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In the work [1] the Cauchy problem for the KdV equation was solved
ur(x, t) = 6u(x, t)ux(x, t) — Upx(X, t),

with the initial condition
ult—o = uo(x),

where ug(x) is real, the fast decreasing initial function
up(x) = 0, x — foo.

Two important observations were made after this paper.

YGardner C.S., Greene J.M., Kruskal M.D., Miura R.M. Method for solving
the Korteweg-de Vries equation // Phys. Rev. Lett. 19 (1967), 1095-1097.

Kyrylo Andreiev, Kharkiv, Ukraine The integrals of motion for the KdV equation



1. The integrals of motion

The KdV equation with smooth initial data has an infinite set of first integrals

Inu] = / Po(u, ux, ..., u)(("_Q))dx, dl:/[tu] =0,

where P, is a polynomial with respect to all its variables, that is with v and the
space derivatives of u. The first three of these polynomials have the form
1,

Pi(u) =u, Py(u)= e P3(u, ux) = v+ 5 Ux:

@ [2] Miura R.M., Gardner C.S., Kruskal M.D. Korteweg-de Vries equation
and generalizations, |l. Existence of conservation laws and constans of
motion. // J. Math. Phys. 9, No.8 (1968), 1204-1209.

® [3] Kruskal M.D., Miura R.M., Gardner C.S., Zabusky N.J. Korteweg-de
Vries equation and generalizations, V. Uniqueness and nonexistence of
polynomial conservation laws // J. Math. Phys. 11, No.3 (1970),
952-960.

@ [4] Lax P.D. Integrals of nonlinear equations and solitary waves, //
Comm. Pure Appl. Math. 21, No.2 (1968), 467-490.
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2. The KdV equation is the completely integrable

Hamiltonian system

It was shown that the Hamiltonian H[u] is one of the integrals of motion, i.e.
the KdV equation can be represented in the form

du _ d §H[u]
dt  dx du’
where gf;’([;’; is the Frechet derivative. The third integral of motion is the

Hamiltonian

Hlu] = h[u] = /oo <u3 + %uf) d.

—o0

Completely integrable system is understood in the Liouville sense
{0} =0, i#J,

where {-, -} is the Poisson brackets.

5Zakharov V.E., Faddeev, L.D. Korteweg-de Vries equation: A completely
integrable Hamiltonian system. Functional analysis and its applications // 1971,
5: No.4: 18-27 (in Russian).
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Elements of the scattering theory

Consider the spectral Schrodinger equation
’ 2
— 22V () +u(y(x) = Ky(x), —o0 <x <o

We suppose that the potential belongs to the Schwartz class uy € ¥o:

Yo= {u : / (1 + [x|™u(x)dx < co, m,je N} .

The Schodinger operator has a continuous spectrum of multiplicity two
on R, and a finite number of negative eigenvalues —?,/ = 1, N. This
equation has a solution y(x, k) which uniquely defined by the
asymptotical behavior

e + R(k)e i + 0o(1), x — —o0,
T(k)e™ + o(1), x — +oc.

where R(k), T(k) are the reflection and transmission coefficients.
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Elements of the scattering theory

@ Let yi(x), I =1, N be eigenfunctions of discrete spectrum, normalized by
the condition y;(x) = (1 + o(1)), x = —o0;

@ Let 7,/ =1, N be the corresponding weights 7, > = I y7 (x)dx.

The set S = {R(k), k €R; —sc; v >0, | =1, N} is called the scattering

data.
the time
S(0) = {R(k,0), k € R; 5;v/(0)} wvolution S(t) = {R(k,t), k € R; s;7(t)}
the direct the inverse
problem problem

u(x,0) the KdV equation

u(x,t)

The time evolution
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The symplectic form

The symplectic form Q on u(x) € ¥, is

Q(d1u, bru) = /_O:o dx /XOO dy(élu(x) <6ou(y) — dru(y) - 62u(x)),

where Ju(x) is a variation of u(x) (du(x) € Lo, Xo is the Schwartz class).
The Hamiltonian on manifold ¥y is defined by equality

+o0
Hlol = [ @00+ jud)a,

—oo

and the KdV equation has the form

_ d SHI
T dx Su

u

The map u — S is a transformation from potential u(x) to the scattering data.
In [5] the symplectic form © and the Hamiltonian H[u] were represented in
terms of the scattering data.

5Zakharov V.E., Faddeev, L.D. Korteweg-de Vries equation: A completely
integrable Hamiltonian system. Functional analysis and its applications // 1971,
5: No.4: 18-27 (in Russian).
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From the symplectic form to the scattering data

61U(X) — 618, 52U(X) — 625,
Q(d1u, 62u) = Qs(615, 625),

where
4 oo N
25(015,8:5) = [ (51P(05QUk, 1) — 81Q(K, 32P(K)) dk + 3 (Brprdaar — Srardep)
- =1
P(K) 1= < log(1 — [R(Kk, ), QUk,8) == arg T(k, &) — arg R(k, ),

d __
pr = %,2, qi(t) :=2log (W/JT Yk, t)lk:i%() , I=1,N.

Zaharov V.E., Faddeev L.D.'71

The variables P(k), p1, Q(k, t), q/(t) are the canonical variables of "action-angle” type. The
Hamiltonian can be expressed in terms of the "action” variables P(k,t), p;:

N
1 oo 32
Hu] = — KP(k)dk — == 3" p3/2,
!
21 J oo 5T

In the canonical variables the KdV equation looks like

d d d , d .
—P(k) =0 —p =0 — Q(k, t) = 8k —q(t) = —8s7; .
= (k) =0, p=0, — Q(k, t) ; dtq'() >

dt
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The KdV equation in a class of non-decreasing functions

Consider the Cauchy problem for the KdV equation
ue(x, t) = 6u(x, t)ux(x, t) — tox(x,t), Ule=o = uo(x),

with real infinitely differentiable the initial function ug(x) € X, X is manifold of
the Schwartz type

0 - .
Y= {u: / (14 xM)|uP (x) = v¥ (x)|dx < o0,
oo - .
/ (14 xM)|uP (x)|dx < 00, j,m=0,1, } ,
0
where v(x) is real periodic finite-gap potential for the Hill equation
—y" +v(x)y = ky, —o0<x< o0,

with period 1: v(x + 1) = v(x).

Problem 1

To construct the set of the integrals of motion for such type equations.
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Regularized integrals of motion

Result 1 (K.Andreiev'15)

There is an infinite set of the regularized integrals of motion that depend on
time

0 oo t
bu, t] = / Q)luldé + / o5 uldé + / P[v(0,7)]dr,
di 9l | §ldu

gt ot Touar O JTL2

where v(x, t) is the periodic solution of the KdV equation with initial function
v(x,0) = wo(x); v(x +1,t) = v(x,t), and the functions Q;(&, t), d;(&, t), P;i(t)
are polynomial with respect to u, v and derivatives of u, v by the space variable

Qjlu] = Q(u(§; 1), ue(§, 1), ),

aj[u] = Uj(u(gv t)7 Ug(ﬁ, t): ):
Pi[v(0,7)] = P;(v(0,7), ve(0,7),...).
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The integrals of motion in the periodic case

Il[u,t]:/j (u(€, ) — v(E, 1) d§+/ u(é,t d§+/ (3°(0,7) — vee(0,7) ) o7

h[u] = v(0,0);
ot = 7 (604 60+ el ) — vee(6.0) de [ (—u(E D) + ueele ) de

+ /Ot ( —4v3(0, ) + 8v(0, T)vee (0, 7) + SVE(O7 T) — W (0, 'r)) dr;

Ii[u] = —2v*(0, 0) + v (0, 0);

sl = [ (2060 - 206 0+ e 8 - e 0 + 60 - e ) ) ae
[T (2 0+ st 0+ u9e ) ae

+ /Ot <9v4(o, ™) — 42v%(0, 7)vee (0, ) — 60v(0, T)vE(0, T) + 12v(0, v (0, 7)

+ 28v¢ (0, T)v(3)(0, )+ 19v§5 0,7) — v(s)(O, T)) dr;

lo[u] = 13—6\/3(0, 0) — 8w (0,0) — 5v2(0,0) + vY(0, 0).

51
and the KdV equation can be represented as % = j‘x%.
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The integrals of motion in the steplike case

Consider the case when the solution of the Cauchy problem tends to a constant
background at x — —oo, that is v(x, t) = const = ¢*, ¢ € R\{0}.

hlu, t] = /_Ooo (u(f, t) — c2) dé + /Ooo u(€, t)de + 3c*t;

blu,t] =c%

hu, t] :/0 (fuz(f, t) + c“) de + /OQ (fuz(f, t)) dé — 4cst;
— 0 0

lh[u, t] = — 2%

s [u, t] :/io (2u3(g, t) + (€, 1) — 2c6) dé

+ /Ooo (2u3(57 t) + ui(, t)) dé +9c°t:

o[u, £ :%68,

du __ d dls[u,t]

and the KdV equation can be represented as & = - ==~
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The integrals of motion that do not depend explicitly on

time

Note that the integrals of motion with even numbers are constants, and the
odd ones depend linearly on time. Therefore it is easy to construct a sequence
which does not depend explicitly on time

0
Slu] = B, ] + gcz h[u,t] = /_ (7u2(§, £+ %c%(g, £ — %c4) de
[T (e + jeuen ) de
blu] = [u, ] — 3¢* - hlu,t] = [ (2u3(§, t) — 3ctu(e, t) + (€, t) + c6)d.£
+ /000 (2u3(§, t) —3ctu(e, t) + uz (e, t)) d¢;
0
Ji[u] = 1 ( — 5u*(€,t) — 10u(&, t)uR(E, t) + 8cPu(€, t) — ule (€, t) — 3c8) de

+ /OOO ( —5u*(&, 1) — 10u(&, t)ug (&, t) + 8 u(E, t) — wge(é, t)) de.
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The integrals of motion in terms of the scattering data

Consider the Cauchy problem for the KdV equation
ur(x, t) = 6u(x, t)uc(x, t) — (X, t),  Ule=0 = to(X),

and the corresponding spectral Schodinger equation
d? -
— v+ w(x)y(x) = KRy(x), keTT, xeR,

where u(-,t) € L} _(R) and

loc

. _ 2 . _
x—IlToo u(x,t) = c*, X—|I>Too u(x,t) =0,

also we assume that

/ (1+ x| u(x, )] + |u(=x,t) — 2)dx < 00, Vit € R,
0
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The integrals of motion in terms of the scattering data

The following facts are valid:
@ The equation —y” + upy = k2y has two Jost solutions o(k,x, t) and
¢1(k, x, t) with the asymptotic behavior

lim ¢(k,x,t)e ™ =1, Im k>0,

X—>+00

lim ¢1(k,x,t)e* ™ =1, Im k >0,
X——00

where ki1 = v/ k? — c2. These solutions satisfy the scattering relation
T(k,t)p1(k,x,t) = ¢(k,x, t) + R(k, t)d(k,x,t), k ER,

where T(k,t), R(k, t) are the right transmission and reflection
coefficients.

@ The spectrum of this operator consists of absolutely continuous part Ry
and a finite number of negative eigenvalues —2 < ... < —x3 < 0. The
continuous spectrum consists of the spectrum of multiplicity one on [0, ¢?]
and of the spectrum of multiplicity two on [c?; 00).

Kyrylo Andreiev, Kharkiv, Ukraine The integrals of motion for the KdV equation



The integrals of motion in terms of the scattering data

@ The solutions ¢(iz, x, t) and ¢1(is, x, t) are linearly dependent
eigenfunctions of the Schodinger operator. The corresponding normalizing
constants

e (/R(bz(%hx’ t)dx) 71’ T = (/R‘ﬁ(%/,x, t)dX>7l.

@ The following identity is true
- Rk, ) = | T(k OF, kiR

@ The value |T(k, t)| doesn't depend on t when k; € R, and
arg T(k,t) =arg T(k,0)—4k’t, ke [—ccl.
Moreover, (t) = 7,(0)e®".

@ The solution u(x, t) the initial value problem for the KdV equation with
steplike initial data can be uniquely restored by the right scattering data

S(t) = {R(k,t), k€R; —»i; ~(t), [=1,N}.

o If u(,t) € T, then R(k,t) = O(41), k — 00,Vn.

Kyrylo Andreiev, Kharkiv, Ukraine The integrals of motion for the KdV equation



The integrals of motion in terms of the scattering data

Problem 2

To express the regularized integrals of motion in terms of the scattering data.

Introduce the function
N

L i k*i%[ k1
Bk, t) i= s o8 [H i T t)\/T]

=1

where T(k, t) is the transmission coefficient. The function T (k, t) has poles iz, | = 1, N in the
upper half plane, so the function B(k, t) is holomorphic for Im k > 0 and does not have zeros
there. At Im k > 0 by Cauchy’s theorem we have the integral representation

1 +oo Im B(s, t
B(kvt)z,/ Im B(s, 1)

T J_co s—k

where

ﬁ log(1 — |R(k, t)|?), k€ R\[-c;c],

ViZ—c? | SN arg ki k € [—c;c].

Im B(k, t) =
m Bk, ) -2 |LargR(k,t) + L arg k
T/2_x2 |2 ’ 2 k k¥isy | °
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The integrals of motion in terms of the scattering data

Problem 2

To express the regularized integrals of motion in terms of the scattering data.

Expand the function log T~*(k, t) with respect to (—2ik)":
_ 2 Ca(t) 1
log T ' (k,t)=> — 2. —.
og (k, t) 2 iy ke

We get the following coefficients Cp(t):

1 —1)Y 710272 gy q(s)
Cya(t) = ~ /}R\[ ]Iog (1 — |R(s, t)|2) =1 — ds
—C,C -

1 e /1 1 V2= L sy (—1Y 129 dy ()
+;/_C(EargR(s,t)+§argf+Zarg ) ds

s+ iz 2 —s?

1=1

22, N 1. (o
— > e,
=1

) Cyj = 2

here the functions db;_1(s),j = 1,2, ... can be found from the following relations

dzj_l(s) = 31(5) . bj + ...+ aj(s) - by,

where a,(s), by, p=1,;:

e (2p —2)! 2p—1)
2= b a et
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The integrals of motion in terms of the scattering data
Result 2 (K.Andreiev'16 to appear)

4 , 1 2 74s3+?c25
J; = Cs(t —c” - Ci(t) = — | 1— |R(s,t d:
ol = G394 5 = [ teg (1 1RG0 ) T s
1 Vs?2 — 2 N s — i\ —8s® + X%
— —arg R(s, t 7ar + ar, - B
/76 gR(s,t) + € 12:1: gs+u¢,) c2 — 52
N 16 16
3 2
+/2:1:(7?%, +?c m),
1 5\ 16s° — 8c%s® — 5cts
Jg[u]—Cs(t)—3c4‘C1(t):f/ log (1 — |R(s, t)]?) — ——"ds
R\[—cic] ( ) V2 — 2
1 VsZ—¢2 s — i 32s° — 16¢%s® — 10c*s
,/ —arg R(s, t) + Earg +Za s+1%/) o
+Z(—i%, + 9c¢ %,)
5
The right hand side of these formulas do not depend on t, since

1
|R(s, t)| = |R(s,0)], 5rg R(s,t)
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The symplectic form in the steplike case

Let

S ={Ri(k), ke R; 0, 4 1=T N}, i=1,2
be the scattering data for the two potentials ui(x) and wz2(x). Then the
following equation for K(x,y) is valid

Koy +Fo)+ [ KGOF(EndE=0, v >,
where the kernel F(x,y) has the form

Flxy) =5 / " (Ra(k) — Ri(K))3(x, KoLy, Kkt

. (1
—|—Zy, (x 1%, y,1%, Z’y, (x 1%, qﬁ(y,l%,( )).

here and next ¢(x, k) is the Jost solution that corresponds to the potential u;.
This equation has the unique solution, and

d
w(x) — w(x) = 2&K(x, x).

%Kay J., Moses H.E. The determination of the scaterring potential from the
spectral measure function, Ill, Nuovo Cimento 3, No.2:(1956), 277-304.
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The symplectic form in the steplike case

Consider the potential u on the manifold X, then du € ¥y. Introduce the
corresponding symplectic form

Q(d1u, 6ou) = /700 dx /00 dy(d1u(x) - d2u(y) — d1u(y) - S2u(x)).

Problem 3

To express the symplectic form in terms of the scattering data.

Let d1u(x), d2u(x) be two variations of the potential u(x), and S,6:S,,S are
the corresponding scattering data and their variations. Then we get the
variation du(x) in terms of scattering data

Su(x) = d {;lr /jo SR(K)®* (x, k)dk +2> (¢,2(x)57, + 2ify,¢/(x)q§,(x)5%,):|

k=1

B1() = 9x.i5a), di(x) = 5806, Kk
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The symplectic form in the steplike case

After substituting this into the Marchenko equation and grouping summands we get
Q(Syu, 6ru) = / / Ak, q) [5:R(K)32R(q) — 51R(q)5; R(K)] dkdg

+ ; /j; By(K)[61R(K)825¢ — 815162 R(K)]dk
N

+ Z [C,'j'(51%,'62’y/' - 51"/j62%,‘) + D,‘j(51%,’527{j — 61%j52%,‘)]

ij=1

N
+ Z/ Ei(k)(81R(K)b2v) — 817162 R(k))dk + > Fi j(817i82%; — 817j027i)

1,j=1
where

Ak, q) = #/f < (x, k), *(x, q) > dx, Bi(k) = IZ’ /jo (& (x, k), 1) bi(x)) x,

Gy = 2iy; /j: (8:00di(), 85 () ) e,
Dj = —4y; /j: (#i0Bi(, &5()5(x) ) o,
2

Ei(k) = = /oo < P(x, k), b2 (x) > dx, Fij= 2/OC < G (x), ¢7(x) > dx,

here

< 100,809 >= 2F00 - 800 ~ g0 7).
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The symplectic form in the steplike case

We get the symplectic form in terms of the scattering data, but in NON-canonical form

; 2
Q5(5:5, 6,5) = /]R e ;k% (81R(K)52R(q) — 81R(a)52R(K) ) dk
2P K +4q ki  R(=k)  R(=q) :
+ 2 /D‘R\[fc;c] /ug\[—c;c] K2 — g2 kigr 1 — [R(K)[2 1 — |R(q)|2 (51R(k)52R(‘7) 51R(q)62R(k))dkdq
N

4 s)i+c— Kk k R(—k)
" ; =il /]R\[*c;c] k2 + 7‘/2 71 = IR(k)‘Z (51R(k)527"/ - 61%162R(k)) o

N N 2 2
> 3 + a1

F2 E — (0126821 — 617102241 ) + 2 § ——= (6150827 — 1718232 ) .
Y %2 — %2
=1 iJj=1,i#j ~J U

Suggestion

The canonical variables for this form are like
_k _ 2 _
Pl 1) — [~ 108 = IR )). k€ R\[=c.c],
IR(k, t)], k€ [—c,c].
Q(k,t) = arg T(k,t) —arg R(k,t), k €R.
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Thank you for your attention!
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