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Random matrices

Definition

The sequence M,, of the n x n matrices, which entries are random variables, is
called a random matrix ensemble.

Examples
e Wigner ensemble
M'=Mor M* =M
Mjie =~ 2wy,
{wj} —iid, E{wp}=0, E{|lwu/|’}=1
@ The adjacency matrices of random graphs

e 1 with probability E=;
%) 0 with probability 1 — B=.
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Global regime

Normalized counting measure of eigenvalues (NCM) and linear eigenvalue
statistics

Nal2) =2 3 1a0), Nalidl = Do) = (M)

j=1

(Questions
9 N.(A) & N(Q)

@ Central Limit Theorem for linear eigenvalue statistics

o = supp N is called the spectrum. )

For the Wigner ensemble

1
N() = [ pelA V) = 5o VA= N T o= [-2,2)

A

Ie. Afanasiev (ILTPE) The 2nd moment the of char. polyn. 08.09.16 4 /17



Local regime

The spectral correlation functions are

P (A, A = /pn()\l,...,)\n)d)\kH...d)\n.

where p,(A1, ..., Ay) is the joint probability density of the eigenvalues.

Dyson universality conjecture

lim (pn(%0)) *pi" (Mo +x1/0pa(Mo), -, Ao + Xk /mpa(R0))

n—
. k
et {Sln (% — xj) }

7T'(Xi — Xj) i,j=1

where p,(\) = pgn)()\).
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The mixed moments of the characteristic polynomials

Let M, be some ensemble of random matrices. Consider the second mixed
moment or the correlation function of characteristic polynormials

Fy(A) = E{det(M,, — \)det(M, — X2)}, A= diag{/\j}jzz1
Xj

a)/\j:)\o—i-%, b)/\j:/\0+—

n2/3
Fo(A) ——7?
n—oo

Some results
o Keating, Snaith (2000)
@ Brezin, Hikami (2000, 2001)
e Strahov, Fyodorov (2002, 2003); Fyodorov, Khoruzhenko (2006)
o Gotze, Kosters (2008, 2009)
e T. Shcherbina (2011, 2013, 2014, 2015)
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Sparse random matrices

Ensemble of the sparse hermitian random matrices

My, = (djeWjic) k=1
where
_1/2 J 1 with probability 2;
djkx =p . e o
0 with probability 1 — 2.

and Rwji, Swjk, wi are independent Gaussian random variables with zero
mean such that

E{|wp[*} = 1.

The ensemble is studied in two regimes
Q lim p< o

n—oo

Q lim p=o0

n—oo
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The results on the ensenble of sparse random matrices

Global regime
e For p — oo the normalized counting measure is the same as for the
Wigner ensemble.
Rodgers, Bray (1988) on physical level of rigour;
Khorunzhy, Khoruzhenko, Pastur and M. Shcherbina (1992).
e For finite p the convergence of the normalized counting measure was
proven by

Rodgers, De Dominicis (1990) on physical level of rigour;
Bauer, Golinelli (2001) for wjx = 1;
Khorunzhy, M. Shcherbina, Vengerovsky (2004) in general case.

e Central Limit Theorem for linear eigenvalue statistics was proven by
M. Shcherbina, Tirozzi for finite p (2010) and for p — oo (2012).
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The results on the ensenble of sparse random matrices

Local regime
e In the papers by Erdds, Knowles, Yau, Yin (2012) and Huang, Landon,
Yau (2015) it was rigorously proved that for p > n® the spectral
correlation functions converge in weak sense to that for Wigner ensemble.
e The conjecture of existing of the critical value p. > 1 at which the
correlation of eigenvalues is changed.

Evangelou, Economou (1992);
Fyodorov, Mirlin (1991, on the physical level of rigour).
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Grassmann variables

Let {z/Jj,Ej }1, be a set of anticommuting variables, i.e.

Yt + Yty = Dyt + Yy = Yy + iy = 0.

In particular, ¢j2 = Eﬁ = 0. The set generates a graded algebra A of

polynomials of {1/5,%}, which is called the Grassmann algebra.
For an analytical function f it’s domain can be extended to Grassmann
algebra by following.

oo

f(x + z0)
j=0

where x is a polynomial of {wj,%} with zero free term.
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Integration over the Grassmann variables

The integral over the Grassmann variables is a linear functional, defined on

the basis by the relations

/dz!fj = /d@k =0, /wjdwj _ /%dik .

A multiple integral is defined to be the repeated integral. Moreover
“differentials” {dj, di;}}L, anticommute with each other and with

{¢j’ Ej}i;l'

For example, for a function f

f(¢1,...,¢¥n) = a0 + Zaj%‘ + ... +al,..‘,nij
=1

=1

we have by definition

/f(wl, e ,wn)dﬂ/}n . dl/)l = 3»1,4..,n-
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Integration over the Grassmann variables

Let A be a positive definite n x n matrix. The following Gaussian integral is
well-known

1 n B n 1
F exp { - Z ZjAijk} H d%ZJd%ZJ = m
j.k=1 j=1
The important analogue of this formula in Grassmann variables theory
/exp { -3 EjAjwk} [ d¥;dv; = det A (1)
jk=1 j=1

is valid for any matrix A.

W

If A is a hermitian matrix with i.i.d. Gaussian entries then the L.h.s. of (1) can
be easily averaged

E{detA} = /exp { Zd’jdjkwkwj} H d@jd%
j=1

j<k
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The derivation of the integral representation

Fy(A) = E {det(M, — A1) det(M, — A2)}
= C/exp{d) ((El,wl),(El,wz),(%,wl)a(%,wz))}d‘“’

where ® is an even polynomial of the 4th degree. Using the
Hubbard-Stratonovich transformation

2 a - _a2.2
v = —\/_/ezaxy & X dx,
™

vt — ﬁ/eay(u+iv)+at(uiv)a2u2aZVZdudv
™
we return to the usual integral representation
1 — _
Fah) = C [ [ TLexpt-5 trQ? + (@, 1. Ttz QY = € [ @
J

where Q is 2 X 2 hermitian matrix.
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Final integral representation

jeto(x1+x2) 2 c
FQ(/\) = Cn(X)ﬁ /(tl - tz)exp { - injtj}e“ (tl’tZ’s)dtldthS,
! 2 R3 Jj=1
where
2
2(n — 1
f(tl,t27s):10g (S (n—pp)—t1t2> —§<J21 tJ+l)\0 2).
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The second order correlation function
Theorem 1 [A.:16 (published in JSP)]

Consider the normalized second order correlation function

Fy(A
D5(A) = 2(A) .
Fao(MI)Fa (A1)
Then we have for finite p
(i) forp > 2
sin((a—x2)y/A2-23/2) 4
lim Dy (A) = (1) /22222 if [Ao| < A,
n—oco 1, if |)\0| >\
with A, = \/@ _
+
(ii) for p <2
lim D2 (A) = 1,

n—o00

where A = diag{/\l,)\g} = diag {/\0 T x;1,)\0 aF );—2}, Ao, X1,X2 € R.
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The second order correlation function at the edge of the
spectrum

Theorem 2 [A.:16 (published in JSP)]
Let p — 0o and A9 = 2. Then

(i) for “210/3 — 00

lim D, (21+ X/n2/3) =1

(i) for 22 ¢

A 2 2
lim D, (21+X/n2/3> _ (x1 + 2¢, x5 + 2¢) |
n— oo \/A(Xl + 2¢,x7 + 2¢)A(x2 + 2¢, X2 + 2¢)

where X = diag{xi,x2}, A(x,y) = Ai(X)Ail(y)Z:?il(X)Ai(y) and Ai(x) is Airy
function.
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The correlation functions of higher order

Theorem 3 [A.:16 (published in JSP)]
Let p — 00, Ag € (—2,2). Then

A

Fam(A) _ Sam(X)
n—oo /. m Syn(1)]
([1 Fzmwl))

where

e Sin(WPSC(AO)(Xj_Xm+k)) "
4 t{ 70 (M) (X5 — Xomtk) }j,kzl

8, (X) =
Som(X) A(xy, - X)) A(Xmg1s - - -y X2m)
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