe that the summand obtains a maximum of value ≤ 2
ε logn

at k0 = n +
log(2ε)+log logn

logN
and is monotone for k < k0. Thus it is easily seen that (2.45) vanishes

as n→ ∞, so (2.12) holds. Proving (2.13) is almost the same. First note by (2.25)

1

an

[cnNn]∑

m=0

p(m)(0, 0) =
N − 1

an

∞∑

k=1

N−k 1 − f
[cnNn]
k

1 − fk

∼ (N − 1)2

an(N + 1)

∞∑

k=1

1

Nkrk

[
1 − exp

(
−2 log n

rk
rn

)]
.

Now

lim
n→∞

(N − 1)2

an(N + 1)

n−logn∑

k=1

1

Nkrk

[
1 − exp

(
−2 logn

rk
rn

)]

= lim
n→∞

(N − 1)2

an(N + 1)

n−logn∑

k=1

1

Nkrk
= 1

while
n+logn∑
n−logn

and
∞∑

n+logn

are shown to tend to 0 similarly as above. Finally (2.11) is obtained

the same way as in the case X(t) transient.
2

Key result on hitting times

Up to now we have proved the following

Proposition 2.7 (Diffusive random walks on Ξ)
Let X(t) be a random walk on Ξ and Xn(t) its restriction to Ξn.

(a). If X(t) is transient and sn = GNn then

Pξn(τn > tsn)
n→∞−→ e−t (2.46)

uniformly in all sequences (ξn)n∈N with ξn ∈ Ξn, n ∈ N, of starting points such that
‖ξn‖ ≥ bn for an arbitrary fixed sequence bn ↑ ∞.

(b). If X(t) is critical, sn = anN
n, α ∈ [0, 1] fixed and (ξn)n∈N a sequence with ξn ∈

Ξn, n ∈ N, such that
A(0, ξn)

A(n)

n→∞−→ α, then

Pξn

[
τ

sn
> t

]
n→∞−→ α (2.47)

Pξn

[
τn
sn

> t

]
n→∞−→ αe−t (2.48)

2
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Recall n(t) from (1.9).

Corollary 2.8 (Continuous time)
In the critical case the following continuous time version of (2.47) holds

Pξn(t) [τ > t]
t→∞−→ α.

Proof By (2.42)
sn
sn+1

is bounded and bounded away from 0 for n large enough. Thus

(2.47) yields the assertion. 2

3 Coalescing Random Walks

We introduce the notion of delayed coalescing random walks and instantaneously coalesc-
ing random walks and then give asymptotics for the number of surviving particles when
scaling space and time properly. The main results are Propositions 3.2 and 3.4.

3.1 Preparations

Start with a system X(t) = (X(i, t))i=1,...,m of independent copies of a random walk X(t)
on Ξ (resp. Xn(i, t) on Ξn) starting at some initial points ξ(i). Now think of X(t) as m
particles moving on Ξ and let any two particles coalesce if they meet each other, i.e. one of
the two particles dies and the other goes on moving. Call this new process η̃(t) the system
of instantaneously coalescing random walks. Finally change the coalescence mechanism
by not letting coalescence occur instantaneously but at a constant rate b > 0. This is a
pair of particles coalesces after the particles have spent together an exponential waiting
time with mean 1

b
. Call this new process a system of delayed coalescing random walks

(with delay 1
b
) and denote it by η(t). We are interested in η(t) because of the mentioned

duality relation. Since η̃(t) is easier to handle we first investigate this and then compare
η̃(t) with η(t). By Xn, ηn(t), η̃n(t) etc we denote the corresponding objects on Ξn.

By forgetting the ordering of the particles we can regard η(t) as a process on

Φ :=

{
ϕ = (ϕξ) ∈ N

Ξ
0 : #ϕ :=

∑

ξ

ϕξ <∞
}

(3.1)

where ηξ(t) is the number of particles at site ξ. Φ herits the Tychonov topology from
(N0)

Ξ. Note that η(t) preserves Φm := {ϕ ∈ Φ : #ϕ ≤ m}. For η(0) ∈ Φm η(t) is the
Markov process on Φm with generator Gm defined for f ∈ Cb(Φm) by

Gmf(ϕ) =
∑

ξ,ζ∈Ξ

ϕξ · a(ξ, ζ)[f(ϕ− 1Iξ + 1Iζ) − f(ϕ)] +
∑

ξ∈Ξ

b

(
ϕξ
2

)
[f(ϕ− 1Iξ) − f(ϕ)]. (3.2)

(We use the convention
(
n
k

)
= 0 for n < k.)

On the other hand η̃(t) runs on

Φ̃ := {ϕ ∈ Φ : ϕξ ∈ {0, 1}∀ ξ}. (3.3)

η̃(t) preserves Φ̃m := Φ̃ ∩ Φm and on this has generator Hm defined for f ∈ Cb(Φ̃m) by

Hmf(ϕ) =
∑

ξ,ζ∈Ξ

ϕξ · a(ξ, ζ)[f((ϕ− 1Iξ + 1Iζ) ∧ 1) − f(ϕ)]. (3.4)
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3.2 Scaling properties of η̃(t) on Ξ

We first look into the case X(t) critical and then consider the case X(t) transient. Hence
assume now a(·, ·) to be critical.

We fix m ∈ N and start η̃(t) with particles at sites ξn,1, . . . , ξn,m, i.e. in

ϕn := 1Iξn,1
+ . . .+ 1Iξn,m

(3.5)

such that (recall A(n) from 2.6 and 2.41)

A(ξn,i , ξn,j)

A(n)
n→∞−→ α ∀ i 6= j. (3.6)

In order to formulate the main result of this subsection we shall need

Definition 3.1 (Pure Death Process)
With (Dt)t≥0 we denote the nonlinear pure death process on N that jumps from m

to m− 1 at rate
(
m
2

)
. By

qt(m; k) = Pm(Dt = k) (3.7)

we denote its transition probabilities.

Note that qt(m;m) = e−(m
2 )t and recall α̂ = − logα.

Proposition 3.2 (Scaling Limit, Infinite Case)

Pϕn [#η̃(sn) = k]
n→∞−→ qα̂(m; k). (3.8)

We introduce the following notations

τ(i, j) := inf{t ≥ 0 : X(i, t) = X(j, t)}
τ := min

i6=j
τ(i, j). (3.9)

In view of Corollary 2.8 is suffices to let t→ ∞ along the fixed sequence tn = sn. Our
main goal for proving Proposition 3.2 is then to establish that the

(
m
2

)
pairs of particles

happen to coalesce asymptotically independently in the infinite case and the “meeting
probability” is given by our quantity α. Namely we show

Lemma 3.3
Pϕn [τ ≤ sn]

n→∞−→ 1 − α(m
2 ). (3.10)

Following the lines of the proof of Theorem 5 of Cox and Griffeath (1986) an induction
argument then proves the proposition. We will not repeat the latter argument here.

Proof (of Lemma 3.3)

We first rewrite the relation (3.10) in a more tractable form using Proposition 2.7. Namely
(recall an and rn from (1.5) and (2.6))

Pϕn
[
τ ≤ 1

rn

]
n→∞−→ 1 − α(m

2 ). (3.11)
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To see this equivalence we argue as follows. Note that sn in Proposition 2.7 can be

replaced by
1

rn
since we can choose (n′) : sn′ ≤ 1

rn
and n−n′ = o(log n), so (2.36) implies

an′

an

n→∞−→ 1. Thus for γ ∈ [α, 1] Proposition 2.7 asserts

Pξn [τ > t(γ, n)]
n→∞−→ α

γ
(3.12)

where we put t(γ, n) :=
1

rfγ(n)

. W.l.o.g. we assume f1(n) = n.

So we concentrate on showing (3.11). Again by (2.36) for any γ ∈ [α, 1] there exist
sequences d(γ, n), e(γ, n) such that

lim
n→∞

fγ(n) − d(γ, n) = lim
n→∞

e(γ, n) − fγ(n) = ∞
and

lim
n→∞

A(d(γ, n))

A(n)
= lim

n→∞
A(e(γ, n))

A(n)
= γ.

These can be assumed to be increasing in γ.
Let

Ξ(γ, n) := {ξ ∈ Ξ : ‖ξ‖ ∈ [d(γ, n), e(γ, n)]}.
Note that Proposition 2.7 is valid uniformly in all sequences (ξn)n∈N with ξn ∈ Ξ(α, n).

Now
Pξn [X(t(γ, n)) ∈ Ξ(γ, n)]

n→∞−→ 1 (3.13)

since

Pξn[‖X(t(γ, n))‖ ≥ e(γ, n)] ≤ Pξn [Te(γ,n) ≤ t(γ, n)] (3.14)

= exp


−t(γ, n)

∑

k≥eγ(n)

rk


 n→∞−→ 0

by (2.39). The opposite direction works similarly.
Denote by ε(n) any quantity tending to 0 as n → ∞. We shall make use of the

following auxiliary equations
∫ 1

α

Pϕn [τ = τ(1, 2) ∈ dt(n, γ), X(2, t(n, γ)) −X(3, t(n, γ) /∈ Ξ(n, γ)] = ε(n) (3.15)

∫ 1

α

Pϕn [τ = τ(1, 2) ∈ dt(n, γ), X(4, t(n, γ)) −X(3, t(n, γ)) /∈ Ξ(n, γ)] = ε(n). (3.16)

We prove only (3.15) since the proof of (3.16) is even simpler.
∫ 1

α

Pϕn [τ = τ(1, 2) ∈ dt(n, γ), X(2, t(n, γ)) −X(3, t(n, γ)) /∈ Ξ(n, γ)]

=

∫ 1

α

∑

ξ∈Ξ

Pϕn [τ = τ(1, 2) ∈ dt(n, γ), X(2, t(n, γ)) = ξ] · P[X(3, t(n, γ)) − ξ /∈ Ξ(n, γ)]

by symmetry and (3.13)

=

∫ 1

α

∑

ξ∈Ξ

Pϕn [τ = τ(1, 2) ∈ dt(n, γ), X(2, t(n, γ)) = ξ]

·P[X(3, t(n, γ)) /∈ Ξ(n, γ)] + ε(n)

= ε(n) by dominated convergence.
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Now we put the pieces together

Pϕn
[
τ(i, j) ≤ 1

rn

]
= Pϕn

[
τ = τ(i, j) ≤ 1

rn

]
(3.17)

+
∑

{k,l}6={i,j}

∫ t(1,n)

t(α,n)

Pϕn [τ = τ(k, l) ∈ dt, τ(i, j) ≤ t(1, n)] + ε(n)

We substitute to change the domain of integration to [α, 1]. We then condition the
integrand on (X(i, t), X(j, t)) and apply the Markov property. With (3.13) and (3.12)
we get that the integral term in (3.17) equals

∫ 1

α

Pϕn [τ = τ(k, l) ∈ dt(γ, n), (3.18)

X(i, t(γ, n)) −X(j, t(γ, n)) ∈ Ξ(γ, n), τ(i, j) ≤ t(1, n)] + ε(n).

Apply (3.15) and (3.16) to see that this in turn equals

=

∫ 1

α

∑

ξ−ζ∈Ξ(γ,n)

Pϕn [τ = τ(k, l) ∈ dt(γ, n), X(i, t(γ, n)) = ξ,X(j, t(γ, n)) = ζ ]

×P(ξ,ζ)[τ(1, 2) ≤ t(1, n) − t(γ, n)] + ε(n)

=

∫ 1

α

Pϕn [τ = τ(k, l) ∈ dt(γ, n)](1 − γ) + ε(n).

Integration by parts and summation over all pairs {i, j} in (3.17) yields
(
m

2

)
(1 − α) = Pϕn

[
τ ≤ 1

rn

]
+

((
m

2

)
− 1

)∫ 1

α

Pϕn [τ ≤ t(γ, n)]dγ + ε(n). (3.19)

A contraction argument (compare again Cox and Griffeath (1986)) now shows

Pϕn
[
τ ≤ 1

rn

]
n→∞−→ 1 − qα̂(m;m) = 1 − α(m

2 )t.

So we are done. 2

3.3 Scaling Properties of η̃n(t) on Ξn

We now turn to finite systems. Here also particles coalesce asymptotically independently
but the “hitting probabilities” are different.

Proposition 3.4 (Scaling Limit, Finite Case)

Pϕn [#η̃n(tsn) = k]
n→∞−→ q2t+α̂(m; k) (3.20)

Proof We prove the statement for α = 1. The general case then can be obtained from
this as follows. As in the proof of Lemma 3.3 we can choose a sequence (s′n) with s′n

sn

n→∞−→ 0
slowly enough that

Pϕn [X(i, u) ∈ Ξn ∀u ≤ s′n, ∀ i and X(i, s′n) −X(j, s′n) ∈ Ξ(1, n) ∀ i 6= j]
n→∞−→ 1 (3.21)
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and
Pϕn [#η̃(tsn) = k]

n→∞−→ qα̂(m; k).

Since given the event in (3.21) η̃n(s
′
n) = η̃(s′n) and since tsn ∼ tsn − s′n we have

Pϕn [#η̃n(tsn) = k] =
m∑

l=k

Pϕn [#η̃(tsn) = l] · q2t(l; k) + ε(n) (3.22)

=

m∑

l=k

qα̂(m; l)q2t(l; k) + ε(n) = q2t+α̂(m; k) + ε(n).

The last equality is of course the Chapman-Kolmogorov equality.
Hence we assume now α = 1. Note that X(i, t)−X(j, t) is a random walk running at

double speed. So by Proposition 2.7 the analogue of (3.12) is (recall τn(i, j) and τn are
the finite objects corresponding to those defined in (3.9))

Pϕn [τn(i, j) ≤ tsn]
n→∞−→ 1 − e−2t. (3.23)

Thus we replace α by e−2t in the proof of Lemma 3.3 to obtain

Pϕn [τn ≤ tsn]
n→∞−→ 1 − e−2t(m

2 ). (3.24)

Now the induction argument cited above yields

Pϕn [#η̃n(tsn) = k]
n→∞−→ q2t(m; k). (3.25)

2

3.4 Case a Recurrent, Comparison of η(t) and η̃(t)

Let X(t) (or a) be recurrent. We show that in our space and time scaling delayed and
instantaneously coalescing random walks η and η̃ (resp. ηn and η̃n) are equivalent in the
following sense:

For ϕ ∈ Φ let ϕ∗ = ϕ∧1 denote the projection to Φ̃ and ηϕ(t) resp. η̃ϕ
∗
(t) the systems

started in ϕ resp. ϕ∗. Fix m and m∗ and choose (ϕn) such that #ϕn = m, #ϕ∗
n = m∗

and (ϕ∗
n) is an α-spaced sequence in the sense of (3.6).

Lemma 3.5 (Comparison)
Under these conditions

P
[
η̃ϕ

∗
n(sn) = ηϕn(sn)

]
n→∞−→ 1 (3.26)

P
[
η̃n
ϕ∗
n(tsn) = ηϕnn (tsn)

]
n→∞−→ 1, t > 0. (3.27)

Proof We shall only show (3.26) since (3.27) is similar. Let

T ni = inf
{
t ≥ 0 : #η̃ϕ

∗
n(t) = m∗ − i

}
i = 0, 1, . . .m∗ − 1

the time points of coalescence and note that

T ni+1 − T ni
n→∞−→ ∞ P-a.s.

Hence by recurrence the particles that meet at time T ni coalesce in ηϕn until time T ni+1

asymptotically P-a.s. 2
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Combining Proposition 3.2 and 3.4 and Lemma 3.5 we have proved

Proposition 3.6 (Scaling Limits)

Lϕn(t) [#η(t)]
t→∞
=⇒ Lm∗

[Dα̂]

Lϕn [#ηn(tsn)] n→∞
=⇒ Lm∗

[D2t+α̂] for t > 0 fixed.

2

3.5 Case a Transient, Comparison of η(t) and ηn(t)

We now look into the case a transient. The comparison lemma does not hold here because
it did depend heavily on the recurrence property of a. We used that once a pair meets, it
meets infinitely often in the large time scale and finally coalesces. So we have to do some
more subtle computations now in the transient case.

Fix a sequence tn ↑ ∞, tn ≪
(∑
k>n

rk

)−1

, then (by (2.30)) tn ≪ N−n and

P [Xn(t) = X(t) ∀ t ≤ tn]
n→∞−→ 1. (3.28)

Let τ
(0)
n = 0 and

τ (i+1)
n = inf

{
t > τ (i)

n + tn : Xn(t) = 0
}
. (3.29)

Since
sup
x∈Ξn

Ex[G(0, Xtn)] = E0[G(0, Xtn)]
n→∞−→ 0 (3.30)

and by Proposition 2.7 we get

L
[
τ

(i+1)
n − τ

(i)
n

G|Ξn|

]
n→∞
=⇒ E(1). (3.31)

Let B(t) a Poisson process with rate 1. Then for t > 0

L
[
max

{
k :

τ
(k)
n

G|Ξn|
≤ t

}]
n→∞
=⇒ L[B(t)]. (3.32)

Recall

V = E0

[
exp

(
−1

2

∫ ∞

0

1I{Xs=0}ds

)]
(3.33)

and let
pϕ(k) := lim

t→∞
Pϕ[#η(t) = k]. (3.34)

Note that
V = p(0,0)(2). (3.35)

By (3.28) and (3.32) we get

lim
n→∞

P(ζ,ξ)[#ηn(tGN
n) = 1] = 1 − p(ζ,ξ)(2)e−2t(1−V ). (3.36)

Now proceeding as above we get that the pairs of particles coalesce (asymptotically)
independently. Thus if we put

sn =
G

1 − V
Nn (3.37)

we obtain
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Proposition 3.7

Pϕ[#ηn(tsn) = k]
n→∞−→

∑

l

pϕ(l)q2t(l; k). (3.38)

2

4 Proof of Theorem 1,3 and 4

4.1 Proof of Theorem 1 and 4

Since parts a) are immediate consequences of parts b), we will only show b). We first
look into the special case where we start in the product measure πθ and where g(x) =
bx(1 − x), b > 0.

Special case g(x) = bx(1 − x) and Product Measure

Since we will have to work with various diffusion coefficients g we add g or b as superscript
where necessary. Let now η(t) be a system of coalescing random walks with delay 1

b
and

let

zϕ :=
∏

ξ∈Ξ

(zξ)
ϕξ , z ∈ [0, 1]Ξ, ϕ ∈ Φ.

Our main tool is the following duality relation between mixed moments of interacting
diffusions and delayed coalescing random walks

Ez
[(

X
b(t)
)ϕ]

= Eϕ
[
zη(t)

]
(4.1)

which is also true for finite systems. For a proof see Shiga (1980), Lemma 2.3.

Since the state space is compact it suffices to show convergence of (mixed) moments.
Thus we fix ϕ = k11Iξ1 + . . .+ km∗1Iξm∗ ∈ Φ, m∗ ∈ N, k1, . . . , km∗ ∈ N, ξi 6= ξj, i.e. a point
in Φ with kj particles at site ξj. Let ϕn = S−1

fα(n)ϕ be the spaced version of ϕ. We have to
show

Eπθ

[(
fαX

b(t)
)ϕ]

= Eπθ

[(
X
b(t)
)ϕn(t)

]
t→∞−→ Eθ

[
(Yα̂)

m∗]
(4.2)

Eπθ

[(
fαX

b
n(n)

)ϕ]
= Eπθ

[(
Xb
n(tsn)

)ϕn] n→∞−→ Eθ
[
(Y2t+α̂)

m∗]
(4.3)

By (4.1) and Proposition 3.6 the l.h.s. of (4.2) equals

∫
Eϕn(t)

[
zη(t)

]
πθ(dz) = Eϕn(t)

[
θ#η(t)

]

t→∞−→ Em∗
[
θDα̂

]
= Eθ

[
(Yα̂)

m∗]
.

The last equality is a well known duality between the Fisher-Wright diffusion and the
pure death process introduced in Definition 3.1. The proof of (4.3) is fairly the same.
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Generalization to Ergodic Measures

Here we want to generalize the result to ergodic start measures µ with intensity θ. We do so
by coupling techniques, i.e. we show that two versions X

1 and X
2 of our interacting system

with ergodic initial laws µ and ν with same intensity θ can be defined on one probability

space such that E[|x1
0(t) − x2

0(t)|]
t→∞−→ 0. Define the four-valued process (X1,X2,X1

n,X
2
n)

as the solution of

dxiξ(t) =
∑

z∈Ξ

a(ξ, ζ)(xiζ(t) − xiξ(t))dt+
√
bxiξ(1 − xiξ) dWξ(t), i = 1, 2 (4.4)

dxin,ξ(t) =
∑

z∈Ξn

a(ξ, ζ)(xin,ζ(t) − xin,ξ(t))dt+
√
bxin,ξ(1 − xin,ξ) dWξ(t), i = 1, 2 (4.5)

with one set of Brownian motions and the initial common law given by

L[(X1(0),X2(0)] = µ⊗ ν

and

(X1
n(0),X2

n(0)) = (X1(0),X2(0))
∣∣∣
Ξn

(µ⊗ ν)-a.e.

Here µ and ν are spatially ergodic with same intensity θ. Let ∆ξ(t) = x1
ξ(t) − x2

ξ(t),
∆n,ξ(t) = x1

n,ξ(t) − x2
n,ξ and ∆n

ξ (t) = x1
n,ξ(t) − x1

ξ(t).
We will rely on the following lemma which is due to Cox and Greven (1994a), Lemma

4 in the case a transient and due to Fleischmann and Greven (1994), Proposition 5.11 in
the case a recurrent. (Fleischmann and Greven only deal with the case a critical but the
proof they give actually works for any a recurrent. In fact a slight modification of their
proof yields a unified approach to both cases, a recurrent and a transient.)

Lemma 4.1 (Successful coupling, Infinite systems)
Assume a(·, ·) to be either transient or recurrent. Then

E[|∆0(t)|] t→∞−→ 0 (4.6)

This yields the analogue of (4.2) if we put ν = πθ. So we are done with the infinite case.
We polish off the finite case by deriving based on this

Lemma 4.2 (Successful coupling, Finite systems)
Under the same conditions as in Lemma 4.1

E[|∆n,0(tsn)|] n→∞−→ 0 (4.7)

Proof Since the infinite systems can be coupled successfully we have to show that the
finite and the infinite system do not diverge for sufficiently large time and that finite
systems stay close once that they got close. Fix a sequence tm ↑ ∞ such that tm ≪(∑
k>m

rk

)−1

(recall rk from (1.5)). Then

sup
n≥m

E[|∆n
ξ (tm)|] m→∞−→ 0. (4.8)
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To see this we may proceed as Yamada and Watanabe (1971). We approximate the | · |-
function by functions fn(x) =

√
1
n

+ x2 to which the Itô-formula can be applied and

obtain
d|∆n

ξ (t)| = sgn(∆n
ξ (t))d∆

n
ξ (t). (4.9)

Then

dE|∆n
ξ (t)| ≤ E

[
∑

ζ∈Ξn

a(ξ, ζ)(|∆n
ζ (t)| − |∆n

ξ (t)|)
]
dt (4.10)

+ E


∑

ζ /∈Ξn

a(ξ, ζ)(|xζ(t)| + |xξ|Ξn
(t)|)


 dt

The first term vanishes by translation invariance (Ξn�Ξ subgroup!) and the second term
is bounded by (2

∑
k>n

rk)dt.

By Lemma 4.1 the infinite systems are close at time tn, i.e. E[|∆0(tn)|] = ε(n), and
so are the finite systems. Hence it is enough to show

dE[|∆n,ξ(t)|] ≤ 0. (4.11)

This is however true since as above

dE[|∆n,ξ(t)|] ≤ E

[
∑

ζ∈Ξn

a(ξ, ζ)(|∆n,ζ(t)| − |∆n,ξ(t)|)
]
dt = 0 (4.12)

2

Generalization to Admissable g(x)

Finally we generalize the diffusion coefficient. Fix an admissable g (recall (1.2)). The
idea is to sandwich g between two Fisher-Wright-type diffusion coefficients. We will then
infer that the moments are also sandwiched by quantities that have the same limiting
behaviour according to the discussion in the last two subsections.

Fix 1
2
> ε > 0 and ϕ and let

f(x) = x(1 − x)

f ε(x) = [(x− ε)(1 − x− ε)]+

Choose b, bε > 0 such that
gε := bεf ε ≤ g ≤ bf.

Denote by Xg(t),Xgε
(t) and Xbf(t) the solutions of (1.1) driven by g,gε and bf respectively

and with the same initial law µ. The crucial point is the comparison of the mixed moments
of these

Eµ
[
(Xgε

(t))ϕ
]
≤ Eµ

[
(Xg(t))ϕ

]
≤ Eµ

[
(Xbf(t))ϕ

]
∀ t ≥ 0, (4.13)

which is due to Cox, Fleischmann and Greven (1995), Theorem 1.
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We introduce the linear map

Lε : [ε, 1 − ε]Ξ → [0, 1]Ξ

(xξ) 7→
(
xξ − ε

1 − 2ε

)

and its inverse Hε. Let µε := Hεµ and note that 〈x0, µ〉 − 〈x0, µ
ε〉 = O(ε). Observe that

the coupling of the last subsection (in particular (4.11)) adapted to this setting yields

Eµε
[
(Xgε

(t))ϕ
]
− Eµ

[
(Xgε

(t))ϕ
]

= O(ε). (4.14)

Note that LεXgε
(t) is again of the Fisher-Wright-type for X(0) concentrated on [ε, 1−ε]Ξ.

Observe that (Hε(z))0 − z0 = O(ε) where the O-constants only depend on m = #ϕ. So
the discussion of the last two subsections yields

lim sup
ε→0

lim sup
t→∞

sup
#ϕ=m

∣∣∣Eµ
[
(Xgε

(t))ϕ
]
− Eµ

[
(Xbf(t))ϕ

]∣∣∣ = 0. (4.15)

This finishes the proof.

4.2 Proof of Theorem 3

Assume now a(·, ·) to be transient. Since the coupling of finite systems is successful
(Lemma 4.2) we may assume

L[X(0)] = πθ.

Recall the definition of pϕ from (3.34) and note that

Eνθ
[
zϕ
]

=
∑

k

pϕ(k)θk. (4.16)

We proceed as above and use Proposition 3.7 to conclude Theorem 3

Eπθ

[
(Xn(tsn))

ϕ
]

= Eϕ
[
θ#ηn(tsn)

]
(4.17)

=
∑

l

pϕ(l)
∑

k

q2t(l; k)θ
k

=
∑

l

pϕ(l)El
[
θD2t

]

=
∑

l

pϕ(l)

∫
Q2t(θ, dρ)ρ

l

=

∫
Q2t(θ, dρ)E

νρ
[
zϕ
]
. 2

5 Proof of Theorem 2 and 5

We only consider the case g(x) = x(1 − x) and L[X(0)] product measure, since the
generalizations work as in Section 4. Again we first have to do some random walk analysis.
We start with the construction of the limit object of space and time scaled random walks
on Ξ. From this we conclude part a) and b) of Theorem 2 and 5. Then we obtain c) via
a duality to the discrete time nonlinear death process of Definiton 3.1.
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5.1 Limit Process of Scaled Random Walks

In this subsection we “extend Ξ resp. Ξn to the left”, i.e. by points of short distance,
to Γ resp. Γ′ defined below. On these extended groups we will define the weak limits of
rescaled random walks on Ξ resp. Ξn.

Definition 5.1 Let

Γ := {δ = (δk)k∈Z : δk ∈ {0, . . . , N − 1} , ‖δ‖ <∞} (5.1)

Γ−n := {δ ∈ Γ : δk = 0 ∀ k ≤ −n} (5.2)

where ‖δ‖ := inf{k ∈ Z : δk = 0 ∀ l > k}. Γ is an abelian group with addition component-
wise modulo N . Γ herits the product topology from {0, . . . , N − 1}Z.

The finite objects will be indicated by a prime and are defined as

Γ′ := {δ ∈ Γ : ‖δ‖ ≤ 0} Γ′
−n := {δ ∈ Γ−n : ‖δ‖ ≤ 0}.

Further let µ resp. µ′ be the Haar measures on Γ resp. Γ′ normed to µ(Γ′) = µ′(Γ′) = 1
(sic!), i.e. the weak limits of N−n-times counting measure on Γ−n resp. Γ′

−n as n→ ∞.

The shift operators Sk (recall (1.10)) naturally extend to these objects. Note that we
may identify Ξ with Γ0 and observe

Sn(Ξ) = Γ−n

Sn(Ξn) = Γ′
−n.

Since most of what follows is the same for the finite and infinite objects we suppress
the prime where possible and only stress the occuring differences.

We obtain random walks γn(t) on Γ by shifting a random walk X(t) on Ξ and rescaling
time

γn(t) := Sn
(
X(t(Nc)n+1)

)
. (5.3)

Intuitively we extend X(t) “to the left” by allowing jumps of short distances at high rates.
The same way we obtain the system of instantaneously coalescing random walks βn

on Γ
βn(t) := Sn

(
η̃
(
t(Nc)n+1

))
. (5.4)

Denote by Gn the generator of γn defined on C(Γ−n) the set of continuous functions on

Γ−n. We will identify C(Γ−n) with Ĉ(Γ−n) = {f ∈ C(Γ), f(ξ) = f(ζ) if ‖ξ− ζ‖ < −n}.
Denote by Ĝn the linear operator on Ĉ(Γ−n) with (Ĝnf)

∣∣∣
Γ−n

= Gn(f
∣∣∣
Γ−n

). Note that for

k ≤ n
Ĝn|Ĉ(Γ−k) = Ĝk. (5.5)

By d(δ, ε) := 2‖δ−ε‖ a metrics is given on Γ that induces the product topology on Γ.

Note that Ĉ(Γ) :=
⋃
n∈N

Ĉ(Γ−n) is dense in C(Γ).

Definition 5.2 Let Ĝ be the linear operator on Ĉ(Γ) such that

Ĝ|Ĉ(Γ−n) = Ĝn. (5.6)

The closure G of Ĝ is a Markov generator. We denote by γ(t) the random walk induced by
G. By β(δ1, . . . , δm; t) we denote the corresponding system of of instantaneously coalescing
random walks started in (δ1, . . . , δm).
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Proof By (5.5) Ĝ is well defined and has a dense domain. Hence G is a well defined
(unique valued) linear operator. Fix λ > 0. Since Gn is a Markov generator for each

n ∈ N we have R(λ− Ĝn) = Ĉ(Γ−n). So the range of λ−G is dense, R(λ−G) = Ĉ(Γ),
and hence G is recognized as a Markov generator. (For a treatment of this point see
Liggett (1985), Chapter I). 2

We assume (γ(t), γ1(t), γ2(t), . . .)) to be defined on one probability space such that

γn(t) = γ(t)|Γ−n
. (5.7)

Now it is immediate that

(γn(t)t≥0)
n→∞−→ (γ(t)t≥0) uniformly and a.s. in D([0,∞[). (5.8)

Lemma 5.3

βn(δ1, . . . , δm; t)
n→∞−→ β(δ1, . . . , δm; t) in distribution ∀ t ≥ 0.

Proof Let

τn = inf{t ≥ 0 : γn(t) ≡ 0} (5.9)

τ = inf{t ≥ 0 : γ(t) ≡ 0}. (5.10)

Now by (5.8) and right continuity of paths

τn ↑ τ a.s. (5.11)

Since we can assume that the systems β̃, β̃1, β̃2, . . . are coupled so that

β1 ≥ β2 ≥ . . . β (5.12)

and since τ has no atoms a simple induction argument yields the conclusion. 2

5.2 Proof of Theorems 2 and 5, Part a)

By compactness of the state space it suffices to show convergence of moments

E
∏

m∈Z

(Θn−m(X(tsn)))
ψm n→∞−→ Mψ (5.13)

where ψ ∈ NZ

0 finite and Mψ is some real number. The martingal property then follows

easily by symmetry.
Thus let

ψ = 1Il1 + . . .+ 1Ilr , l1 ≤ . . . ≤ lr ∈ Z (5.14)

and denote

Γ(ψ) =
{
(δ = (δ1, . . . , δr) ∈ Γr : ‖δi‖ ≤ li

}
(5.15)

Γ−n(ψ) = Γ(ψ) ∩ (Γ−n)
r.
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Then

E
[
(Θn−·(X(tsn)))

ψ
]

= E

[
r∏

j=1

Θn−lj(X(tsn))

]
(5.16)

=

(
r∏

j=1

#Ξn−lj

)−1

E


 ∑

‖ξ1‖≤n−l1

· · ·
∑

‖ξr‖≤n−lr

xξ1(t(Nc)
n+1) · · ·xξr(t(Nc)n+1)




By the duality lemma and the comparison lemma this equals

=

(
r∏

j=1

#Ξn−lj

)−1

E


 ∑

‖ξ1‖≤n−l1

· · ·
∑

‖ξr‖≤n−lr

θ#η̃
{ξ1,...,ξr}∗
n (t(Nc)1+n)


+ ε(n) (5.17)

=

∫
Eδ

∗ [
θ#βn(t)

]
µr
(
dδ|Γ−n(ψ)

)
+ ε(n).

By Lemma 5.3 this tends to

Mψ :=

∫
Eδ

∗ [
θ#β(t)

]
µr
(
dδ|Γ(ψ)

)
. 2 (5.18)

5.3 Proof Theorems 2 and 5, Part b)

We do the proof by an explicit calculation using Laplace transforms of the first hitting
times τ .

It suffices to show (recall τ from (5.10) and note that here d plays the role of m in
Theorem 2 and 5)

Pδ(τ < t) →
{

0 as d = ‖δ‖ → ∞
1 as d = ‖δ‖ → −∞ ∀ t > 0 (5.19)

since then (recall Mψ from (5.18))

M
m·1Id

→
{
θm as d→ ∞
θ as d→ −∞ .

A straightforward computation using (2.16) and abbreviating v = Nc
Nc−1

+ 1
N−1

yields

Ede−λτ = lim
n→∞

Ede−λτn =

∞∑

m=d−1

N−m

ϑv(Nc)−m + λ
− N

N − 1

N1−d

ϑv(Nc)1−d + λ

∞∑

m=−∞

N−m

ϑv(Nc)−m + λ

(5.20)

whereas

Ede−λτ
′

= lim
n→∞

Ede−λτ
′
n (5.21)

=

0∑
m=d

N1−m

v(Nc− 1)(Nc)−m − 1 + λ
− N
N − 1

N1−d

v(Nc− 1)(Nc)1−d − 1 + λ
+ N
N − 1

1
λ

0∑
m=−∞

N1−m

v(Nc− 1)(Nc)−m − 1 + λ
+ N
N − 1

1
λ

.
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Now (5.19) follows from

lim
d→−∞

Ede−λτ = lim
d→−∞

Ede−λτ
′

= 1 ∀λ <∞ (5.22)

and
lim
d→∞

Ede−λτ = 0 ∀λ > 0. 2 (5.23)

5.4 Proof Theorems 2 and 5, Part c)

We give a qualitative description of a system of coalescing random walks in the limit
N → ∞. (A verbal description is given below (5.33).) Then we construct a process
dual to the Fisher-Wright diffusion with immigration (Definition 5.4). This will serve to
conclude the proof via a moment calculation.

We let N → ∞ and indicate quantities with a superscript N . Observe

Ede−λτ
N ∼

0∑
m=d−1

N−m

(Nc)−m+λ

0∑
m=−∞

N−m

(Nc)−m+λ

as N → ∞ (5.24)

Ede−λτ
′N ∼

0∑
m=d−1

N−m

(Nc)−m−1+λ

0∑
m=−∞

N−m

(Nc)−m−1+λ

as N → ∞ (5.25)

Thus

Ede−λτ
N (Nc)−a N→∞−→





1 − cd−a +
(c− 1)cd−a−1

1 + λ/c
if d− a ≤ 0

0 if d− a > 0
(5.26)

The same holds for τ ′N if a < 0 whereas if a = 0 and d < 0

Ede−λτ
′N N→∞−→ 1 − cd +

cd

1 + λ
c−1

. (5.27)

Denote by E(m) the exponential distribution with mean m. Then

Ld[τN (Nc)−a]
N→∞
=⇒

{ (
1 − cd−a

)
δ0 + (c− 1)cd−a−1E

(
1
c

)
+ cd−a−1δ∞ if d ≤ a

δ∞ if d > a
(5.28)

as well as in the finite case if a < 0. On the other hand for a = 0 and d < 0

Ld[τ ′N ]
N→∞
=⇒

(
1 − cd

)
δ0 + cdE

(
1

c− 1

)
. (5.29)

Introduce the first exit times of Γ(d) := {δ ∈ Γ : ‖δ‖ ≤ d}
σNn := inf{t ≥ 0 : γN(t) /∈ Γ(n)}. (5.30)

As in (3.14) we obtain

Ld[σNn (Nc)−n] =

{
E(1) if d ≤ n
δ0 if d > n

(5.31)
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Thus

lim
N→∞

Pδ[‖γ(t(Nc)n‖ = 1 + n] = (5.32)

1 − lim
N→∞

Pδ[‖γ(t(Nc)n‖ =≤ n] = 1 − e−t if‖δ‖ ≤ n.

By (5.28)

Pd
[
σNa ≤ τN ≤ t(Nc)a

] N→∞−→ 0

and thus

Pd
[
τN ≤ σN

] N→∞−→ c− 1

c
.

Hence we get
lim
N→∞

Pd[τN ≤ t(Nc)d|τN ≤ σNd ] = 1 − ce−ct. (5.33)

The picture is as follows: For large N a particle at level d jumps in time scale (Nc)d

at rate 1 to level d + 1. Before it succeeds in doing so it attempts to hit the origin with
rate c− 1 in this scale.

Now consider the coalescing random walks. For ψ = 1Id1 + . . .+ 1Idr as above let

∆N (ψ) = {(δ1, . . . , δr) ∈ Γr : ‖δi − δj‖ = di ∧ dj}.

All starting points for β
N

(t) in ∆N (ψ) are equivalent by symmetry so we indicate quan-
tities with a superscript ψ. Let further

LNd (t) = #{δ ∈ β
N

(t) : ‖δ‖ ≤ d} (5.34)

UN
d (t) = #{δ ∈ β

N
(t) : ‖δ‖ > d}. (5.35)

The same type of argument as in Section 4 now yields that the

(
LNd0(t)

2

)
pairs of parti-

cles of level d1 coalesce asymptotically independently at rate 2(c−1)(Nc)−d1 . Independent
of this each of the LNd1 particles of level d1 jumps to level d1 + 1 at rate (Nc)−d1 .

The limiting behaviour of this will be modelled by

Definition 5.4 (Death-Escape Process)
Let (At, Bt) be the N × N-valued Markov process with generator

G ((a1, b1), (a2, b2)) =





2(c− 1)

(
a1

2

)
if a2 = a1 − 1 , b2 = b1

a1 if a2 = a1 − 1 , b2 = b1 + 1

−a1 − 2(c− 1)

(
a1

2

)
if a2 = a1 , b2 = b1

(5.36)

and let Gt(m) = At +Bt if (A0, B0) = (m, 0).

Particles in the first box (A) die with the same rate as they do in the pure death death
process Dt of Definition 3.1. Here however they have a chance to escape to the second
box (B) and remain there. Recall the definition of the Fisher-Wright diffusion Xθ

t with
drift towards θ in (1.17). One easily checks the following duality relation

Lemma 5.5 (Duality)
E(m,0)

[
θGt
]

= E
[
(Xθ

t )
m
]
. (5.37)

2
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Let

ψd = #{δ ∈ β(0) : ‖δ‖ = d} and ψ+
d =

∑

k>d

ψk.

Then

Lψ
[
LNd1(t(Nc)

d1), UN
d0

(t(Nc)d1)
] N→∞

=⇒ Lψ
[
(Xt, Yt)|X0 = ψd1 , Y0 = ψ+

d1

]
.

Thus

Lψ
[
#β

N
(t(Nc)d1)

]
N→∞
=⇒ Lψ

[
ψ+
d1

+G∞(ψd1)
]
.

Iterating the argument and noting that XN
d

(
t(Nc)0.5+d

) N→∞−→ 0 we get

Lψ
[
#β

N (
Nc−0.5

)] N→∞
=⇒ Lψ

[
ψ+
−1 +G∞(ψ−1 +G∞(ψ−2 + . . .+G∞(ψd1) · · ·).

]

Finally we get for the infinite system

Lψ
[
#β

N
(t)
]
N→∞
=⇒ Lψ

[
ψ+

0 +Gt(ψ0 +G∞(ψ−1 +G∞(ψ−2 + . . .+G∞(ψd1) · · ·)
]
. (5.38)

In the last step the finite system differs from the infinite one since in the former is σ0 ≡ ∞
and thus by (5.29) particles coalesce at rate c − 1. Let G′

1 = D2(c−1)t . With this (5.38)
transforms to

Lψ
[
#β

′N
(t)
]
N→∞
=⇒ Lψ

[
ψ+

0 +G′
t(ψ0 +G∞(ψ−1 +G∞(ψ−2 + . . .+G∞(ψd1) · · ·)

]
. (5.39)

Denote by qt(ψ,m) and q′t(ψ,m) the distribution

qt(ψ,m) = Pψ
[
ψ+

0 +Gt(ψ0 +G∞(ψ−1 +G∞(ψ−2 + . . .+G∞(ψd1) · · ·) = m
]

(5.40)

in (5.38) and (5.39) respectively and observe

(
µN
)r

(∆(ψ)|Γ(ψ))
N→∞−→ 1. (5.41)

Hence

MN
ψ

N→∞−→
∑

m

qt(ψ,m)θm (5.42)

and

M ′N
ψ

N→∞−→
∑

m

q′t(ψ,m)θm. (5.43)

By the duality lemma 5.5 the mixed moments of the Markov chains (Zt
m) and (Z̃t

m) defined
in (1.20) and (1.31) are given by the right hand sides of (5.42) and (5.43). Since [0, 1]Z is
compact the convergence of the mixed moments in (5.42) and (5.43) yields the assertions
of Theorem 2 and 5, part c).

2
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6 The Behaviour of the Occupation Times

We investigate the asymptotic behaviour of the re-normed occupation time t−1Tt(ξ) de-
fined by Tt(ξ) :=

∫ t
0
xξ(s) ds, where X(s) = (xξ(s), ξ ∈ Ξ) is a system of linearly interact-

ing Fisher-Wright diffusions on the hierarchical group Ξ.
Recall that ac, c >

1
N

with rk = ϑc · (Nc)−k (ϑc = Nc−1
Nc

) are the geometrical kernels.
ac is strongly recurrent if c > 1 and critically recurrent if c = 1. Recall also that Mθ is
the class of ergodic measures with intensity θ introduced in (1.6).

Proposition 6.1 Let µ ∈ Mθ, θ ∈ [0, 1].

(a). If the interaction kernel is strongly recurrent, i.e. ac with c > 1, then

Varµ[t−1Tt(ξ)]
t→∞−→ 2θ(1 − θ)(1 − 2− log c/ log cN). (6.1)

(b). If the interaction kernel is critically recurrent then

Varµ[t−1Tt(ξ)]
t→∞−→ 0. (6.2)

We prepare for the proof with a couple of lemmas.

The case a strongly recurrent

First consider the case a = ac, c > 1 is strongly recurrent.
From (2.26) we obtain the transition probabilities for the continuous time random

walk generated by ac(·, ·)

p(t, 0, ξ) = (N − 1)

∞∑

k=‖ξ‖+1

N−k exp
{
−tv(Nc)−k

}
(6.3)

+(1I{0}(ξ) − 1)N−‖ξ‖ exp
{
−tv(Nc)−‖ξ‖} ,

where

v :=
Nc

Nc− 1
+

1

N − 1
.

We introduce the following notation

γ :=

∞∑

k=−∞
N−k exp

{
−v(Nc)−k

}
(6.4)

α :=
log c

logNc
. (6.5)

Lemma 6.2 p(t, 0, 0) ∼ γtα−1, t→ ∞.

Proof First let T ∈ N. Then we have

NT p((Nc)T , 0, 0) = (N − 1)
∞∑

k=1−T
N−k exp

{
−(Nc)−k

} T→∞−→ γ. (6.6)

By a simple monotonicity argument (6.6) holds for T ∈ [0,∞[. Put t = (Nc)T . Then
NT = t1−α and the proof is complete. 2
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Corollary 6.3 Let 0 < β < (logNc)−1. Then

∑

‖ξ‖≤β log t

p(t, 0, ξ)
t→∞−→ 0.

Proof

lim sup
t→∞

∑

‖ξ‖≤β log t

p(t, 0, ξ) ≤ lim sup
t→∞

∑

‖ξ‖≤β log t

p(t, 0, 0)

= lim sup
t→∞

Nβ log t · γtα−1

= lim sup
t→∞

γ · tβ logN+α−1 = 0,

since by assumption β logN + α− 1 < 0. 2

Denote by Pξ[·] the probability associated with the random walk η(t) generated by
a(·, ·) = ac(·, ·) and with start in ξ ∈ Ξ. Let also

P0[·] =
1

1 − a(0, 0)

∑

ξ 6=0

a(0, ξ)Pξ[·] (6.7)

the distribution of η(t) after first leaving the origin. Let

τ0 = inf{t ≥ 0 : η(t) = 0}

the first hitting time the origin. In order to study the asymptotics of P0[τ0 > t] as t→ ∞
we introduce the Laplace transforms

L(λ) :=

∫ ∞

0

e−λt p(t, 0, 0) dt (6.8)

L0(λ) :=

∫ ∞

0

e−λtP0[η(t) = 0] dt. (6.9)

Lemma 6.4 Denote by Γ(x) the ordinary gamma function. Then

L(λ) ∼ L0(λ) ∼ γ

α
Γ(1 + α)λ−α, λ→ 0.

Proof ∫ t

0

p(s, 0, 0) ds ∼ γ

α
tα, t→ ∞,

by Lemma 6.2. By a Tauberian theorem (see e.g. Feller (1966), XIII.5, Thm. 1) we get

L(λ) ∼ γ

α
Γ(1 + α)λ−α, λ→ 0. (6.10)

The proof of L(λ) ∼ L0(λ) may be done as in Fleischmann and Greven (1994), proof of
Lemma 2.33. We omit the details. 2
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Lemma 6.5

P0[τ0 > t] ∼ 1 − α
γ

α
Γ(1 + α)Γ(2 − α)

t−α, t→ ∞. (6.11)

Proof Let

H(λ) :=

∫ ∞

0

e−λt P0[τ0 > t] dt.

We may proceed as Fleischmann and Greven (1994), proof of Prop. 2.37 to obtain by a
last exit decomposition

H(λ) =
1 − λL0(λ)

λ(1 + L0(λ))
. (6.12)

By Lemma 6.4 we get

H(λ) ∼
(γ
α

Γ(1 + α)
)−1

λα−1, λ→ 0. (6.13)

By the Tauberian theorem we get
∫ t

0

P0[τ0 > s] ds ∼
(γ
α

Γ(1 + α)Γ(2 − α)
)−1

t1−α, t→ ∞. (6.14)

Differentiating this formula w.r.t. t yields the claim. 2

We will need the following comparison between delayed coalescing random walks (η(t))
and instantaneously coalescing random walks (η̃(t)).

Lemma 6.6 Uniformly in ξ ∈ Ξ the following holds

P{0,ξ}[#η̃(t) = #η(t)]
t→∞−→ 1.

Proof Denote by ε(t) any quantity vanishing uniformly in ξ as t → ∞. Fix 0 < β <
(logNc)−1. Then

P{0,ξ}[#η̃(t) < #η(t)] = P{0,ξ}[#η̃(t) = 1,#η(t) = 2] (6.15)

≤
∑

E⊂Ξ, #E=2

P{0,ξ}[η̃(t− log t) = E,#η̃(t) = 1]

+P{0,ξ}[#η̃(t− log t) = 1,#η(t) = 2].

By the recurrence of the random walk the last term is ε(t). Thus by Corollary 6.3 the
r.h.s. of (6.15) equals

=
∑

ξ1, ξ2 ∈ Ξ
‖ξ1 − ξ2‖ ≥ β log t

P{0,ξ}[η̃(t− log t) = {ξ1, ξ2}, #η̃(t) = 1] + ε(t) (6.16)

=
∑

ξ1, ξ2 ∈ Ξ
‖ξ1 − ξ2‖ ≥ β log t

P{0,ξ}[η̃(t− log t) = {ξ1, ξ2}] · P{ξ1,ξ2}[#η̃(log t) = 1] + ε(t)

= ε(t).

In the last two steps we have used the Markov property and the basic estimate on the
hitting time of the origin. 2
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The case a critically recurrent

Consider now the case a critical. We adopt the notation from the preceding lemmas.
Define a function h :]0, 1] → [0,∞[ by

h(λ) = an for
1

λ
= anN

n (6.17)

(recall an from (2.6)) and linearly interpolated in the intervals ]anN
n, an+1N

n+1[. Note
that h(λ) is slowly varying as λ→ 0.

Lemma 6.7
P0[τ0 > 1] ∼ (h(1/t))−1, t→ ∞. (6.18)

Proof As was shown in the proof of Proposition 2.2 (i) and (ii) we have

L(λ/anN
n) ∼ an, n→ ∞. (6.19)

Thus
L(λ) ∼ h(λ), λ→ 0. (6.20)

We proceed as above to infer

H(λ) ∼ 1 − λh(λ)

λ(1 + h(λ))
∼ 1

λh(λ)
, λ→ 0. (6.21)

Apply the Tauberian theorem to complete the proof. 2

Extended Duality Relation

For the proof of the proposition we will rely on a duality relation extending the basic
duality. For r, s ≥ 0 consider the following two particle system η(r, s)(introduced by Cox
and Griffeath (1983)):

• Particle 1 stands still up to time r−(r∧s) and then moves according to the random
walk associated with the interaction kernel a(·, ·).

• Particle 2 stands still up to time s−(r∧s) and then moves according to the random
walk associated with the interaction kernel a(·, ·).

• After time (r ∧ s) the particles are allowed to coalesce with delay whenever they
occupy the same site.

In the same way we introduce η̃(r, s) where the coalescence is instantaneously.
By the duality lemma we infer immediately

Ez[xζ(r)xξ(s)] = E{ζ,ξ}
[
zη(r, s)

]
, z ∈ [0, 1]Ξ, ζ, ξ ∈ Ξ. (6.22)

By Lemma 6.6 this implies

Ez[xζ(r)xξ(s)] −E{ζ,ξ}
[
zη̃(r, s)

] |r−s|→∞−→ 0. (6.23)

We are now in the position to give the asymptotics of the covariance of Tt(0) and Tt(ξ).
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Lemma 6.8 Let θ ∈ [0, 1] and µ ∈ Mθ. Then the following holds

lim
t→∞

t−2Covµ[Tt(0), Tt(ξ)] = 4θ(1−θ) · lim
t→∞

t−2

∫ t

0

dv

∫ t−v

0

dw P0[τ0 > 2w]

∫ 2v

v

ds p(s, 0, ξ).

(6.24)

Proof

t−2Covµ[Tt(0), Tt(ξ)] = t−2

∫ t

0

ds

∫ t

0

drEµ[(x0(r) − θ)(xξ(s) − θ)]

= t−2

∫ t

0

ds

∫ t

0

dr

∫
µ(dz)E{0,ξ} [zη(r,s)

]
− θ2

= t−2

∫ t

0

ds

∫ t

0

dr 1I{|r−s|>log t}

∫
µ(dz)E{0,ξ} [zη(r,s)

]
− θ2 + ε(t)

(6.23)
= t−2

∫ t

0

ds

∫ t

0

dr 1I{|r−s|>log t}

∫
µ(dz)E{0,ξ} [zη̃(r,s)

]
− θ2 + ε(t)

= t−2

∫ t

0

ds

∫ t

0

dr

∫
µ(dz)E{0,ξ} [zη̃(r,s)

]
− θ2 + ε(t)

= θ(1 − θ) · t−2

∫ t

0

ds

∫ t

0

drP{0,ξ}[#η̃(r, s) = 1] + ε(t).

In the last step we used the ergodic theorem. We may now proceed as in Cox and Griffeath
(1983) (derivation of equation (2.2)) to infer the claim. 2

We are now able the to give the proof of the proposition.

Proof of Proposition 6.1

Part (a). Assume that a = ac, c > 1 is strongly recurrent. Substituting the results of
Lemma 6.2 and Lemma 6.5 in (6.24) we obtain

lim
t→∞

t−2Varµ[Tt(0)] = 4θ(1 − θ) lim
t→∞

t−2

∫ t

0

dv

∫ t−v

0

dw
(1 − α)2−αw−α

γ

α
Γ(1 + α)Γ(2 − α)

a

α
(2α − 1)vα

= 4θ(1 − θ)
1 − 2−α

Γ(1 + α)Γ(2 − α)

∫ 1

0

vα(1 − v)1−α dv

= 4θ(1 − θ)
1 − 2−α

2
,

where in the last step we have used Euler’s identity for the β-integral

∫ 1

0

vα(1 − v)1−αdv =
Γ(1 + α)Γ(2 − α)

Γ(3)
.

Part (b). Assume now that a is critical. Apply Lemma 6.7 to (6.24) to obtain

lim sup
t→∞

t−2Covµ[Tt(0), Tt(ξ)] (6.25)

= 4θ(1 − θ) · lim sup
t→∞

t−1h(1/t)−1

∫ t

0

dv

∫ 2v

v

ds p(s, 0, ξ)
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≤ 2θ(1 − θ) lim sup
t→∞

t−1h(1/t)−1

∫ t

0

s p(s, 0, 0) ds

= 0 by (2.12).

Indeed, let (cn) be as in (2.12). Fix ε ∈]0, 1[ and take t large enough that n = n(t) can
be chosen such that

cnN
n ≤ εt ≤ t ≤ anN

n. (6.26)

Then by (2.12)

t−1h(1/t)−1

∫ t

0

s p(s, 0, 0) ds ≤ ε+ t−1h(1/t)−1an

∫ t

εt

Nnp(s, 0, 0) ds
t→∞−→ ε. (6.27)

2
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Part III
The Branching Models

In this part we will investigate the long time behaviour of critical branching Brownian
motion and (finite variance) super Brownian motion (the so-called Dawson-Watanabe
process) on Rd. These processes are known to be persistent if d ≥ 3, that is there exist
nontrivial equilibrium measures. If d ≤ 2 they cluster, i.e. the resp. process converges to
the 0 configuration while the surviving mass piles up in so-called clusters.

We study the spatial profile of the clusters in the “critical” dimension d = 2 via
multiple space scale analysis. We will also investigate the long time behaviour of these
models restricted to finite boxes in d ≥ 2. On the way we develop coupling and comparison
methods for spatial branching models.

63
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1 Introduction

1.1 Background

For several interacting infinite particle and related models there is a dichotomy between
stability (i.e. nontrivial equilibrium measures exist) and clustering depending on tran-
sience resp. recurrence of the interaction kernel. So many infinite particle systems with
site space Zd or Rd and finite variance interaction are stable if d ≥ 3 and cluster if d = 1, 2.
This is well known e.g. for the voter model, linearly interacting diffusions with compact
state space, branching Brownian motion, Dawson-Watanabe process etc.

The dimension d = 2 is “critical” in the sense that the Green function of the interaction
kernel grows only on logarithmic scale and is thus “nearly finite”. In the critical dimension
the phenomenon of “diffusive clustering” occurs. This means clusters grow at a randomly
chosen algebraic scale of order tα, α ∈ [0, 1/2]. For many models the structure of the
clusters in the critical dimension is known. The voter model in Z

2 has been investigated
by Cox and Griffeath (1986). “Critical dimension” linearly interacting diffusions with
compact state space on the so-called hierarchical group have been studied by Fleischmann
and Greven (1994), Dawson and Greven (1993a, 1993b), Dawson, Greven and Vaillancourt
(1995) and in Part II of this work. The employed techniques to describe clusters cover
scaling, re-normalisation and the so-called interaction chain.

Non-compact models such as super random walk on Zd and linearly interacting Brow-
nian motions labelled by Zd have been treated by Winter (1995) and Kopietz (1995).

Clusters of branching Brownian motion have been been studied by Fleischman (1978)
and Lee (1991). Lee has rather precise statements for the dimension dependent rate
at which the height of clusters grows conditioned on (local) non-extinction (Thm. 2.4).
Lee does however not treat the question of spatial extension and profile of the clusters.
His results are obtained by studying sub- and super solutions of the partial differential
equation determining the Laplace functional.

The main point of this part is to determine the spatial profile of the clusters of branch-
ing and super Brownian motion in dimension d = 2. Unlike Lee (1991) we will not con-
dition on local non-extinction but follow a different route. The nivellation of the local
extinction will be obtained by “blowing up” the initial configuration. The “blow-up” also
enables us to to give a description of the finite system (considered next) in terms of the
so-called finite systems scheme (introduced by Cox and Greven (1990)) that emphasises
the similarities to other models.

In the theory of interacting particle systems a systematic treatment of the comparison
of finite to infinite systems in high dimensions can be found in Cox and Greven (1990)
and (1994b). The critical dimension voter model has been studied by Cox and Greven
(1991). Comparison of finite to infinite systems of linearly interacting diffusions labelled
by the hierarchical group in high and critical dimension can be found in Part II of this
work. In this part we will also relate the behaviour of our branching processes to that of
their finite versions, defined on d-dimensional tori, in both cases d ≥ 3 and d = 2.

One aim of this part is to exhibit how the clustering phenomenon can be studied with
probabilistic tools. Namely by techniques from the theory of infinite particle systems.
These will be applied to both branching particle systems and super processes. In par-
ticular we rely on moment calculations and develop coupling and comparison techniques
in Section 3. Thus our approach is completely different from Lee’s (1991) and provides
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a more probabilistic understanding of these processes. Also our methods might be more
easily adapted to related problems.

1.2 The Models

We only give a short heuristic description of the considered models. An extensive treat-
ment can be found in Dawson (1977) and (1993) and in Fleischman (1978). Nevertheless
we have to give the basic definitions for random measures first.

Basic Definitions for Random Measures

Let E be a locally compact polish space. By B(E) we denote the Borel σ-field on E. A
measure µ on B(E) is called locally finite if µ(K) <∞ for all bounded sets K ⊂ E. The
space

M(E) = {locally finite measures on E} (1.1)

is a polish space topologized by µn → µ iff 〈µn, f〉 → 〈µ, f〉 for all f : E → R continuous
with compact support. The space of random measures M1(M(E)) equipped with the
weak topology (denoted by “=⇒”) is also polish (see e.g. Kallenberg (1983)).

For a signed measure µ we denote by

‖µ‖ = ‖µ‖TV = sup{µ(B) − µ(E \B) : B ∈ B(E)}
the total variation of µ. We denote by Mf(E) the space of finite measures in M(E)

Mf(E) = {µ ∈ M(E) : µ(E) <∞}. (1.2)

The space of (non-negative) integer valued measure µ on B(E) will be denoted by

N (E) = {µ ∈ M(E) : µ(A) ∈ {0, 1, 2, . . . ,∞} ∀A ∈ B(E)}. (1.3)

The space of finite measures in N (E) is denoted by

Nf(E) = {µ ∈ N (E) : µ(E) <∞}. (1.4)

Branching Brownian Motion

Let (St)t≥0 be the semi group of a Feller process on E. We will consider a particle moving
on E according to (St) having an exponential life time with mean 1

c
. At the time of death,

with probability pk there will be an offspring of k particles, all located at the parent’s
position. The probability function (pk) is a basic data of the process. The offspring
behaves as k independent copies of the one-particle system started at time zero. The
process started in x ∈ E will be denoted by (ηxt )t≥0. Its state space is Nf(E).

For initial configuration η0 =

∞∑

i=1

δxi
(δx = Dirac-measure on x) in N (E) we define

ηt =
∞∑

i=1

ηit , (1.5)

where ((ηit)t≥0 , i ∈ N) are independent copies of (ηxi
t )t≥0. In the case p0 = p2 = 1

2
we will

refer to (ηt) as the critical binary branching process associated with (St). One main object
of consideration will be the critical binary branching Brownian motion on R

d (shorthand
BBM(Rd)).
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Dawson-Watanabe Process

Next we consider the short life time high density limit of binary branching processes. Let
x ∈ E and N ∈ N. Let (ηNt )t≥0 be the branching process corresponding to p0 = p2 = 1

2

with expected life time 1
cN

and with initial state ηN0 = N · δx. It is well known that the
diffusion limit

(ζxt )t≥0 = w − lim
N→∞

(
1

N
ζNt

)

t≥0

(1.6)

exists and is a Markov process with values in Mf(E) (see Dawson (1993), Section 4.4ff).
The total population ζxt (E) is known to be Feller’s branching diffusion (Zt/2). This is

the diffusion on [0,∞[ with generator

x
∂2

(∂x)2
. (1.7)

Hence the finiteness of ζxt is clear. Also P[ζxt (E) = 0]
t→∞−→ 1 since (Zt) is a martingale

and 0 is an absorbing boundary point.
Let ((ζxt )t≥0 , x ∈ E) be independent copies of this process with ζx0 = δx. For µ ∈

M(E) we can define (ζt)t≥0 with initial configuration ζ0 = µ by

ζt =

∫
ζxt µ(dx). (1.8)

The process (ζt) has values in M(E) and will be called the super process associated with
(St). Of particular interest will be super Brownian motion on Rd (short hand SBM(Rd)).

Another more analytic, though less intuitive, description is the following. For µ ∈
M(E) and φ : E → R measurable and µ-integrable or non-negative we write

〈µ, φ〉 =

∫
φ dµ. (1.9)

For φ : E → [0,∞[ bounded and measurable with compact support and for t ≥ 0 we
define the (nonlinear) operator Vt by

Vtφ = Stφ− 1

2
c

∫ t

0

St−s((Vsφ)2)ds. (1.10)

Then (ζt) is defined by its log-Laplace-semi group (Vt), this is by the relation

〈ζ0, Vtφ〉 = − logE[exp(−〈ζt, φ〉)]. (1.11)

A path wise construction of (ζt) can be found in Le Gall (1991).
From the scaling properties of Brownian motion on Rd and Feller’s diffusion (i.e.

Lρ/α[αZβ] = Lρ[Zαβ]) it is clear that SBM(Rd) has the following basic scaling property:
For α > 0 and µ ∈ M(Rd) let µ′(·) = αµ(α−1/2 ·). Then

Lµ′
[
α−1ζαt(α

1/2 ·)
]

= Lµ[ζt(·)]. (1.12)

In particular for d = 2 and µ = λ (Lebesgue measure on R2) this becomes

Lλ
[
α−1ζαt(α

1/2 ·)
]

= Lλ[ζt(·)]. (1.13)

For simplicity we will hence forward only consider (the expected life time) c−1 = 1.
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1.3 Basic Ergodic Theory

In the following we will state the results for BBM(Rd) and SBM(Rd) simultaneously. For
convenience we will thus denote by (ψt)t≥0 either BBM(Rd) or SBM(Rd). Also let for
ρ ≥ 0

M(ρ) =

{
H(ρ) if (ψt) is BBM(Rd)
ρ · λ if (ψt) is SBM(Rd)

, (1.14)

where λ is the (d-dimensional) Lebesgue measure and H(ρ) is a Poisson point process on
Rd with intensity ρ · λ.

It is well known (see Dawson (1977) and Fleischman (1978)) that if d = 1 or d = 2
then (ψt) clusters, i.e.

LM(ρ)[ψt]
t→∞
=⇒ δ0 ∀ ρ ≥ 0, (1.15)

where δ0 means the unit mass on 0 ∈ M(Rd).
For any d ≥ 3 (ψt) is persistent (or stable). This means that there exists a family

(νρ , ρ ≥ 0) , νρ ∈ M1(M(Rd)) of invariant (under the dynamics) measures such that

LM(ρ)[ψt]
t→∞
=⇒ νρ. (1.16)

Of course, the νρ depend on whether (ψt) is BBM(Rd) or SBM(Rd). In the first case
m ∈ N (E) νρ(dm)-a.s. The νρ have the following properties. νρ is translation invariant
and ergodic with intensity ρ, this is

∫
〈m,φ〉 νρ(dm) = ρ · 〈λ, φ〉 (1.17)

for φ : Rd → [0,∞[ measurable. By the additivity property (1.5) the νρ form a convolution
semi group

νρ+σ = νρ ∗ νσ, ρ, σ ≥ 0. (1.18)

Hence any νρ is infinitely divisible and thus allows a description via its canonical measure.
For details and proofs see Gorostiza and Wakolbinger (1991) Thm. 2.2 for ψt BBM(Rd)
and Dawson (1977) for SBM(Rd). For extension of the basic ergodic theory to more gen-
eral branching mechanisms and motion semi group see Gorostiza, Roelly and Wakolbinger
(1992). Extensions to initial configuration with infinite intensity or that are not trans-
lation invariant see Bramson, Cox and Greven (1993) and (1995) for the d = 1, 2 resp.
d ≥ 3 case for ψt BBM(Rd) and SBM(Rd).

2 Results

2.1 Cluster formation for d = 2

Since the branching mechanism has mean 1 the local extinction implies the existence of
relatively small areas where more and more mass piles up. We call this phenomenon
clustering. Our goal is to determine the spatial profile of the clusters. One a way to do so
is to condition a test set B on being in a cluster. This precise statement for (ψt) BBM(R2)
is given by Fleischman (1978)

log t

8π
PM(1)

[
ψt(B) >

log t

8π
|B|x

]
t→∞−→ e−x , x > 0, (2.1)
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where B ∈ B(R2). Roughly speaking, with probability 8π
log t

we see a cluster of “height”
log t
8π

- times an exponential mean 1 random variable. For BBM(R2) Lee (1991) has a
more precise statement (Thm 2.4) due to conditioning on ηt(B) > 0. Lee studies sub-
and super-solutions of Kolmogorov’s equation for the Laplace functional. His methods
probably apply to SBM but it is still open whether the same is true for branching random
walk on the lattice resp. linearly interacting Feller’s diffusions (super random walk).
This reflects the fact that difference equations are usually more difficult to treat than the
related differential equation.

Our approach to describe the structure of clusters is based on two concepts.

(1) Blow-up
At time t > 1 we define

ψ̃t = ψ̃0
t :=

8π

log t
ψt (2.2)

with

L[ψ0] = M̃(t) := M

(
log t

8π

)
. (2.3)

This serves first to obtain a nontrivial limiting probability of local non extinction.
Secondly the height of the clusters is scaled down to have a nontrivial limit.

(2) Spatial rescaling
For (ψt) BBM resp. SBM let I = [0, 1] resp. I =] −∞, 1]. We fix α ∈ I and define

(ψ̃αt ) by

ψ̃αt (B) := Sα,tψ̃t(B) := t−αψ̃t(t
α/2B), (2.4)

where Sα,t : M(R2) → M(R2), µ(·) 7→ t−αµ(tα/2 ·). As above we let ψ̃t = ψ̃0
t . This

is the right notion since clusters turn out to grow spatially as tα/2 for any α ∈ I.

Remark: Note that by blowing up and rescaling we do not loose too much information
on the family structure. This is because the blow-up is so smooth that by (2.1) in the
limit t→ ∞ we get a Poisson mean 1 number of families in each bounded set B ∈ B(R2).
On the other hand the spatial extension of a typical family is of order tα/2, α < 1 random.
Hence the rescaling does not cause an overlap of the families. The blow-up also proves
useful to give a description of the finite versions of our branching models that underlines
the similarities to other models.

Now we are able to formulate the first theorem (recall that (Zt) is Feller’s branching
diffusion defined in (1.7)).

Theorem 1 (Infinite System, d = 2)
Let (ψt) be either BBM(R2) or SBM(R2) and I = [0, 1] resp. I =] −∞, 1]. Fix α ∈ I.

Then the following holds

LM̃(t)[ψ̃αt ]
t→∞
=⇒ L1[Z1−α · λ]. (2.5)

Theorem 1 gives a first rough description of the profile of clusters. The averaging pro-
cedure induced by scaling however looses information about the spatial structure inside
blocks of size tα/2.
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Figure 1. The points (dotted centers of the small circles) are grouped at distances
growing at different scales tA(·)/2. The small circles represent the windows of observation
which also grow at different scales.

The next aim is to give a more detailed description of the clusters via multiple space
scales. That is, we want to look for different spatial scales on tuples of windows of
observation (see Figure 1). To describe this properly on a formal level we introduce a
rooted tree T (see Figure 2) and a space scale A associated with it.

Tree. We give the following representation of a (rooted) tree T. Let T be a finite set of
finite sequences with values in N. The root will be denoted by ∅ ∈ T. Let e, f ∈ T,
e = (e1, . . . , em), f = (f1, . . . , fn) (possibly m = 0 or n = 0) and l = max{k :
(e1, . . . , ek) = (f1, . . . , fk)} ∨ 0. We then define the minimum e ∧ f of e and f by

e ∧ f :=

{
∅ if l = 0

(e1, . . . , el) if l > 0.

We will assume that (e1, . . . , ek) ∈ T∀ k ≤ m whenever (e1, . . . , em) ∈ T. In particu-
lar this implies e∧f ∈ T∀ e, f ∈ T. T allows a partial ordering by e ≤ f if and only
if e = e ∧ f . The set of maximal elements in T will be denoted by TM . Note that
we do not exclude the case in which T is partially ordered, i.e. #TM = 1. In order
to avoid redundancy we will assume that (e1, . . . , em−1, g) ∈ T for g = 1, . . . , em
whenever (e1, . . . , em) ∈ T.
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Figure 2. Diagramm of the tree
T = {∅, (1), (2), (1, 1), (1, 2), (1, 2, 1), (1, 2, 2), (2, 1), (2, 2), (2, 3)}

Space scale. A pair L = (T, A) consisting of a tree T and a strictly decreasing map

A : T → I

(recall that I = [0, 1] resp. I =] − ∞, 1] in the case of BBM resp. SBM) will be
called a multiple space scale. Given a multiple space scale L = (T, A) we assume
that X = (xet , e ∈ T, t ≥ 0) is a family of points xet ∈ R2 such that

‖xet − xft ‖ ≈ tA(e∧f)/2, as t→ ∞.

By at ≈ bt we mean (log at)/(log bt)
t→∞−→ 1. We refer to X as to be L-spaced. Our

goal is to investigate the common distribution of (recall Sα,t from (2.4))

(SA(e),tTxe
t
ψ̃t)e∈T as t→ ∞,

where Tz : M(Rd) → M(Rd) is the translation by z, (Tzµ)(·) = µ(z + ·).

Feller tree. Let (Ze
t , e ∈ T)t≥0 be the following diffusion on RT. Each (Ze

t )t≥0 is a Feller
diffusion. For e, f ∈ T with e 6= f we let Ze

t = Zf
t for t ∈ [0, 1 − A(e ∧ f)]. For

t > 1 − A(e ∧ f) the evolutions of Ze
t and Zf

t shall be independent (see Figure 3).

Theorem 2 (Infinite System, Multiple Scale)
Let (ψt) be either BBM(R2) or SBM(R2). Then the following holds

(a) LM̃(t)
[
(SA(e),tTxe

t
ψ̃t)e∈T

]
t→∞
=⇒ L

[(
Ze

1−A(e) · λ
)
e∈T

]
.

In particular for T linear

(b) LM̃(t)
[
(ψ̃αt (B))α∈I

]
t→∞
=⇒
fdd

L1
[
|B| · (Z1−α)α∈I

]
, B ∈ B(Rd).

Remarks:

1. Since Ze
1−A(e) = Zf

1−A(e) for e ≤ f it would suffice to define (Ze
t ) only for e ∈ TM .

2. In order to understand why Theorem 2 should be true we draw a time-space picture
(see Figure 4). Consider a point (x, t) ∈ R

2 × [0,∞[ in the “four space” (which is
actually a “three space”). We want to investigate the events C(x, t) that form the
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Figure 3. A sample of (Ze
s )s≥0, e ∈ TM for

T = {∅, (1), (2), (1, 1), (1, 2), (1, 2, 1), (1, 2, 2), (2, 1), (2, 2), (2, 3)}

history of (x, t). Since Brownian motion at time s has range ∼ √
s we may roughly

set
C(x, t) = {(u, s), ‖u− x‖ ≤ (t− s)1/2, u ∈ R

2, s ∈ [0, t]}.
Now let for α ∈ [0, 1]

Cα(x, t) = C(x, t) ∩ (R2 × {t− tα})
be the events at time t−tα that may influence (x, t). Fix α ∈ [0, 1] and let (xt), (yt) ∈
R2 be such that ‖xt − yt‖ ∼ tα/2. Then for γ < α we have that Cγ(xt, t) and
Cγ(yt, t) are (asymptotically) completely disjoint. For β > α we have that Cβ(xt, t)
and Cβ(yt, t) (asymptotically) overlap completely. By the Markov property the the
common history is contained in Cα(xt, t) ≈ Cα(yt, t). After time t−tα the evolutions
leading to (xt, t) and (yt, t) are independent.

We have to justify that the information contained in Cα(xt, t) ≈ Cα(yt, t) is suffi-
ciently well described by the common value of Z1−α. Technically this done by show-
ing that the distribution of mass is not “too inhomogeneous”. A more philosophical
point of view would be the following. At each scale of observation quasi-equilibria
are exhibited that are determined by their density. Observation at different scales
shows a certain self-similarity of those quasi-equilibria. This is reflected by the fact
that the transition between scales is determined by a homogeneous Markov process.
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Figure 4. Historical cones for ‖xt − yt‖ ∼ tα/2

2.2 Finite Systems, Stable Case

Computer simulations of particle systems evidently have to be restricted to finite versions
of the model. On the other hand, finite systems can be considered in their own right.
They model a finite nature and the infinite system can be regarded as an idealisation for
analytical convenience only. So the questions arise: How well do finite systems approxi-
mate the infinite system (and vice versa)? How long can a finite system be observed until
it “feels” its finiteness and which effects of finiteness do occur?

We start with the definition of the finite versions of the d-dimensional BBM and SBM.
Fix d ∈ N and let Λd

t for t > 0 the torus of size t, that is

Λd
t := R

d/(tZd). (2.6)

We will regard Λd
t as the cube [0, t[d with periodic boundary conditions. Λd

t inherits the
Brownian motion (Xt,s)s≥0 from R

d. This is, (Xt,s) has transition densities

pt,s(x, y) =
∑

k∈Zd

ps(x, y + tk), (2.7)

where

ps(x, y) = (2πs)−d/2 exp

(
−‖x− y‖2

2s

)
(2.8)

is the transition density of d-dimensional Brownian motion. Finally denote by Mt(ρ),
Ht(ρ) etc. the restrictions of M(ρ), H(ρ) etc. to Λd

t .
The objects of interest will be critical binary branching Brownian motion (ηt,s)s≥0

on Λd
t (shorthand BBM(Λd

t )) and super Brownian motion (ζt,s)s≥0 on Λd
t (shorthand

SBM(Λd
t )). Again let (ψt,s)s≥0 be either BBM(Λd

t ) or SBM(Λd
t ). The behaviour of the

system is dictated by the empirical population density of the finite system

t−dψt,s(Λ
d
t ).

Note that we obtain
LMt(ρ)

[
t−dψt,T (t)(Λ

d
t )
] t→∞

=⇒ Lρ[Zσ/2], (2.9)
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if the observation time T (t) satisfies

t−dT (t)
t→∞−→ σ , σ ∈ [0,∞]. (2.10)

The idea of how to describe stable, i.e. d ≥ 3, finite systems is suggested by Cox and
Greven (1990) and (1994b): The system is dominated by the macroscopic variable of the
empirical population density. Roughly speaking it relaxes to the “equilibrium state” νθ
with intensity θ, given that the empirical population density is θ. This relaxation takes
place faster than the fluctuation of the empirical population density.

Thus by (2.9) td is the right time scale to look at the finite system. At this scale the
empirical population density becomes random.

With these heuristics we are prepared for (recall νρ from (1.16))

Theorem 3 (Finite System, Stable Case)
Let d ≥ 3 and (ψt,s)s≥0 be either BBM(Λd

t ) or SBM(Λd
t ). Fix σ ∈ [0,∞] and T (t) such

that t−dT (t)
t→∞−→ σ. Then the following holds

LMt(ρ)
[
ψt,T (t)

] t→∞
=⇒

∫ 1

0

Pρ[Zσ/2 ∈ dθ]νθ. (2.11)

2.3 Finite Systems, Critical Dimension

In dimension d = 2 we have to modify the ideas developed above in the fashion of rescaling
presented in Subsection 2.1.

Fix α ∈ I and let for s, t > 1 (recall (2.4))

ψ̃αt,s(B) =
8π

log s
s−αψt,s

(
(sα/2B) ∩ Λ2

t

)
, B ∈ B(R2). (2.12)

Denote by M̃t(s) the restriction of M̃(s) to Λ2
t . Then

LM̃t(T (t))
[
ψ̃t,T (t)(Λ

2
t )
]
t→∞
=⇒ L1[Z4πσ], (2.13)

if the observation time T (t) satisfies

T (t)

β(t)

t→∞−→ σ , σ ∈ [0,∞]. (2.14)

Here
β(t) = t2 log t. (2.15)

It is due to the blow-up that t2 log t is the right time scale to be used in the critical
dimension. Many models in the critical dimension show a behaviour similar to (2.13).
Namely linearly interacting diffusions with compact state space (Fisher-Wright, Fleming-
Viot etc.), the voter model, etc. Interacting diffusions have been investigated in the “crit-
ical dimension” on the so-called hierarchical group by Fleischmann and Greven (1994),
Dawson and Greven (1993a, 1993b), Dawson, Greven and Vaillancourt (1995) and in Part
II of this work. Cox (1989) and Cox and Greven (1991) treat the voter model on Z2. The
point seems to be that the Greens function of the interaction kernel is growing so slowly
that taking the block averages is asymptotically the same as re-normalisation. Thus the
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role of the limiting diffusion (here the Feller diffusion in (2.13)) is played by the fixed
point of the re-normalisation (see also Baillon et al. (1995)). The appropriate time scale
in these models is the volume of the finite box times the recurrent potential kernel of the
interaction kernel, maximised over the resp. finite box. For an extensive treatment of this
latter point see Part II, Theorem 1.

Having in mind the proceeding of Subsection 2.1 the finite versions of Theorem 1 and
2 are easy to guess.

Theorem 4 (Finite System, d = 2)
Let (ψt,s)t,s be either BBM(Λ2

t ) or SBM(Λ2
t ) and I = [0, 1] resp. ]−∞, 1]. Fix σ ∈ [0,∞]

and T (t) such that T (t)/β(t)
t→∞−→ σ. Then the following holds

LM̃t(T (t))
(
ψ̃αt,T (t)

)
t→∞
=⇒

∫ ∞

0

P1[Z2πσ ∈ dρ]Lρ[Z1−α] = L1[Z2πσ+1−α], α ∈ I. (2.16)

Remark: Cox and Greven (1991) suggested to study the asymptotics of occupation
times for the related model of branching random walk on Z2. Note that our result is more
detailed than a description of the occupation time in that a time average is not made.

Let L = (T, A) be a multiple space scale and let X = (xet , e ∈ T, t ≥ 0) be L-scaled.

Theorem 5 (Finite System, Multiple Scale)
Under the conditions of Theorem 4 the following holds

(a) LM̃(t)
[(

SA(e),T (t)Txe
t
ψ̃t,T (t)

)
e∈T

]
t→∞
=⇒

∫∞
0

P1[Z2πσ ∈ dρ]Lρ
[(
Ze

1−A(e) · λ
)
e∈T

]
.

In particular for T linear

(b) LM̃t(T (t))
[
(ψ̃αt,T (t)(B))α∈I

]
t→∞
=⇒
fdd

L1
[
|B| · (Z2πσ+1−α)α∈I

]
, B ∈ B(Rd).

2.4 Outline

The rest of Part III is organised as follows. In Section 3 we will collect some tools needed
later. This includes moment formulas, coupling techniques and comparison techniques.
In Section 4 we prepare for the proof of Theorem 1 with an, admittedly, rather tedious
moment calculation. Theorem 1 will be proved in Section 5. There we also apply the
refined coupling methods in order to prove Theorem 2. In Section 6 the finite version
theorems are proved with the comparison techniques from Section 3.

3 Basic Tools

In this section we develop the following tools for the investigation of the long time be-
haviour of our branching processes:

• We give a general basic coupling lemma and then give its applications to the special
setting of an underlying Brownian motion. A further refinement will be obtained
by the so-called local coupling (Lemma 3.5). This is the main result of this sec-
tion. It serves to speed up the coupling. Hence it overcomes the difficulty that
the subsequently given comparison technique works only for times L(t) of order
L(t) ≪ t2.



3. BASIC TOOLS 75

• A simple comparison technique

• n−th moment (recursion) formulas

For logical reasons we start with the presentation of the moment formulas.

3.1 Moment Formulas

Let E be either Rd or Λd
t . We will develop recursion formulas for the moments of BBM(E)

and SBM(E).
We start with (ηt)t≥0 BBM(E).

Lemma 3.1 (Moment Formula, BBM) Let (ηt)t≥0 be a BBM(E), where E is Λd
t resp.

Rd. Denote by (St)t≥0 the semigroup of Brownian motion on E.

(a) For n ∈ N, x ∈ E and φ : E → R measurable and bounded or non-negative the n-th
moment fulfils the following recursion formula

Ex[〈ηt, φ〉n] = 〈δx, Stφ〉+
1

2

n−1∑

k=1

(
n

k

) t∫

0

St−s
(
E·[〈ηs, φ〉k]E·[〈ηs, φ〉n−k]

)
(x) ds. (3.1)

In particular the first and second moments are

Ex [〈ηt, φ〉] = 〈δx, Stφ〉 (3.2)

Ex
[
〈ηt, φ〉2

]
= 〈δx, Stφ〉 +

〈
δx,

∫ t

0

St−s((Ssφ)2) ds

〉
. (3.3)

(b) For µ ∈ Nf(E), or µ ∈ N (E) and φ with compact support, the first and second
moments are

Eµ [〈ηt, φ〉] = 〈µ, Stφ〉 (3.4)

Eµ
[
〈ηt, φ〉2

]
= 〈µ, Stφ〉2 +

〈
µ,

∫ t

0

St−s((Ssφ)2) ds

〉
+
〈
µ, St(φ

2) − (Stφ)2
〉
.(3.5)

Proof For f : Nf → R in the domain of the generator of BBM(Rd) f(ηt) fulfils the
following Kolmogorov backward equation

∂

∂t
Eδx [f(ηt)] =

1

2
∆Eδx [f(ηt)] +

1

2
E2δx [f(ηt)] +

1

2
E0 [f(ηt)] −Eδx [f(ηt)] , (3.6)

where ∆ denotes the Laplace operator with respect to x and 0 ∈ Nf(E) means the zero
measure. (Here and in the sequel we use Ex for Eδx to avoid double subscripts.) In
particular for φ : E → [0,∞[ twice continuously differentiable, n ∈ N and f(µ) = 〈µ, φ〉n
equation (3.6) becomes (using the independence of the particles)

(
∂

∂t
− 1

2
∆

)
Ex [〈ηt, φ〉n] =

1

2

n−1∑

k=1

(
n

k

)
Ex[〈ηt, φ〉k]Ex[〈ηt, φ〉n−k]. (3.7)

Integrating this yields (3.1). By an approximation argument (3.7) holds for φ : E → R

measurable and bounded or non-negative.
For the part (b) note that by the independence of the particles

Eµ[〈ηt, φ〉2] = 〈µ, Stφ〉 +

∫
µ(dx)Varx[〈ηt, φ〉] (3.8)

and use part (a). 2
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We continue with a moment recursion formula for SBM(E).

Lemma 3.2 (Moment formula, SBM)
Let (ζt)t≥0 be a SBM(E), where E is Λd

t resp. Rd. Recall that (St)t≥0 is the semigroup of
Brownian motion on E. Let φ : E → R be bounded, measurable and with compact support
and be µ ∈ M(E). Then for t ≥ 0 and n ∈ N

Eµ[〈ζt, φ〉n] =
n−1∑

k=0

(
n− 1

k

)
〈µ, u(n−k)(t)〉Eµ[〈ζt, φ〉k], (3.9)

where u(n)(t) : Rd → R is defined by

u(n)(t) =





Stφ , n = 1

1

2

n−1∑

k=1

(
n

k

)∫ t

0

St−s
(
u(k)(s)u(n−k)(s)

)
ds , n ≥ 2.

(3.10)

In particular the first and second moments are

Eµ[〈ζt, φ〉] = 〈µ, Stφ〉 (3.11)

Eµ[〈ζt, φ〉2] = 〈µ, Stφ〉2 +

〈
µ,

∫ t

0

St−s((Ssφ)2) ds

〉
. (3.12)

Note that the first moment coincides with that of BBM while the second moment of
BBM is greater than that of SBM. This reflects the fact that the “motion part” of SBM
is deterministic while that of BBM is random.

The result and the idea of the proof can be found in Dawson (1993), Lemma 4.7.1.
Unfortunately there are some misprints. So we give the proof in detail.
Proof Recall from (1.11) that (Vt) is the log-Laplace-semigroup of (ζt). Also recall that
we assumed c = 1 in (1.10).

For θ ≥ 0 and n ∈ N let

u(n)(t, θ) = (−1)n−1 ∂n

(∂θ)n
Vt(θφ) (3.13)

and
u(0)(t, θ) = −Vt(θφ).

We can calculate u(n)(t, θ) recursively with (1.10)

u(n)(t, θ) =





Stφ , n = 1

1

2
c

∫ t

0

St−s

(
n∑

k=0

(
n

k

)
u(k)(s, θ)u(n−k)(s, θ)

)
ds , n ≥ 2.

(3.14)

Differentiating (1.11) w.r.t. θ yields

〈µ, u(1)(t, θ)〉Eµ [〈ζt, φ〉 exp(−θ〈ζt, φ〉)] = Eµ [exp(−θ〈ζt, φ〉)] . (3.15)

Differentiate equation (3.15) (n− 1)-times w.r.t. θ to obtain

Eµ [〈ζt, φ〉n exp(−θ〈ζt, φ〉)] =
n−1∑

k=0

(
n− 1

k

)
〈µ, u(n−k)(t, θ)〉Eµ

[
〈ζt, φ〉k exp(−θ〈ζt, φ〉)

]
.

(3.16)
Evaluating (3.16) at θ = 0 yields the assertion. 2
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3.2 Coupling

In this subsection we shall construct two different couplings for our processes, the so-called
basic coupling lemma (Lemma 3.3) and the local coupling (Lemma 3.5). On the way we
recall in Lemma 3.4 the usual coupling for Brownian motions. We start explaining the
notion of coupling in general.

Let (St)t≥0 be the semigroup of a Feller process on the polish space E. By a coupling
we mean a bivariate Feller process (Xt, Yt)t≥0 such that (Xt) and (Yt) are each copies
of a Feller process with semigroup (St). These copies need not be independent and in
general will not. Note this definition is more general than the usual. In particular our
coupling needs not be successful. In fact, we will use different notions of the “success” of
a coupling.

Let
τ = inf{t ≥ 0 : Xt = Yt}. (3.17)

We say that the coupling is successful for (x, y) ∈ E × E if

P(x,y)[τ <∞] = 1 (3.18)

and

P(x,y)[{Xt 6= Yt} ∩ {τ < t}] = 0 ∀ t ≥ 0. (3.19)

We come to the first coupling (basic coupling). It deals with the coupling of two
deterministic initial configurations µ1 and µ2.

Let µ1, µ2 ∈ Mf(E) and let H be a non-negative random variable such that

L(x,y)[τ ] ≤ L[H ] stochastically for µ1 ⊗ µ2-almost all (x, y) (3.20)

and assume that (3.19) holds. For A ∈ B(E) let

Ct(A) = sup{(St1IA)(x), x ∈ supp(µ1 + µ2)}.

Let (γ1
t )t≥0 and (γ2

t )t≥0 be binary branching processes resp. super processes associated
with (St). In the former case we will also assume that µ1, µ2 ∈ Nf(E).

Lemma 3.3 (Basic Coupling)
There exists a coupling (γ1

t , γ
2
t )t≥0 with γ0 = (µ1, µ2) that is successful in the sense that

E
[∥∥∥(γ1

t − γ2
t )
∣∣∣
A

∥∥∥
]
≤ Ct(A) ·

∣∣∣‖µ1‖ − ‖µ2‖
∣∣∣ + 2 min(‖µ1‖, ‖µ2‖) · P[H > t]. (3.21)

In particular for ‖µ1‖ = ‖µ2‖

E
[∥∥(γ1

t − γ2
t )
∥∥] ≤ 2‖µ1‖ · P[H > t]. (3.22)

Proof W.l.o.g. we may assume ‖µ1‖ ≤ ‖µ2‖. We make the decomposition

µ2 = µ̄2 + µ̃2

with ‖µ̄2‖ = ‖µ1‖. Then (3.20) holds with µ2 replaced by either µ̄2 or µ̃2. It is clear (by
the first moment formulas of the previous subsection) that (3.21) holds for any coupling
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γ̃t = (γ̃1
t , γ̃

2
t ) with γ̃0 = (0, µ̃2). Thus if we can show (3.22) for (γ̄t) with γ̄0 = (µ1, µ̄2) we

are done by setting γit = γ̄it + γ̃it, i = 1, 2.
Thus we will now assume ‖µ1‖ = ‖µ2‖. Let µ ∈ Mf(E × E) (resp. µ ∈ Nf(E × E))

with marginals µ1(·) = µ(· ×E) and µ2(·) = µ(E × ·). Let (Xt, Yt)t≥0 and τ be as above.
Then we have by assumption

P(x,y)[Xt 6= Yt] ≤ P[H > t] for µ-almost all (x, y). (3.23)

Define (γt)t≥0 to be the critical branching (resp. super) process on E×E associated with
the bivariate process (Xt, Yt)t≥0 on E×E. For t ≥ 0 we have that γt is in Mf(E×E) resp.
Nf(E×E) almost surely. Let γ1

t (·) = γt(·×E) and γ2
t (·) = γt(E×·) be its marginals. Since

the branching mechanism is spatially homogeneous it is clear that (γ1
t )t≥0 and (γ2

t )t≥0 are
critical branching (resp. super) processes associated with (Xt) resp. (Yt). Thus (γ1

t ) and
(γ2
t ) are both associated with (St).
Denote by D = {(x, x) : x ∈ E} the diagonal in E × E. Then

Eµ
[∥∥γ1

t − γ2
t

∥∥] ≤ Eµ[γt((E × E) \D)] ≤ ‖µ‖ · P[H > t]. (3.24)

2

We come back to the special situation E = Rd or E = Λd
t and (Ss)s≥0 the semigroup of

Brownian motion on E. In this case there exists a successful coupling:

Lemma 3.4 Let E be either Λd
t or Rd and let R > 0. For x, y ∈ E with ‖x − y‖ ≤ R

there exists a coupling (W 1
s ,W

2
s )s≥0 for the (standard) Brownian motion on E such that

P(x,y)
[
W 1
s 6= W 2

s

]
≤
√

1

π
R · s−1/2. (3.25)

Proof We may assume E = Rd since on Λd
t the coupling works even better. By translation

and orthogonal transformation we may also assume x = 0 and y = (r, 0, . . . , 0) with
r = ‖x− y‖ ≤ R.

If d ≥ 2 we let
W i
s = (Y i

s , Zs), i = 1, 2. (3.26)

Here (Zs)s≥0 is a Brownian motion on R
d−1 with Z0 = 0. (Y 1

s )s≥0 and (Y 2
s )s≥0 are

Brownian motions on R that move independently until they first meet and then move
together. The initial points are Y 1

0 = 0 and Y 2
0 = r. In the case d = 1 we simply let

(W i
s) = (Y i

s ), i = 1, 2.
Let H = 1

2
inf{s ≥ 0 : Y 2

s = 0}. Then (since Y 2
s − Y 1

s is a Brownian motion running
at double speed)

L[inf{s ≥ 0 : W 1
s = W 2

s }] = Lr[H ]. (3.27)

By the reflection principle

Pr[H > s] =

√
2

π

r/
√

2s∫

0

e−u
2/2 du ≤

√
1

π
Rs−1/2. (3.28)

2
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The aim is now to couple the evolution of (ψs)s≥0 started from two different (random)
configurations. In the context of our problem one of those laws is only vaguely known
since it will be the result of long-time evolution of a (ψs)-type process. The other will
be better known and will typically be M(ρ′). Here the (random) value ρ′ is obtained by
some averaging over the first configuration. The details follow in the subsequent sections.

Since supp(γ1 + γ2) will typically be too large to apply Lemma 3.4 directly we have
to construct a local coupling. The idea is the following.

We start with a translation invariant initial configuration. Thus the support is large.
In order to apply Lemma 3.4 successfully we divide E into boxes of length R > 0. We
do the coupling independently in each box according to Lemma 3.4. Finally we have to
shift the pattern of boxes by a random offset z ∈ [0, R[d in order to obtain a translation
invariant coupling.

Let Q = Q(dγ1, dγ2) ∈ M1(M(E) ×M(E)) be translation invariant. Fix R > 0. In
the case E = Λd

t we will assume that t/R =: N ∈ N.

Lemma 3.5 (Local Coupling)
There exists a (translation invariant) coupling (ψ1

s , ψ
2
s)s≥0 of BBM(E) resp. SBM(E)

with
L[(ψ1

0, ψ
2
0)] = Q (3.29)

and such that

E
[∥∥∥(ψ1

s − ψ2
s )
∣∣∣
A

∥∥∥
]

(3.30)

≤ |A| · 1

Rd

[
E
[∣∣(ψ1

0 − ψ2
0)([0, R[d)

∣∣]+ E
[
(ψ1

0 + ψ2
0)([0, R[d)

]
·
√
d

π
R · s−1/2

]
.

Proof Fix an initial configuration (µ1, µ2) ∈ M(E) ×M(E). Let

Ck = kR + [0, R[d (3.31)

for k ∈ Z
d resp. k ∈ {0, . . . , N − 1}d. Let

µik = µi1ICk
, i = 1, 2 for each k. (3.32)

We want to use the independence in the branching systems to obtain a coupling
(γ1
k,s, γ

2
k,s)s≥0 for µ1

k and µ2
k for each k separately. Fix k. We apply Lemma 3.3 and

Lemma 3.4 with A = E (note that two points in Ck have distance at most R
√
d ) to get

E(µ1
k ,µ

2
k)
[∥∥γ1

k,s − γ2
k,s

∥∥] ≤
∣∣∣‖µ1

k‖ − ‖µ2
k‖
∣∣∣+ 2 min(‖µ1

k‖, ‖µ2
k‖) ·

√
d

π
R · s−1/2. (3.33)

Integrating (3.33) with respect to Q(dµ1, dµ2) and using translation invariance we get

E
[∥∥γ1

k,s − γ2
k,s

∥∥] ≤ E
[∣∣∣(ψ1

0 − ψ2
0)(C0)

∣∣∣
]

+ E[(ψ1
0 + ψ2

0)(C0)] ·
√
d

π
R · s−1/2 =: ε. (3.34)

If we let γis =
∑

k γ
i
k,s, i = 1, 2 then L[(γ1

0 , γ
2
0)] = Q and (by translation invariance)

E

[∥∥∥∥(γ
1
s − γ2

s )
∣∣∣
Ck

∥∥∥∥
]
≤ ε ∀ k. (3.35)
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In order to get a translation invariant coupling we pick z ∈ C0 at random and shift the
“grid” RZ

d by z: For z ∈ C0 define (γis(z))t≥0, i = 1, 2 as above with Ck replaced by
Ck(z) = z + Ck. Let

L[ψis] =
1

Rd

∫

C0

L[γis(z)] dz, i = 1, 2. (3.36)

Then (ψ1
s , ψ

2
s) is a coupling with the asserted properties: (3.29) holds because it holds

for each (ψ1
0(z), ψ

2
0(z)), z ∈ C0. By construction E

[∥∥∥(ψ1
s − ψ2

s)
∣∣∣
B

∥∥∥
]

is translation invari-

ant on E as measure in B. Hence it is a multiple of the Lebesgue measure on E. By
(3.35) its density is ≤ ε.

2

Corollary 3.6 Let Q ∈ M1(M(Λd
t )×M(Λd

t )) resp. M1(N (Λd
t )×N (Λd

t )) be translation
invariant with

ρ := t−d
∫
γ1(Λd

t )Q(dγ1, dγ2) <∞. (3.37)

Given γ1 under Q(dγ1, dγ2) the distribution of γ2 shall be Mt(ρ
′) with ρ′ := t−dγ1(Λd

t ).
Let further N ∈ N, R = t/N and ε > 0 such that

E[|γ1(Λd
t ) −Ndγ1([0, R[d)|] < εtd. (3.38)

Then there exists a coupling (ψ1
t,s, ψ

2
t,s)s≥0 of BBM(Λd

t ) resp. SBM(Λd
t ) with L[(ψ1

t,0, ψ
2
t,0)] =

Q and such that for B ∈ B(Λd
t ) and s ≥ 0

E
[∥∥∥(ψ1

t,s − ψ2
t,s)
∣∣∣
B

∥∥∥
]
≤ |B| ·

[
ε+ 2

√
ρR−d + 2

√
d

π
ρR · s−1/2

]
. (3.39)

Proof In the case of SBM clearly E[|(ψ1
t,0 −ψ2

t,0)([0, R[d)|] ≤ εRd. Consider now the case
of BBM. Note that for a Poisson random variable X with mean θ > 0

E[|X − θ|] ≤
√
θ +

1√
θ
Var[X] = 2

√
θ. (3.40)

By this and Jensen’s inequality we obtain

E
[∣∣(ψ1

t,0 − ψ2
t,0)([0, R[d)

∣∣] ≤ εRd + E
[∣∣γ2([0, R[d) −N−dγ1(Λd

t )
∣∣] (3.41)

≤ εRd + 2E

[√
N−dγ1(Λd

t )

]

≤ εRd + 2
√
ρRd .

Now apply Lemma 3.5. 2

Corollary 3.7 Let S > R > 0 and E = Rd. Consider (ψ1
s)s≥0 BBM(Rd) resp. SBM(Rd).

Assume that L[ψ1
0 ] is translation invariant and that ε, δ > 0 and 0 < ρ < ∞ are chosen

such that

E[ψ1
0([0, 1[d)] = ρ

E[|R−dψ1
0([0, R[d) − S−dψ1

0([0, S[d)|] < ε

E[|ψ1
0([0, S[d) − ψ1

0(S(z + [0, 1[d))|] < δSd ∀ z ∈ [−1, 1]d.
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Then there exists a coupling (ψ1
s , ψ

2
s)s≥0 such that

L[ψ2
0

∣∣∣ψ1
0] = M(S−dψ1

0([0, S[d)) (3.42)

and

E[‖(ψ1
s − ψ2

s)
∣∣∣
B
‖] ≤ |B| ·

[
ε+ 3δ + d e−D

2/2s + 2
√
ρR−d + 2

√
d

π
ρRs−1/2

]
, (3.43)

where B ∈ B(Rd), B ⊂ [0, S[d and D = dist(B,Rd \ [0, S[d).

Proof If the common distribution of ψ1
0 and ψ2

0 was translation invariant we could argue
as in Corollary 3.6. However, in general it is not. So we have to work a little more. The
aim is to construct a third process (ψ3

s)s≥0 such that L[ψ1
0, ψ

3
0 ] is translation invariant

while ψ2
s and ψ3

s are close. Here are the details.

Let for γ ∈ M(Rd) and z ∈ Rd

Γ(z, γ) =
∑

k∈Zd

M(S−dγ(S(z + k + [0, 1[d))) · 1IS(z+k+[0,1[d) (3.44)

and

L[ψ3
0|ψ1

0 ] =

∫

[0,1[d
Γ(z, ψ1

0) dz.

Then clearly (by a suitable coupling of the Poisson processes in (3.44) and (3.42) in the
case of BBM) we can assume

E[‖(ψ3
0 − ψ2

0)
∣∣∣
A
‖] ≤ δ|A|, A ⊂ [0, S[d, (3.45)

which implies that we can couple (ψ2
s) and ψ3

s) such that

E[|(ψ3
s − ψ2

s )(B)|] ≤ δ|B| + 2ρ

∫

Rd\[0,S[d

dx

∫

B

dy ps(x, y) (3.46)

≤ |B|(δ + 2ρd e−D
2/2s).

(This coupling is done by defining three independent processes with initial configurations
ψ2

0 ∧ ψ3
0 , (ψ2

0 − ψ3
0)

+, (ψ2
0 − ψ3

0)
−.) As in (3.41) we get

E[|(ψ3
0 − ψ1

0)([0, R[d)|] ≤ E
[∣∣ψ3

0([0, R[d) −E[ψ3
0([0, R[d)]

∣∣] (3.47)

+E
[
|ψ1

0([0, R[d) −E[ψ3
0([0, R[d)

∣∣∣ψ1
0]|
]

≤ 2
√
ρRd + (ε+ δ)Rd.

Now apply Lemma 3.5 to (ψ1
0, ψ

3
0). 2
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3.3 Comparison

In this subsection we compare the finite versions of our branching processes to their infinite
versions. We show that the finite system is not “too far off” from its infinite counterpart
if the time L(t) of observation is not too large. Unfortunately “not too large” here means
L(t) ≪ t2. Hence the obtained comparison result is not at all surprising. However, with
the strong tool of local coupling this will be sufficient for our purposes.

Lemma 3.8 (Comparison) Let t ≥ 0 and A ∈ B(Λd
t ) such that D = 1

2
(t− diam(A)) >

0. There exist two BBM resp. SBM (ψ1
s)s≥0 on Rd and (ψ2

t,s)s≥0 on Λd
t on one probability

space such that for s > 0

ψ1
0 = M(ρ) and ψ2

t,0 = Mt(ρ) (3.48)

and

E
[∣∣ψ1

s(A) − ψ2
t,s(A)

∣∣] ≤ 2d exp

(
−D

2

2s

)
· ρ|A|

√
s

D
. (3.49)

In particular for a sequence L(t) ≪ t2 and At = tα/2A, α ∈ [0, 2[ we get uniformly in
ρ > 0

t−dα/2

ρ|A| E
[∣∣ψ1

L(t)(t
α/2A) − ψ2

t,L(t)(t
α/2A)

∣∣] t→∞−→ 0. (3.50)

Proof W.l.o.g. we may assume that A is centered in Λd
t such that

sup{‖x− y‖, x ∈ A, y ∈ R
d \ Λd

t} ≤ 1

2
(t− diam(A)).

For m ∈ Zd let (γms )s≥0 be independent BBM(Rd) resp. SBM(Rd) with (independent)
initial configurations

L[γm0 ] = M(ρ) · 1It(m+[0,1[d). (3.51)

Let
ψ1
s(·) =

∑

m∈Zd

γms (·) and ψ2
t,s(·) =

∑

m∈Zd

γ0
s (mt + ·). (3.52)

Then (ψ1
s) and (ψ2

t,s) are as asserted and we have to show (3.49). By construction

E
[∣∣ψ1

s (A) − ψ2
t,s(A)

∣∣] ≤
∑

m∈Zd\{0}
E[γms (A)] + E[γ0

s (mt + A)] (3.53)

= 2
∑

m∈Zd\{0}
E
[
γ0
s (mt + A)

]

= 2ρ

∫

Rd\Λd
t

dx

∫

A

dy ps(x, y)

≤ 2ρ|A|P0
[
‖Ws‖ ≥ D

]
,

where (Ws)s≥0 is a standard Brwonian motion on Rd. The proof of (3.49) is now a standard
estimate while (3.50) is an immediate consequence of (3.49). 2
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4 Moment Calculations in the Critical Dimension

In this section we give the asymptotics of the moments of BBM(R2) and SBM(R2). We will
obtain bounds for the moments as well. These allow us to express the Laplace transform
in terms of the moments in the next section.

Fix B ∈ B(R2) and let for t ≥ 0

Bt = Bα,t = tα/2B. (4.1)

Now for n ∈ N, x ∈ R2, s ≥ 0 and t > 1 let

mn(x, s, t) = mn(x, s, t, α) = Ex [(ψs(Bα,t))
n] (4.2)

m̃n(x, s, t) = m̃n(x, s, t, α) =
s

(log s)n−1
t−nαEx [(ψs(Bα,t))

n] . (4.3)

By Ex we mean of course the expectation when the initial configuration is δx ∈ Nf(R
2).

Let (recall pt from 2.8)

ϕ(x) = p1(0, x) =
1

2π
exp

{
−‖x‖2/2

}
, x ∈ R

2. (4.4)

Although an abuse of notation no problems will arise by suppressing the dimension in the
notation. Fix x ∈ R2 and three non-negative sequences (at) ↓ 0, (bt) ↓ 0 and (ct) ↑ ∞.

Lemma 4.1 Let B ∈ B(R2) be bounded.

(a) Uniformly in β such that 1 ≥ β ≥ α and uniformly in the sequences (xt)t≥0 and
(st)t≥0 such that ∣∣∣∣

xt√
st

− x

∣∣∣∣ < at (4.5)

and ∣∣∣∣
log st
log t

− β

∣∣∣∣ < bt (4.6)

and such that st > tαct the following holds

lim
t→∞

m̃n(xt, st, t, α) = ϕ(x)

(
1 − α

β

)n−1 |B|nn!

(8π)n−1
(4.7)

and

lim
t→∞

1

st

∫

R2

m̃n(y, st, t, α) dy =

(
1 − α

β

)n−1 |B|nn!

(8π)n−1
. (4.8)

(b) There exists Γ <∞ such that

sup
t:t≥st≥3

sup
n∈N

1

n!Γn
m̃n(xt, st, t, α) <∞ (4.9)

and

sup
t:t≥st≥3

sup
n∈N

1

n!Γn
1

st

∫

R2

m̃n(y, st, t, α) dy <∞. (4.10)
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Proof Throughout this proof we will suppress the α where no ambiguities may occur.
Our main tool is the moment recursion formula for BBM(Rd)

Ex[(ηs(A))n] = Ex[ηs(A)] (4.11)

+
1

2

n−1∑

k=1

(
n

k

)∫ s

0

du

∫

R2

dy ps−u(x, y)E
y[(ηu(A))k]Ey[(ηu(A))n−k] ∀A ∈ B(R2),

(this is (3.1) with φ = 1IA). In particular, for A = Bα,t equation (4.11) becomes

mn(x, s, t) = m1(x, s, t)+
1

2

n−1∑

k=1

(
n

k

) s∫

0

du

∫

R2

dy ps−u(x, y)mk(y, u, t)mn−k(y, u, t). (4.12)

Compare this with the moment formula for SBM(Rd) given in Lemma 3.2. Since the
leading terms coincide it suffices to prove the assertion for the case (ψt) = (ηt) is BBM(R2).
Note that for the case (ψt) SBM also the existence of Γ with the asserted properties also
follows easily from the existence in the case considered here.

We start with the proof of part (a). The proof follows an idea of Durrett (1979) (proof
of Thm. 8.1). We proceed by induction over n using (4.12). To do so we cut the left
and right side of the domain [0, st] of integration. In the remaining term we may use the
asymptotics (4.7) and (4.8). On the other hand the error terms from the truncation of the
domain of integration will be estimated by the following bounds. These will be proved
successively in the course of the induction.

We show the existence of constants Cn, Dn and En (depending on B) with

sup
t≥s≥u≥3

y∈R2

1

u

∫

R2

(s− u)ps−u(y, z)m̃n(z, u, t)dz ≤ Cn, (4.13)

sup
t≥u≥3

y∈R2

m̃n(y, u, t) ≤ Dn, (4.14)

and

sup
t≥s≥3

1

s

∫

R2

dy m̃n(y, s, t) ≤ En. (4.15)

For n = 1 the assertions clearly hold because

m̃1(xt, st, t) = t−αst

∫

Bt

pst(x, y)dy
t→∞−→ ϕ(x)|B|, (4.16)

1

st

∫

R2

m̃1(y, st, t) dy = t−α
∫

Bt

dy

∫

R2

dz pst(z, y) (4.17)

= t−α
∫

Bt

dy = |B|,

1

s

∫

R2

(s− u)ps−u(y, z)m̃1(z, u, t) dz =
s− u

s
ut−α

∫

Bt

ps(y, z) dz ≤
s− u

s

u

s
|B| ≤ |B|, (4.18)
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m̃1(y, u, t) = ut−α
∫

Bt

pu(y, z) dz ≤ |B|, (4.19)

and
1

s

∫

R2

m̃1(y, s, t) dy = t−α
∫

R2

dy

∫

Bt

dz ps(y, z) = |B|. (4.20)

We will also need the following bound for the moments of the total mass

Ex[(ηt(R
2))n] ≤ Fn · (t+ 1)n−1, (4.21)

where Fn = n!. For n = 1 this is clear since the l.h.s. of (4.21) equals 1. For n ≥ 2 this
is easily shown by induction using (4.11)

Ex[(ηt(R
2))n] ≤ F1(t+ 1) +

1

2

n−1∑

k=1

(
n

k

)
FkFn−k

∫ t

0

(s+ 1)n−2 ds (4.22)

= F1(t+ 1) +
1

2

1

n− 1

n−1∑

k=1

(
n

k

)
FkFn−k(t+ 1)n−1

≤ n!(t+ 1)n−1.

The uniformity of the claim in terms of the sequences (at), (bt) and (ct) will be needed
to do the induction properly. Following the lines of the proof it can easily be established.
We omit the details to avoid an unnecessary blow-up of the proof.

Let now n ≥ 2. In the following we will assume that the validity of (4.7), (4.8) and
(4.13)-(4.15) is already shown for all n′ < n.

First note that

m1(xt, st, t) ≪
log t

st
, (4.23)

i.e. the l.h.s. in (4.23) is negligible compared with the expected main term. We thus
calculate now

hn,k(x, s, v, w) :=

∫ w

v

du

∫

R2

dy ps−u(x, y)mk(y, u, t)mn−k(y, u, t). (4.24)

Let (δt)t≥0 be a sequence with δt ↑ ∞ so slowly that δt
log t

t→∞−→ 0. By (4.21)

hn,k(xt, st, 0, δtt
α) ≤ FkFn−k

∫ δttα

0

(u+ 1)n−2

∫

R2

dy pst−u(xt, y)

∫

Bt

dz pu(y, z)(4.25)

≤ FkFn−k
n− 1

(δtt
α + 1)n−1 t

α

st
|B|

≪ tnα

st
(log st)

n−1 (4.26)

is small. The other side of the integration interval will be estimated as follows. Let (εt)t≥0

be a sequence such that εt ↓ 0 and such that log εt

log t

t→∞−→ 0. Then

hn,k(xt, st, εtst, st) ≤ 2(Ck +Dk)Dn−k
tnα

st

∫ st

εtst

(log u)n−2

u
du (4.27)

= 2(Ck +Dk)Dn−k
1

n− 1

tnα

st
(log st)

n−1

[
1 −

(
1 − log εt

log st

)n−1
]

≪ tnα

st
(log st)

n−1.
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So the main term results from the integration over [δtt
α, εtst]. To evaluate this integral

we split the spatial integral into the integral over the disc Du = {y ∈ R
2 : ‖y‖ ≤ Ku

√
u}

and its complement Dc
u = R2 \Du, where Ku ↑ ∞ as u → ∞ will be fixed later. By the

induction hypotheses (4.7), (4.13) and (4.14) we get

lim sup
t→∞

stt
−nα

(log st)n−1

εtst∫

δttα

du
1

u

∫

Dc
u

dy pst−u(xt, y) u mk(y, u, t)mn−k(y, u, t) (4.28)

≤ Dn−k lim sup
t→∞

1

(log st)n−1

εtst∫

δttα

du
(log u)n−2

u

∫

Dc
u

dy st pst−u(xt, y)
1

u
m̃k(y, u, t)

≤ 2Dn−k lim sup
t→∞

1

(log st)n−1

εtst∫

δttα

du
(log u)n−2

u

∫

Dc
u

dy
1

u
m̃k(y, u, t).

The last inequality holds since stpst−u(xt, y) ≤ 2 for εt <
1
2
. Fix β ′ ≥ 0 and let (ut) be a

sequence such that log ut

log t

t→∞−→ β ′. Then by Fatou’s lemma

lim inf
t→∞

∫

Dut

1

ut
m̃k(y, ut, t) dy = lim inf

t→∞

∫

‖y‖≤Kut

m̃k(y
√
ut, ut, t) dy (4.29)

≥
(

1 − α

β ′

)k−1 |B|kk!
(8π)k−1

·
∫

R2

ϕ(y) dy

=

(
1 − α

β ′

)k−1 |B|kk!
(8π)k−1

.

Let (ut) be a sequence with ut ≫ tα and let δ > 0. Then by (4.8) for t sufficiently large
∫

Dc
u

1

u
m̃k(y, u, t) dy < δ. (4.30)

Thus the expression in (4.28) is less or equal than

2δDn−k
n− 1

lim sup
t→∞

(log εtst)
n−1 − (log δtt

α)n−1

(log st)n−1
=

2δDn−k
n− 1

(
1 −

(
α

β

)n−1
)
. (4.31)

Since δ > 0 was arbitrary the three expressions in (4.28) are equal and equal to zero.
Our task is now to determine the main term. By (4.7), (4.14) and the theorem of

dominated convergence we may let Ku ↑ ∞ so slowly that (uniformly in β ′ ≤ 1)

1

ut

∫

Du

m̃k(y, ut, t)m̃n−k(y, ut, t) dy =

∫

‖y‖≤Kut

m̃k(y, ut, t)m̃n−k(y, ut, t) dy (4.32)

t→∞−→
(

1 − α

β ′

)n−2 ∫

R2

ϕ(y)2 dy · |B|nk!(n− k)!

(8π)n−2

= 2

(
1 − α

β ′

)n−2 |B|nk!(n− k)!

(8π)n−1
.
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Assuming further Kεtst

√
εt

t→∞−→ 0 we get uniformly in u ≤ εtst and y ∈ Du

stpst−u(xt, y)
t→∞−→ ϕ(x). (4.33)

We are now in the position to calculate

lim
t→∞

stt
−nα

(log st)n−1

εtst∫

δttα

du

∫

Du

dy pst−u(xt, y)mk(y, u, t)mn−k(y, u, t) (4.34)

= lim
t→∞

st
(log st)n−1

εtst∫

δttα

du
(log u)n−2

u

∫

Du

dy pst−u(xt, y)
1

u
m̃k(y, u, t)m̃n−k(y, u, t)

= lim
t→∞

ϕ(x)

(log st)n−1

εtst∫

δttα

du
(log u)n−2

u

∫

Du

dy
1

u
m̃k(y, u, t)m̃n−k(y, u, t) (4.35)

= ϕ(x)2
|B|nk!(n− k)!

(8π)n−1
lim
t→∞

1

(log st)n−1

εtst∫

δttα

(log u)n−2

u

(
1 − α

log t

log u

)n−2

du

= ϕ(x)
2

n− 1

|B|nk!(n− k)!

(8π)n−1
lim
t→∞

(log(εtst) − α log t)n−1 − (log(δtt
α) − α log t)n−1

(log st)n−1

= ϕ(x)
2

n− 1

(
1 − α

β

)n−1 |B|nk!(n− k)!

(8π)n−1
.

Summation over k in (4.12) now yields (4.7).
To show (4.8) we integrate (4.12)

∫

R2

mn(x, s, t) dx =

∫

R2

m1(x, s, t) dx (4.36)

+
1

2

n−1∑

k=1

(
n

k

)∫ s

0

du

∫

R2

dy mk(y, u, t)mn−k(y, u, t).

As above the first term is small and we have to evaluate

gn,k(v, w) :=

∫ w

v

du

∫

R2

dy mk(y, u, t)mn−k(y, u, t). (4.37)

For (δt) as above we get from (4.15) and (4.21) that

gn,k(3, δtt
α) ≤ t(n−k)αFk

∫ δttα

3

du
(log u)n−k−1

u
(u+ 1)k−1

∫

R2

dy m̃n−k(y, u, t) (4.38)

≤
(

4

3

)k−1
FkEn−k
n− k

t(n−1)α(tδt)
k−1 (log(δtt

α))n−k ≪ tα

(note that u+1
u

≤ 4
3

on the domain of integration). Let ∆ = diam(B). By assumption
∆ <∞ which serves to show that
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gn,k(0, 3) ≤
∫ 3

0

du

∫

R2

dy mn(y, u, t) (4.39)

=

∫ 3

0

du

∫

[0,∆tα/2[2

dy
∑

l∈Zd

mn(y + l∆tα/2, u, t)

≤
∫ 3

0

du

∫

[0,∆tα/2[2

dyEy[(ηu(R
2))n]

≤ ∆2tα
4n − 1

n
Fn.

Since the expected main term is of order tnα(log t)n−1 we have got that gn,k(0, δtt
α) is

negligible. Let also (εt) be as above to obtain by (4.14) and (4.15) that

gn,k(εtst, st) = tnα
st∫

εtst

du
(log u)n−2

u

∫

R2

dy m̃k(y, u, t)
1

u
m̃n−k(y, u, t) (4.40)

≤ DkEn−k
n− 1

tnα
[
(log st)

n−1 − (log(εtst))
n−1
]
≪ tnα(log st)

n−1

is small. We split up gn,k(δtt
α, εtst) as above. The part resulting from the integral over

Dc
u is small since

∫ εtst

εttα
du

∫

Dc
u

dymk(y, u, t)mn−k(y, u, t) (4.41)

≤ Dn−kt
nα

εtst∫

δttα

du
(log u)n−2

u

∫

Dc
u

dy
1

u
m̃k(y, u, t)

≪ tnα(log st)
n−1.

The integral over Du has already been determined in (4.35).
So far we have shown part (a) of the lemma. To prove part (b) we still have to show

that (4.13)-(4.15) hold and that the size of the constants can be controlled. We will do
this by means of recursion formulas for Cn, Dn and En. Note that

mk(x, u, t) ≤ Fk(u+ 1)k−1

∫

Bt

pu(x, y)dy.

Therefor we have
3∫

0

du

∫

R2

dy (s− u)ps−u(y, z)mk(z, u, t)mn−k(z, u, t) (4.42)

≤ FkFn−k

3∫

0

du (u+ 1)n−2

∫

R2

dz

∫

Bt

dw (s− u)ps−u(y, z)pu(z, w)

≤ FkFn−k

∫ 3

0

du (u+ 1)n−2

∫

Bt

dw (s− u)ps(z, w)

≤ FkFn−k
n− 1

4n−1|B|tα.
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Putting this into the recursion formula (4.12) we get

s− u

u

∫

R2

ps−u(y, z)m̃n(z, u, t) dz ≤
1

(log u)n−1

[
C1 +

1

2

n−1∑

k=1

(
n

k

)(
FkFn−k
n− 1

4n−1|B| (4.43)

+

∫

R2

dz

u∫

3

dv
(log v)n−2

v

∫

R2

dz′ (s− u)ps−u(y, z)pu−v(z, z
′)

1

v
m̃k(z

′, v, t)m̃n−k(z
′, v, t)




 .

Doing the integration the summands equal
∫ u

3

dv
(log v)n−2

v

∫

R2

dz′ (s− u)ps−v(y, z
′)

1

v
m̃k(z

′, v, t)m̃n−k(z
′, v, t) (4.44)

≤ CkDn−k

∫ u

3

(log v)n−2

v
dv ≤ CkDn−k

n− 1
(log u)n−1.

We have shown that (4.13) holds with

Cn ≤ C1 +
1

2

n−1∑

k=1

(
n

k

)(
CkDn−k
n− 1

+
FkFn−k
n− 1

4n−1|B|
)
. (4.45)

We now turn to the Dn. By the recursion formula (4.12) we get for t ≥ s ≥ 3 and y ∈ R2

m̃n(y, s, t) ≤ t−nα
s

(log s)n−1

(
m1(y, s, t) +

1

2

n−1∑

k=1

(
n

k

)
hn,k(y, s, 0, t)

)
. (4.46)

Now

hn,k(y, s, 3, t) ≤ Dn−k

∫ 2

0

du
1

u

∫

real2

dz pu−s(y, z)mk(z, s, t)(log su)n−k−1 (4.47)

≤ 2(Ck +Dk)Dn−k

∫ s

3

(log u)n−2

u
du

≤ 2(Ck +Dk)Dn−k
n− 1

(log s)n−1

s
.

From this and (4.25) we get that Dn can be chosen to be

Dn ≤ D1 +
1

2(n− 1)

n−1∑

k=1

(
n

k

)[
FkFn−k4

n−1|B| + 2(Ck +Dk)Dn−k
]
. (4.48)

Finally the En will be determined as follows

1

s

∫

R2

m̃n(y, s, t) dy ≤ E1 +
1

2

n−1∑

k=1

(
n

k

)
1

(log s)n−1
gn,k(0, s). (4.49)

Now

gn,k(3, s) ≤ Dk

∫ s

3

1

u
(log u)k−1

∫

R2

dz mn−k(z, u, t) (4.50)

≤ DkEn−k

∫ s

3

(log u)k−2

u
du

≤ DkEn−k
n− 1

(log s)n−1.
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Together with (4.39) this yields that we can choose En to be

En ≤ E1 +
1

2(n− 1)

n−1∑

k=1

(
n

k

)[
DkEn−k + ∆24nFn

]
. (4.51)

Putting together (4.21),(4.45), (4.48) and (4.51) we see that we can choose

Cn = Dn = En = n!Γn (4.52)

for some Γ <∞ (depending on ∆). 2

Since we will need some uniformity in different spatial scalings that are ≈ tα/2 (recall

that at ≈ bt means (log at)/(log bt)
t→∞−→ 1) we state one more lemma.

Lemma 4.2 Let (ψt) be BBM(R2) or SBM(R2) and I = [0, 1] resp. ] −∞, 1]. Fix α ∈ I
and v(t) ≪ u(t) with u(t), v(t) ≈ tα. Then uniformly in all sequences w(t) such that
u(t) ≤ w(t) ≤ v(t) ∀ t ≥ 0 the following holds

h(t) := EM̃(t)

[(
1

u(t)
ψ̃t([0,

√
u(t)[2) − 1

w(t)
ψ̃t([0,

√
w(t)[2)

)2
]
t→∞−→ 0. (4.53)

Proof Let

φt =
1

u(t)
1I[0,u(t)1/2[2 −

1

w(t)
1I[0,w(t)1/2[2.

Then by the second moment formulas (3.5) and (3.12) (recall that (Ss) is the semigroup
of Brownian motion on R2)

h(t) ≤ at + bt + ct, (4.54)

(with equality in the case of BBM) where

at =

(
8π

log t

)2 ∫
(〈µ, Stφt〉)2 M̃(t)(dµ)

bt =

(
8π

log t

)2 ∫ 〈
µ, St(φ

2
t ) − (Stφt)

2
〉
M̃(t)(dµ) (4.55)

ct =

(
8π

log t

)2 ∫ 〈
µ,

∫ T

0

St−s((Ssφt)
2) ds

〉
M̃(t)(dµ).

Clearly at
t→∞−→ 0, bt

t→∞−→ 0. For ct
t→∞−→ 0 we have to be more careful. By translation

inavariance we get (recall that λ is the Lebesgue measure)

ct =
8π

log t

〈
λ,

∫ t

0

(Ssφt)
2 ds

〉
. (4.56)

Note that by Hölder’s inequality

〈λ, (Ssφt)2〉 ≤ ‖Ssφt‖∞ = sup
x∈R2

|Ssφt(x)| (4.57)

≤ min

(
1

2πs
,

1

u(t)
+

1

w(t)

)
≤ min

(
1

2πs
,

2

u(t)

)
.
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Thus

8π

log t

∫ v(t) log t

0

〈λ, (Ssφt)2〉 ds ≤ 8π

log t

[
2

log t
+ (log(v(t) log t) − log(u(t)/ log t))

]

t→∞−→ 0. (4.58)

On the other hand

‖Ssφt‖∞ ≤ sup
x∈R2

sup
y∈[0,u(t)1/2[2

sup
z∈[0,v(t)1/2[2

|ps(x, y) − ps(x, z)| (4.59)

=
1

2πs
sup
r∈R

sup
ζ∈[−(2v(t))1/2 ,(2v(t))1/2 ]

∣∣exp{−r2/2s} − exp{−(r − ζ)2/2s}
∣∣

≤ e−1

2πs

√
2v(t)/s .

Thus
8π

log t

∫ t

v(t) log t

〈λ(Ssφt)
2〉 ds ≤

√
8

e

√
1/ log t

t→∞−→ 0. (4.60)

We conclude ct
t→∞−→ 0 and the proof is complete. 2

5 Proof of the Clustering Results for the Infinite Sys-

tems

5.1 Proof of Theorem 1

The proof of Theorem 1 will be based on an asymptotic result related to the Laplace
transform. This is formulated in Proposition 5.1 and 5.2 below.

Let x ∈ R2 and (xt)t≥0 a sequence in R2 such that xt√
t

t→∞−→ x.

Proposition 5.1 Then for B ∈ B(R2) and θ ≥ 0

lim
t→∞

t log t

8π

(
1 − Ext

[
exp{−θψ̃αt (B)}

])
t→∞−→ ϕ(x)

θ|B|
1 + θ|B|(1 − α)

(5.1)

lim
t→∞

log t

8π

(
1 − EM(1)

[
exp{−θψ̃αt (B)}

])
t→∞−→ θ|B|

1 + θ|B|(1 − α)
. (5.2)

Proposition 5.1 can be reformulated in terms of distributions.

Proposition 5.2 Let (xt) as in Proposition 5.1 and let u > 0. Then for B ∈ B(R2) and
θ ≥ 0

lim
t→∞

t log t

8π
Pxt

[
ψ̃αt (B) > u

]
=

ϕ(x)

1 − α
exp

{
− u

|B|(1 − α)

}
(5.3)

lim
t→∞

log t

8π
PM(1)

[
ψ̃αt (B) > u

]
=

1

1 − α
exp

{
− u

|B|(1 − α)

}
. (5.4)
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Proof (of Proposition 5.1)

Let

φt(θ) =
t log t

8π

(
1 − Ext [exp{−θψ̃αt (B)}]

)
θ ∈ C, Re(θ) > 0. (5.5)

Then

|φt(θ)| ≤
t log t

8π
|θ| · Ext [ψ̃αt (B)] ≤ |θ|. (5.6)

Thus φt(θ) is uniformly bounded for θ in compact sets. Let Γ < ∞ be as in Lemma
4.1(b). By (4.9) for |θ| < 1

Γ
we can express φt(θ) in terms of the moments

φt(θ) =
t log t

8π

∞∑

n=1

(−θ)nExt [(ψ̃αt (B))n]

n!
(5.7)

=

∞∑

n=1

(−θ)n(8π)n−1m̃n(xt, st, t, α)

n!
.

Hence by (4.7)

φt(θ)
t→∞−→ θ|B|

1 + θ|B|(1 − α)
, |θ| < 1

Γ
. (5.8)

By Vitali’s theorem (see e.g. Remmert (1991)) equation (5.8) holds for all θ on the right
half plane.

The proof of (5.2) is analogous. Here we take

φt(θ) =
log t

8π

[
1 − EM(1)

[
exp{−θψ̃αt (B)}

]]
(5.9)

and use (4.8) and (4.10). 2

Proof (of Theorem 1)

From Proposition 5.1 the proof is easy. From (1.7) the Laplace transform

L(s, θ) = E1[exp{−θZs}] (5.10)

of the Feller diffusion (Zs) solves

∂

∂s
L(s, θ) = E1[θ2Zs exp{−θZs}] = −θ2 ∂

∂θ
L(s, θ) (5.11)

L(0, θ) = exp{−θ}.

The solution of (5.11) is

L(s, θ) = exp

{
− θ

1 + θs

}
, θ ≥ 0, s ≥ 0. (5.12)

Let α ∈ [0, 1]. Use (5.2) to obtain

EM̃(t)
[
exp{−θψ̃αt (B)}

]
=

(
1 −

(
1 − EM(1)

[
exp{−θψ̃αt (B)}

])) log t
8π

(5.13)

t→∞−→ exp

{
− θ|B|

1 + θ|B|(1 − α)

}
.
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Comparing this with (5.12) yields the claim.
The case α < 0 and ψt = ζt SBM(Rd) can be done with the scaling property (1.13) as

follows

LM̃(t)
[
ζ̃αt (B)

]
= LM̃(t)

[
8π

log t
t−αζt(t

α/2B)

]

= LM̃(t)

[
8π

log t
ζt1−α(B)

]

= LM̃(t1−α)/(1−α)
[
(1 − α)ζ̃t1−α(B)

]
(5.14)

t→∞
=⇒ L1/(1−α) [(1 − α)Z1] = L1[Z1−α].

2

5.2 Proof of Theorem 2

It is sufficient to check that

LM̃(t)
[
(SA(e),tTxe

t
ψ̃t(B

e))e∈T

]
t→∞−→ L

[(
|Be|Ze

1−A(e)

)
e∈T

]
, (5.15)

for Be ∈ B(R2) bounded for all e ∈ T.
We do the proof by induction over the length of the tree T. For T = {∅} this is the

assertion of Theorem 1 (together with Lemma 4.2). Now assume that the claim has been
shown for all trees shorter than T.

The idea of the proof is the following. We introduce a time scale L(t) ≈ tA(∅) and
couple (ψs) for s ≥ t − L(t) with another process (ψ2

s ). This process shall have initial
configuration M(ρ), where ρ is the empirical population density of ψ1

t−L(t) in a box of

length ≈ tA(∅)/2. L(t) will be chosen small enough that the evolutions of the subtrees
(resulting from eliminating ∅ from T) are approximately independent. On the other hand
L(t) has to be chosen large enough so that the local coupling with local size R(t) ≈ tA(∅/2)

is successful. Here a the details.
Let b = max{diam(Be), e ∈ T}. Let dt ↓ 0, t→ ∞ such that

t(A(e∧f)−dt)/2 ≤ ‖xet − xft ‖ − b(tA(e)/2 + tA(f)/2) (5.16)

≤ ‖xet − xft ‖ + b(tA(e)/2 + tA(f)/2) ≤ 1

2
t(A(e∧f)+dt)/2

for all e, f ∈ T. We may and will assume that tdt
t→∞−→ ∞. Let α := A(∅). Let

S = S(t) = t(α+dt)/2

R = R(t) = t(α−3dt)/2

L = L(t) = tα−2dt .

Let
Be
t = xet + tA(e)/2Be (5.17)

and
Bt =

⋃

e∈T

Be
t . (5.18)
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By shifting X = (xet , e ∈ T) if necessary we can assume that Bt ⊂ [0, S[2 for all t > 0 and

L−1/2 · dist(Bt,R
2 \ [0, S[2[)

t→∞−→ ∞. (5.19)

Apply Corollary 3.7 with ψ1
0 = ψt−L(t), s = L(t), ρ = log t/8π and with ε = δ = log t

8π
εt,

where εt
t→∞−→ 0. This last choice is possible due to Lemma 4.2. Thus we obtain a coupling

(ψ1
s , ψ

2
s)s≥0 with L[ψ1

0|ψ1
s ] = M(S−2ψ1

0([0, S[2)) such that there exists a sequence δt ↓ 0
with

EM̃(t)
[∣∣∣(ψ̃1

L(t) − ψ̃2
L(t))(C)

∣∣∣
]
≤ δt · |C| ∀C ∈ B(R2). (5.20)

So all we have to show is

LM̃(t)

[
8π

log t

(
t−A(e)ψ2

L(t)(B
e
t )
)
e∈T

]
t→∞
=⇒ L1

[
(|Be|Ze

1−A(e))e∈T

]
. (5.21)

By Theorem 1 (and Lemma 4.2) we know that

LM̃(t)

[
8π

log t
S−2ψ1

0([0, S[2)

]
t→∞
=⇒ L[Z1−α]. (5.22)

Hence (using the Chapman-Kolmogorov equation) showing (5.21) amounts to showing for
ρ ≥ 0

LM(ρ log t/8π)

[
8π

log t

(
t−A(e)ψL(t)(B

e
t )
)
e∈T

]
t→∞
=⇒ Lρ

[
(Ze

α−A(e))e∈T

]
(5.23)

= Lρ/α
[
(αZe

1−A(e)/α)e∈T

]
.

The last equality is the basic scaling property of Feller’s diffusion.
Let Tj = {(j, l2, . . . , ln) ∈ T, n ∈ N}, j = 1, . . . , J be the partition of T into subtrees

Tj (T = {∅} ∪ T1 ∪ · · · ∪ TJ). To prove (5.23) it suffices (by the induction hypothesis) to
show that (

8π
log t

t−A(e)ψL(t)(B
e
t )
)
e∈Tj

, j = 1, . . . , J

are J asymptotically independent random variables.
(5.24)

Fix one ej ∈ Tj for each j = 1, . . . , J and let Cj = Cj(t) = x
ej

t + [−R(t), R(t)[2 and
C0 = R2 \ (C1 ∪ · · · ∪ CJ). Then for t large enough we have Ci ∩ Cj = ∅ for i 6= j. Let

∆j = ∆j(t) = inf
e∈Tj

dist(Be
t ,R

2 \ Cj).

Since A : T → I is strictly decreasing we have ∆j(t)/
√
L(t)

t→∞−→ ∞.

Let (χjs)s≥0, j = 0, 1, . . . , J be independent BBM(R2) resp. SBM(R2) with χj0 =
M( log t

8π
ρ) · 1ICj

, j = 0, 1, . . . , J . We can assume

ψs = χ0
s + · · ·+ χJs .

Now for j = 1, . . . , J and e ∈ Tj

E




8π

log t
t−A(e)

J∑

i=0
i6=j

χiL(t)(B
e
t )


 (5.25)

≤ ρ|Be|t−A(e)

∫

R2\Cj

dx

∫

Be
t

dy pL(t)(x, y) ≤ ρ|Be| exp{−∆2
j/L(t)} t→∞−→ 0.

Thus (5.24) holds and the proof is complete. 2
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6 Proofs for Finite Systems

6.1 Proof of Theorem 3

The idea of the proof is again to introduce a new time scale L(t) ≪ t2 (recall Λd
t has

width t) and to let T ′(t) = T (t) − L(t). As in the previous section we want to couple
(locally) given t−dψT ′(t)(Λ

d
t ) = ρ with a process started in Mt(ρ). This latter one will

then be compared to the infinite process started in M(ρ). So as to impose the local
coupling we will have to cut Λd

t into a growing (with t) number N(t)d of boxes. N(t) has
to be chosen such that the empirical densities of ψT ′(t) within the boxes and within Λd

t

are asymptotically close.
Step 1. We start with showing this latter point. Let A,B ∈ B(Λd

1), |A|, |B| > 0 and
φt = 1

|tA|1ItA − 1
|tB|1ItB for t > 0. Then by the second moment formulas (3.5) and (3.12)

(recall that (Ss) is the semigroup and pt,s(·, ·) the transition density of Brownian motion
on Λd

t )

EMt(ρ)

[(
1

|tA|ψt,T (t)(tA) − 1

|tB|ψt,T (t)(tB)

)2
]

(6.1)

≤
∫ (

〈µ, ST (t)φt〉
)2

+
〈
µ, ST (t)(φ

2
t ) − (ST (t)φt)

2
〉

+

〈
µ,

∫ T

0

ST (t)−s(Ssφt)
2 ds

〉
Mt(ρ)(dµ)

with equality in the case of BBM. Fix a sequence γ(t) such that t2 ≪ γ(t) ≪ T (t). Then

sup
u≥γ(t)

sup
z∈Λd

t

|tdpt,u(0, z) − 1| =: εt
t→∞−→ 0. (6.2)

Thus for u ≥ γ(t)
sup
x∈Λd

t

|〈δx, Suφt〉| ≤ 2εtt
−d (6.3)

and, of course, for all u ≥ 0

sup
x∈Λd

t

|〈δx, Suφt〉| ≤
(

1

|A| +
1

|B|

)
t−d. (6.4)

Note that φ2
t ≤ t−2d( 1

|A| + 1
|B|)

2. Hence (6.1) is dominated by

4ε2
t t

−2d(ρ2t2d + ρtd) + ρ

(
1

|A| +
1

|B|

)2

t−d + ρ

[
ε2
tT (t)t−d +

(
1

|A| +
1

|B|

)2

γ(t)t−d

]
t→∞−→ 0.

(6.5)
If we replace T (t) by T ′(t) this convergence is uniform in all sequences T ′(t) such that
1
2
T (t) ≤ T ′(t) ≤ T (t). Thus we can find a sequence N(t) ↑ ∞, logN(t)

log t

t→∞−→ 0 and define

L(t) = t2

N(t)
, T ′(t) = T (t) − L(t) such that

t−2dEMt(ρ)

[∣∣∣∣ψt,T ′(t)(Λ
d
t ) −N(t)dψt,T ′(t)

([
0, t

N(t)

[d)∣∣∣∣
]

=: δt
t→∞−→ 0. (6.6)

Step 2. (Coupling) We continue arguing as in the proof of Theorem 2. We let
(χ1

t,s, χ
2
t,s)s≥0 be the local coupling of BBM(Λd

t ) resp. SBM(Λd
t ) according to Corol-

lary 3.6 with R = R(t) = t
N(t)

. The initial configuration shall be χ1
t,0 = ψt,T ′(t) and



96 PART III, THE BRANCHING MODELS

L[χ2
0|χ1

0] = Mt(t
−2χ1

0(Λ
d
t )). By Corollary 3.6 we get for B ∈ B(Rd) bounded

EMt(ρ)
[∥∥∥(χ1

t,L(t) − χ2
t,L(t))

∣∣∣
B

∥∥∥
]
≤ |B| ·

[
δt + 2

√
ρR(t)−d + 2

√
d

π
ρN(t)−1/2

]
t→∞−→ 0. (6.7)

Step 3. (Comparison) We apply the comparison lemma (Lemma 3.8) to (χ3
s)s≥0 with

L[χ3
0|χ1

0] = M(t−d(Λd
t )) and (χ2

t,s) and with At ≡ B to obtain

E
[∣∣χ2

t,L(t)(B) − χ3
L(t)(B)

∣∣] t→∞−→ 0. (6.8)

Thus
E
[∣∣χ1

t,L(t)(B) − χ3
L(t)(B)

∣∣] t→∞−→ 0. (6.9)

Step 4. (Conclusion) Fix f ∈ Cc(R
d) and F ∈ Cb(R). Then

EMt(ρ)[F (〈ψt,T (t), f〉)] = E[F (〈χ1
t,L(t), f〉)] (6.10)

= E[F (〈χ2
t,L(t), f〉)] + o(1)

= E[F (〈χ3
t,L(t), f〉)] + o(1)

=

∫ ∞

0

Pρ[Zσ/2 ∈ dρ′]F (〈νρ′ , f〉) + o(1).

The last equality holds because of (1.16) and (2.9). 2

6.2 Proof of Theorem 4 and 5

The proofs are similar to that of Theorem 3. Hence we give only an outline. Recall
β(t) = t2 log t. By (2.9) we know that

LM̃t(β(t))

[
8π

log β(t)
t−2‖ψt,T ′(t)‖

]
t→∞
=⇒ L1[Z2πσ]. (6.11)

Choose L(t) ≪ t2 such that lim
t→∞

logL(t)
log β(t)

= lim
t→∞

logL(t)
log t2

= 1. Now we can proceed as in the

proof of Theorem 3. We couple locally with the configuration

∫ ∞

0

P1[Z2πσ ∈ dρ]Mt

(
ρ

log β(t)

8π

)
(6.12)

and compare this with the infinite system started in

∫ ∞

0

P1[Z2πσ ∈ dρ]M

(
ρ

log β(t)

8π

)
. (6.13)

Now we apply Theorem 1 resp. 2 to obtain the conclusions. 2



Appendix

1 Description of the Simulations

We give a short description how the simulations of the Figures I.1, I.2 and III.3 have been
generated.

Voter Model, Direct Approach

The direct approach to simulate a voter model on the finite site space S is the following:
Start with each site x ∈ S being randomly coloured white or black. Repeat the following
procedure

• Pick one point x ∈ S at random.

• Choose a “neighbour” y at random according to the interaction kernel a(·, ·).

• Change x’s opinion to that of y.

This method has been applied to obtain the voter model in Figure I.2 where we wanted
to see the evolution in time. However, proceeding like this has the disadvantage of being
hopelessly slow.

Voter Model via Duality

For the long-time simulation of Figure I.1 we needed something faster. Here we exploited
the fact that Figure I.1 is a snapshot only and not an observation of the evolution. In
this situation it is appropriate to make use of the duality of the voter model to (instan-
taneously) coalescing random walks (which holds since our kernels a(·, ·) are symmetric).
The state of the voter model at one fixed time of observation can be described in terms
of a system of rate 1 coalescing random walks on S with jump distribution a(·, ·) (see e.g.
Liggett (1985)).

The explicit procedure is the following. We start with a labelled particle at each site
x ∈ S. In each step the following happens.

• An occupied site x ∈ S is chosen at random.

• A “neighbour” y is chosen at random according to a(·, ·).

• All particles located at x are moved to y.

• All particles at y (if any) stay at y.
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These steps are made repeatedly until the time of observation. (Actually the system time
is not the number of step but rather the sum of (#{x ∈ S : x is occupied})−1 along the
steps.) Then (independently) we associate with each occupied site x ∈ S a random colour
c(x) ∈ {White,Black}. The initial positions of all particles located now at x get coloured
c(x).

Sample Paths of Diffusion

We make the naive approach to simulate the trajectories of the solution of the following
stochastic differential equation

dXt = a(Xt) dWt , X0 = x0 (A.1)

(with a(x) the diffusion coefficient and (Wt) a standard Brownian motion).
We discretise the time and sum up small Brownian increments weighted with a(Xt).

More precisely we fix ∆t > 0 and sample an independent family W̃0, W̃1, W̃2, . . . of
standard normally distributed random variables. We let X̃0 := x0 and define successively

X̃n+1 = X̃n + a(X̃n) ·
√

∆t W̃n.

Then (X̃[t/∆t])t≥0 is an approximate trajectory.
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