Übungen zur Vorlesung Anorganische und Allgemeine Chemie für BEd-Studierende im Wintersemester 2018/19

Übungsblatt 10

- 1) Gleichen Sie folgende Reaktionsgleichungen aus:
- a) $SO_3^{2-} + N_3H \rightarrow S_3^{2-} + N_2$ (in neutraler wässriger Lösung)
- b) $N_2H_4 + Cr_2O_7^{2-} \rightarrow N_2O + Cr_2O_3$ (in saurer wässriger Lösung)
- c) $PbO_2 + MnO_2 \rightarrow PbSO_4 + MnO_4$ (in verdünnter Schwefelsäure)
- d) $P_4 + H_2O_2 \rightarrow P_2O_7^{4-}$ (in basischer wässriger Lösung)
- e) $Mn^{2+} + ClO_3^- \rightarrow MnO_4^{2-} + Cl^-$ (in saurer wässriger Lösung)
- f) $HNO_3 \rightarrow N_2O_3 + O_2 + H_2O$ (in der Gasphase)
- g) CO + $Cr^{2+} \rightarrow C_2H_4 + Cr^{3+}$ (in neutralem Wasser)
- 2) Stellen Sie die Nernst-Gleichung für die Reaktionen in 1c) und 1e) auf, und bestimmen Sie die Elektromotorische Kraft für wässrige Lösungen, die einen pH-Wert von 3,5 aufweisen und in denen die Konzentrationen aller anderen gelösten Komponenten 10⁻¹ mol/l beträgt.
- $\varepsilon_0 (ClO_3^- / Cl^-) = 1.45 \text{ V (pH = 0)}$
- $\varepsilon_0 \, (MnO_4^{2-} / Mn^{2+}) = 1,66 \, V \, (pH = 0)$
- $\varepsilon_0 \text{ (PbO}_2 / \text{PbSO}_4) = 1,69 \text{ V (pH = 0)}$

 $\epsilon_0 \, (MnO_4^- / MnO_2) = 1,70 \, V \, (pH = 0)$