Übungen zur Vorlesung Anorganische und Allgemeine Chemie für BEd-Studierende im Wintersemester 2018/19

Übungsblatt 2 (4 Aufgaben)

1) Berechnen Sie die Coulomb-Energie für ein System von zwei elektrostatischen Ladungen bei dem jeweils angegebenen Abstand und geben Sie bei (a) bis (d) auch die molare Energie [KJ/mol] an.

a)
$$q_1 = -3e$$
; $q_2 = 4e$; $d = 1$ mm
b) $q_1 = 3e$; $q_2 = -4e$; $d = 1,9$ Å
c) $q_1 = 3e$: $q_2 = 4e$; $d = 1$ fm
d) $q_1 = 1$ C; $q_2 = -4e$; $d = 1$ mm
e) $q_1 = 1$ C; $q_2 = 1$ C; $d = 1$ mm

(e = 1 Elementarladung)

- 2) Die Ionisierungsenergie für 1 Mol Wasserstoffatome beträgt 1312 kJ. Welcher Abstand ergäbe sich somit aus der Coulomb-Beziehung für den Fall, dass ein Wasserstoffatom aus einem Proton und einem Elektron auf einem festen Abstand Bestehen würde?
- 3) Berechnen Sie die Gitterenergie eines Salzes A_2B_3 , das aus dreifach positiv geladenen Kationen und zweifach negativ geladenen Anionen besteht, die im Kristall einen kürzesten Abstand von 2 Å aufweisen und in einer Struktur mit einem Madelungfaktor von 1,6 kristallisieren.
- 4) Schätzen Sie die Bildungsenergie von einem Mol LiI unter folgenden Bedingungen ab:

IE₁ (Li) = 5,392 eV; EA₁ (I) = -3,06 eV; Atomisierungsenergie Li: 136 kJ/mol; Dissoziationsenergie I₂: 151 kJ/mol; d(Li-I) in festem LiI: 3 Å; Madelungkonstante: 1,7476