Kla	usur zur Vorle	esung AC I	Name:	Name:						
am	6. Februar 201	14	Matrike	Matrikelnummer:						
aufga	_	ngsweg erkennbar s	sein; alle bewertung	gsrelevanten Blätte	34 Punkte (50%); Bei den Rechen- r sind eindeutig mit Namen und					
Einv	erständniserklärung	:								
	oin damit einverstand er Matrikelnummer		len.	-	chemie.uni-mainz.de/LA/) unter Angabe					
			Onterse		(Punkte)					
	gänzen Sie die Lück	_	_	lle.	(4)					
		Periodensystem finden Sie auf Seite 4) Symbol 45Sc ³⁺ P ³⁺								
	Symbol	Sc	41	P	-					
	Protonen		41	16						
	Neutronen Elektronen		52 41	16						
	Nettoladung	+3	41	+3						
2) D	as Nuklid ²³² Th ist e	in α-Strahler mit ei	ner Halbwertszeit	von 14 Milliarden	Jahren.					
a) W	elches Nuklid entste	eht durch diesen rac	dioaktiven Prozess	•	(2)					
b) N	ach welcher Zeit we	rden von 1 Kg dies	es Thoriumisotops	genau 1g zerfaller	sein? (3)					
	ie viele Atomkerne wertszeit?	zerfallen durchschr	nittlich jede Sekund	le in einem Mol ²³²	Th während der ersten (3)					
(1 Ja	hr = 365 Tage)									
3) D	er Radius eines Hel	iumatoms beträgt c	a. 1,2 Å.							
	Velche Länge (Anga nandergereiht würde		oesäße eine Kette a	us einem Mol Heli	umatome, wenn diese auf Berührung (1)					

b) Wie schwer wäre eine Kette aus Heliumatomen (Angabe in Kilogramm), die bis zum nächsten Stern (Proxima Centauri) reichen würde? Dieser ist $4\cdot10^{13}$ km von der Erde entfernt.

(2)

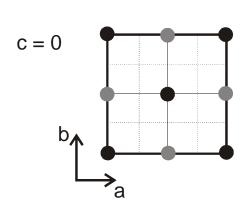
4) Fur welches Element erwarten Sie folgende Elektronenkonfiguration: [Xe] 6s ⁻ 4f ⁻ 5d ⁻	(3)					
5) Zeichnen Sie die MO-Diagramme der zweiatomigen Moleküle C ₂ und O ₂ . Wie groß ist jeweils die						
Bindungsordnung und wie ändert sich diese bei der Zugabe je eines Elektrons unter Bildung des jeweilige	en Anions					
C_2 bzw. O_2 und wie bei der Entfernung je eines Elektrons unter Bildung von C_2 bzw. O_2 ?	(4)					
6) a) Ordnen Sie folgende Oxosäuren nach ihrer Säurestärke (ohne Begründung):						
I) H ₃ PO ₄ II) H ₄ SiO ₄ III) H ₂ SO ₄ IV) HClO ₄	(4)					
7) Berechnen Sie den elektrostatischen Anteil der Gitterenergie in KJ/mol für die salzartige Verbindung Afolgenden Voraussetzungen:	AB ₃ unter					
d(A-B) 2,94 Å; Madelungkonstante (AB ₃):1,65; $\pi = 3,1416$						
Dielektrizitätskonstante des Vakuums $\varepsilon_0 = 8.85*10^{-12} \text{ C}^2 \text{J}^{-1} \text{m}^{-1}$;						
Avogadrokonstante N_A : $6,022*10^{23} \text{ mol}^{-1}$; Elementarladung $e = 1,602*10^{-19} \text{ C}$	(4)					
8) Vervollständigen Sie die Gleichungen für folgende Redoxreaktionen in wässriger Lösung, gleichen Sie	sie aus und					
bestimmen Sie das Oxidations- und das Reduktionsmittel.	(2)					
a) $Ag + O_3$ $\longrightarrow Ag^+$ (saure Lösung)	(2)					
b) $N_3^- + HNO_3$ \longrightarrow N_2O (basische Lösung) c) $Cr_2O_7^{2-} + Cl^ \longrightarrow$ $Cr^{3+} + Cl_2$ (neutrale Lösung)	(2)					
c) $\operatorname{Cr}_2\operatorname{O}_7^{2-} + \operatorname{Cl}^2$ \longrightarrow $\operatorname{Cr}^{3+} + \operatorname{Cl}_2$ (neutrale Lösung)	(2)					
9)						
a) Schreiben Sie für jedes der folgenden Moleküle oder Ionen <i>eine einzelne</i> Lewis-Strukturformel auf, die	e die					
Oktettregel erfüllt (alle Valenzelektronen zeichnen!), und berechnen Sie die Oxidationszahlen und Forn						
für alle Atome. Die jeweils unterstrichenden Atome sind die Zentralatome.						
I) $\underline{\text{Be}}\text{F}_2$ II) $\underline{\text{SiO}}$ III) $\underline{\text{Cl}_2\text{O}}$ IV) $\underline{\text{Xe}}\text{O}_3$ V) $\underline{\text{OS}}\text{F}_4$	(5)					
1) <u>Berg</u> 11) <u>SiO</u> 111) Ci <u>2O</u> 1V) <u>Ae</u> O ₃ V) O <u>S</u> 14	(3)					
b) Welche der folgenden Moleküle sind isoelektronisch, welche isovalenzelektronisch zueinander:						
NO ₂ ⁺ ; SO ₂ ; NF ₂ ; O ₃ ; NO ₂ ⁻ ; BeF ₂ ; OCl ₂ ; CF ₂ ; XeF ₂ ; ClO ₂ ⁺ ; NCO ⁻						
c) Welche der Moleküle aus Aufgabe 9b sind gewinkelt?						
10) Überprüfen Sie den Wahrheitsgehalt (richtig oder falsch) folgender Aussagen:						
(Sie müssen Ihre Antwort nicht begründen!)						
a) Ein 5f-Orbital besitzt genau drei Knotenflächen.	(1)					
b) Ein δ^* -Orbital besitzt eine Knotenfläche, die senkrecht auf der Kernverbindungslinie steht.						
c) Die Energie eines Orbitals im Wasserstoffatom wird nur durch seine Hauptquantenzahl bestimmt.						
d) Durch Kombination eines s-Orbitals mit einem d-Orbital lässt sich eine π -Bindung erzeugen.						
e) Es gibt 7 genau entartete Atomorbitale mit der Hauptquantenzahl 4 und der Nebenquantenzahl 3.	(1) (1)					
f) Die Lösung der Schrödinger-Gleichung für das H-Atom liefert 4 Quantenzahlen						
g) Der Atomradius sinkt innerhalb einer Periode von links nach rechts						
h) Der Bildung eines O ² -Ions aus einem O ⁻ -Ion und einem Elektron ist exergonisch						
i) Die Bildung von Na ⁺ aus Na ist endergonisch						
j) Zwei Isotope des gleichen Elements besitzen Atomkerne unterschiedlicher Ladung						
Seite 2 von 4						

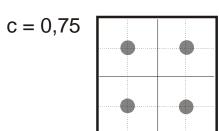
- 11) Berechnen Sie folgende Größen:
- a) pH-Wert einer 0,1 molaren Lösung einer Säure in Wasser, die einen pK_s-Wert von 1,50 besitzt. (2)
- **b**) Ausgangs- und Gleichgewichtskonzentration von HF in einer Lösung von HF in Wasser, die einen pOH-Wert von 10 aufweist. $(pK_s(HF) = 3,14)$ (2)
- 12) Durch Verbrennung von 2 mol Kohlenstoff an der Luft zu Kohlenstoffmonoxid werden 444 KJ an Wärme freigesetzt, bei der Erzeugung von 132 g CO_2 aus den Elementen 1182 KJ.

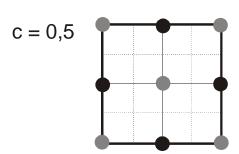
Wie groß ist dementsprechend die Reaktionswärme ΔH für die Oxidation von 10 g CO mit Sauerstoff zu Kohlenstoffdioxid? (Achtung: die Größe ΔH ist vorzeichenbehaftet!) (3)

- a) Welche Stöchiometrie A_aB_b besitzt das Salz, dessen Elementarzelle nachfolgend in Form von Schnitten dargestellt ist? (3)
- **b**) Bestimmen Sie die Koordinationszahlen und von A und B es sollen hierbei nur die *nächsten* Nachbarn der jeweils *anderen* Sorte zählen!

(Achten Sie darauf, dass Ionen einer Ionensorte nicht alle die gleiche Koordinationszahl aufweisen müssen.)


A


В


(3)


Metrik von I: a = b = c; $\alpha = \beta = \gamma = 90^{\circ}$

(I)

Seite 4 von 4

Periodensystem der Elemente mit Angabe der auf ¹²C = 12,0000 bezogenen Atomgewichte

1 H 1,00794																	2 He
3 Li	4 Be											5 B	6 C	7 N	8	9 F	10 Ne
6,941	9,012											10,811	12,011	14,0067	15,9994	18,9984	20,17
11 Na ^{22,9898}	12 Mg _{24,305}											13 AI 26,9815	14 Si _{28,086}	15 P 30,9738	16 S 32,066	17 Ci 35,453	18 Ar 39,948
19 K 39,098	20 Ca	21 Sc 44,956	22 Ti 47,88	23 V 50,941	24 Cr 51,996	25 Mn 54,9380	26 Fe 55,847	27 Co 58,9332	28 Ni _{58,69}	29 Cu 63,546	30 Zn 65,39	31 Ga _{69,723}	32 Ge	33 As _{74,922}	34 Se _{78,96}	35 Br 79,904	36 Kr 83,80
37 Rb 85,47	38 Sr 87,62	39 Y 88,905	40 Zr 91,22	41 Nb 92,906	42 Mo _{95,94}	43 Tc	44 Ru 101,07	45 Rh 102,905	46 Pd 106,4	47 Ag 107,868	48 Cd	49 In 114,82	50 Sn	51 Sb	52 Te	53 126,9045	54 Xe
55 Cs _{32,905}	56 Ba	57 *La 138,91	72 Hf 178,49	73 Ta _{180,948}	74 W 183,85	75 Re _{186,207}	76 Os	77 ir 192,22	78 Pt 195,08	79 Au 196,967	80 Hg _{200,59}	81 T 1 204,38	82 Pb 207,19	83 Bi _{208,980}	84 Po (210)	85 At	86 Rn
87 Fr (223)	88 Ra (226)	89 * * A C	*	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm 150,35	63 Eu _{151,96}	64 Gd	65 Tb _{158,925}	66 Dy	67 Ho	68 Er	69 Tm 168,934	70 Yb 173,04	71 Lu
			* *	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Viel Erfolg beim Lösen der Aufgaben!