On norm resolvent convergence in theory of boundary homogenization

D.I. Borisov

Institute of Mathematics, Ufa Scientific Center, Russian Academy of Sciences Bashkir State Pedagogical University, Ufa, Russia University of Hradec Králové, Czech Republic

http://borisovdi.narod.ru/

Boundary homogenization in bounded domains

An elliptic operator $\mathcal{H}^{arepsilon}$ in

Perforation along a curve

Fast oscillating boundary

Frequently alternating boundary conditions

Boundary homogenization in bounded domains

An elliptic operator $\mathcal{H}^{arepsilon}$ in

The state of the s

Perforation along a curve

Fast oscillating boundary

Frequently alternating boundary conditions

The usual result is a strong resolvent convergence: $f \in L_2$ $(\mathcal{H}^{\varepsilon} - \lambda)^{-1}f \to (\mathcal{H}^0 - \lambda)^{-1}f$ strongly in L_2 and weakly in W_2^1 .

Boundary homogenization in bounded domains

An elliptic operator $\mathcal{H}^{arepsilon}$ in

THE THE PROPERTY OF THE PROPER

Perforation along a curve

Fast oscillating boundary

Frequently alternating boundary conditions

The usual result is a strong resolvent convergence: $f \in L_2$ $(\mathcal{H}^{\varepsilon} - \lambda)^{-1}f \to (\mathcal{H}^0 - \lambda)^{-1}f$ strongly in L_2 and weakly in W_2^1 .

Main questions (motivated by works by M.Sh. Birman, T.A. Suslina & V.V. Zhikov, S.E. Pastukhova)

- Is there a norm resolvent convergence?
- If yes, what is the rate of the convergence?

Distances between the holes are $\sim \varepsilon$, their sizes are $\sim \varepsilon \eta(\varepsilon)$, $0 < \eta \leqslant 1$

Distances between the holes are $\sim \varepsilon$, their sizes are $\sim \varepsilon \eta(\varepsilon)$, $0<\eta\leqslant 1$ The operator is

$$\mathcal{H}^{\varepsilon} := -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} A_{ij} \frac{\partial}{\partial x_{j}} + \sum_{j=1}^{n} \left(A_{j} \frac{\partial}{\partial x_{j}} - \frac{\partial}{\partial x_{j}} \overline{A_{j}} \right) + A_{0} \quad \text{in} \quad L_{2}(\Omega^{\varepsilon})$$

Distances between the holes are $\sim \varepsilon$, their sizes are $\sim \varepsilon \eta(\varepsilon)$, $0<\eta\leqslant 1$ The operator is

$$\mathcal{H}^{\varepsilon} := -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} A_{ij} \frac{\partial}{\partial x_{j}} + \sum_{j=1}^{n} \left(A_{j} \frac{\partial}{\partial x_{j}} - \frac{\partial}{\partial x_{j}} \overline{A_{j}} \right) + A_{0} \quad \text{in} \quad L_{2}(\Omega^{\varepsilon})$$

subject to the *Dirichlet condition* on some of the holes and to the *Robin condition*

$$\left(\frac{\partial}{\partial N^{\varepsilon}} + a\right)u = 0, \quad \frac{\partial}{\partial N^{\varepsilon}} := \sum_{i,j=1}^{2} A_{ij} \nu_{i}^{\varepsilon} \frac{\partial}{\partial x_{j}} + \sum_{j=1}^{2} \overline{A}_{j} \nu_{j}^{\varepsilon},$$

on the others, where $\nu^{\varepsilon} = (\nu_1^{\varepsilon}, \nu_2^{\varepsilon})$ is the inward normal.

Distances between the holes are $\sim \varepsilon$, their sizes are $\sim \varepsilon \eta(\varepsilon)$, $0 < \eta \le 1$ The operator is

$$\mathcal{H}^{\varepsilon} := -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} A_{ij} \frac{\partial}{\partial x_{j}} + \sum_{j=1}^{n} \left(A_{j} \frac{\partial}{\partial x_{j}} - \frac{\partial}{\partial x_{j}} \overline{A_{j}} \right) + A_{0} \quad \text{in} \quad L_{2}(\Omega^{\varepsilon})$$

subject to the Dirichlet condition on some of the holes and to the Robin condition

$$\left(\frac{\partial}{\partial N^{\varepsilon}} + a\right)u = 0, \quad \frac{\partial}{\partial N^{\varepsilon}} := \sum_{i,j=1}^{2} A_{ij} \nu_{i}^{\varepsilon} \frac{\partial}{\partial x_{j}} + \sum_{i=1}^{2} \overline{A}_{j} \nu_{j}^{\varepsilon},$$

on the others, where $\nu^{\varepsilon} = (\nu_1^{\varepsilon}, \nu_2^{\varepsilon})$ is the inward normal.

The main aim: to study the norm resolvent convergence for $\mathcal{H}_{\varepsilon}$ as $\varepsilon \to +0$.

The domain and curve: $\Omega := \{x : 0 < x_2 < d\}$, γ is a C^2 -curve in Ω separated from $\partial\Omega$, with a bounded curvature, with no self-intersections and is either infinite or finite and closed, s is the arc length of γ

The domain and curve: $\Omega := \{x : 0 < x_2 < d\}$, γ is a C^2 -curve in Ω separated from $\partial\Omega$, with a bounded curvature, with no self-intersections and is either infinite or finite and closed, s is the arc length of γ Position of holes: $\mathbb{M}^{\varepsilon} \subseteq \mathbb{Z}$ is an arbitrary set, and s_k , $k \in \mathbb{M}^{\varepsilon}$ are some points, $s_k < s_{k+1}$, $y_k^{\varepsilon} \in \gamma$ are associated with $s = s_k \varepsilon$.

The domain and curve: $\Omega:=\{x:0< x_2< d\},\ \gamma \text{ is a } C^2\text{-curve in }\Omega$ separated from $\partial\Omega$, with a bounded curvature, with no self-intersections and is either infinite or finite and closed, s is the arc length of γ Position of holes: $\mathbb{M}^\varepsilon\subseteq\mathbb{Z}$ is an arbitrary set, and $s_k,\ k\in\mathbb{M}^\varepsilon$ are some points, $s_k< s_{k+1},\ y_k^\varepsilon\in\gamma$ are associated with $s=s_k\varepsilon$. Holes: $\omega_k,\ k\in\mathbb{M}^\varepsilon$, are bounded domains in \mathbb{R}^2 , $\omega_k^\varepsilon:=\{x:\varepsilon^{-1}\eta^{-1}(\varepsilon)(x-y_k^\varepsilon)\in\omega_k\},\ \Omega^\varepsilon:=\Omega\setminus\theta^\varepsilon.$

The domain and curve: $\Omega:=\{x:0< x_2< d\},\ \gamma \text{ is a } C^2\text{-curve in }\Omega$ separated from $\partial\Omega$, with a bounded curvature, with no self-intersections and is either infinite or finite and closed, s is the arc length of γ Position of holes: $\mathbb{M}^\varepsilon\subseteq\mathbb{Z}$ is an arbitrary set, and $s_k,\ k\in\mathbb{M}^\varepsilon$ are some points, $s_k< s_{k+1},\ y_k^\varepsilon\in\gamma$ are associated with $s=s_k\varepsilon$. Holes: $\omega_k,\ k\in\mathbb{M}^\varepsilon$, are bounded domains in \mathbb{R}^2 , $\omega_k^\varepsilon:=\{x:\varepsilon^{-1}\eta^{-1}(\varepsilon)(x-y_k^\varepsilon)\in\omega_k\},\ \Omega^\varepsilon:=\Omega\setminus\theta^\varepsilon$. Holes with Dirichlet and Robin conditions: $\theta_D^\varepsilon:=\bigcup_{k\in\mathbb{M}_D}\omega_k^\varepsilon,\ \theta_R^\varepsilon:=\bigcup_{k\in\mathbb{M}_R}\omega_k^\varepsilon,\ \mathbb{M}_D^\varepsilon\cup\mathbb{M}_R^\varepsilon=\mathbb{M}^\varepsilon$.

Assumptions

Sizes and position of the holes:

 $\exists \text{ fixed numbers } 0 < R_1 < R_2, \ b > 1, \\ L > 0, \text{ and points } x^k \in \mathbb{R}^2, \ k \in \mathbb{M}^{\varepsilon}, \\ \text{s.t. } B_{R_1}(x^k) \subset \omega_k \subset B_{R_2}(0), \ |\partial \omega_k| \leqslant L, \\ B_{bR_2\varepsilon}(y_k^{\varepsilon}) \cap B_{bR_2\varepsilon}(y_i^{\varepsilon}) = \emptyset, \ i \neq k.$

Assumptions

Sizes and position of the holes:

 $\exists \text{ fixed numbers } 0 < R_1 < R_2, \ b > 1, \\ L > 0, \text{ and points } x^k \in \mathbb{R}^2, \ k \in \mathbb{M}^{\varepsilon}, \\ \text{s.t. } B_{R_1}(x^k) \subset \omega_k \subset B_{R_2}(0), \ |\partial \omega_k| \leqslant L, \\ B_{bR_2\varepsilon}(y_k^{\varepsilon}) \cap B_{bR_2\varepsilon}(y_i^{\varepsilon}) = \emptyset, \ i \neq k.$

Uniform regularity of the holes:

For $R_3:=R_2(b+1)/2$ and $k\in \mathbb{M}^{\varepsilon}$ the b.v.p.

$$\operatorname{div} X_k = 0 \text{ in } B_{R_3}(0) \setminus \omega_k,$$
 $X_k \cdot \nu = -1 \text{ on } \partial \omega_k, \quad X_k \cdot \nu = \varphi_k \text{ on } \partial B_{R_3}(0),$

is solvable in $L_{\infty}(B_{R_3}(0)\setminus\omega_k)$ and bounded in this space uniformly in $k\in\mathbb{M}^{\varepsilon}$. Here ν is the outward normal, $\varphi_k\in L_{\infty}(\partial B_{R_3}(0))$ satisfies $\int\limits_{\partial B_{R_3}(0)}\varphi_k\,ds=|\partial\omega_k|$.

Main results: Homogenized Dirichlet condition on γ

Theorem

Let $\varepsilon \ln \eta(\varepsilon) \to 0$, $\varepsilon \to +0$. Suppose there exists a constant $R_4 > bR_2$ such that

$$\{x: \operatorname{dist}(x,\gamma) < \varepsilon b R_2\} \subset \bigcup_{k \in \mathbb{M}_D^{\varepsilon}} B_{R_4 \varepsilon}(y_k^{\varepsilon}).$$

Main results: Homogenized Dirichlet condition on γ

Theorem

Let $\varepsilon \ln \eta(\varepsilon) \to 0$, $\varepsilon \to +0$. Suppose there exists a constant $R_4 > bR_2$ such that

$$\{x: \operatorname{dist}(x,\gamma) < \varepsilon b R_2\} \subset \bigcup_{k \in \mathbb{M}_D^{\varepsilon}} B_{R_4 \varepsilon}(y_k^{\varepsilon}).$$

Then

$$\|(\mathcal{H}^{\varepsilon}-\mathrm{i})^{-1}-(\mathcal{H}_{\mathrm{D}}^{0}-\mathrm{i})^{-1}\|_{L_{2}(\Omega)\to\mathcal{W}_{2}^{1}(\Omega^{\varepsilon})}\leqslant C\varepsilon^{1/2}\big(|\ln\eta(\varepsilon)|^{1/2}+1\big),$$

where \mathcal{H}_D^0 is the operator with the same differential expression and subject to the Dirichlet condition of γ and $\partial\Omega$, C is a positive constant independent of ε .

The estimate is order sharp.

δ -interaction on γ

For $\beta \in W^1_{\infty}(\gamma)$, \mathcal{H}^0_{β} denotes the operator with the above differential expression subject to the boundary conditions

$$[u]_{\gamma} = 0, \quad \left[\frac{\partial u}{\partial N^0}\right]_{\gamma} + \beta u|_{\gamma} = 0, \qquad \frac{\partial}{\partial N^0} := \sum_{i,j=1}^2 A_{ij} \nu_i^0 \frac{\partial}{\partial x_j}, \quad (1)$$

where $\nu^0=(\nu^0_1,\nu^0_2)$ and $[u]_{\gamma}=uig|_{\tau=+0}-uig|_{\tau=-0}.$

Homogenized δ -interaction on γ : exponentially small Dirichlet holes

Theorem

Let $(\varepsilon \ln \eta(\varepsilon))^{-1} \to -\rho$, $\varepsilon \to +0$, and $\mathbb{M}_D^{\varepsilon} \neq \emptyset$.

Homogenized δ -interaction on γ : exponentially small Dirichlet holes

Theorem

Let $(\varepsilon \ln \eta(\varepsilon))^{-1} \to -\rho$, $\varepsilon \to +0$, and $\mathbb{M}_D^{\varepsilon} \neq \emptyset$. Denote $\alpha^{\varepsilon}(s) := \frac{\pi}{bR_2}$ as $|s - \varepsilon s_k| < bR_2\varepsilon$, $k \in \mathbb{M}_D^{\varepsilon}$, and $\alpha^{\varepsilon}(s) := 0$ otherwise.

Homogenized δ -interaction on γ : exponentially small Dirichlet holes

Theorem

Let $(\varepsilon \ln \eta(\varepsilon))^{-1} \to -\rho$, $\varepsilon \to +0$, and $\mathbb{M}_D^{\varepsilon} \neq \emptyset$. Denote $\alpha^{\varepsilon}(s) := \frac{\pi}{bR_0}$ as $|s-\varepsilon s_k| < bR_2\varepsilon$, $k \in \mathbb{M}_D^\varepsilon$, and $\alpha^\varepsilon(s) := 0$ otherwise. Assume that there exists $\alpha \in W^1_\infty(\gamma)$ and $\varkappa = \varkappa(\varepsilon)$, $\varkappa(\varepsilon) \to +0$, $\varepsilon \to +0$, such that

$$\sum_{q\in\mathbb{Z}}\frac{1}{|q|+1}\left|\int_{n}^{n+\ell}\left(\alpha^{\varepsilon}(s)-\alpha(s)\right)\mathrm{e}^{-\frac{\mathrm{i}q}{2\pi\ell}(s-n)}\,ds\right|^{2}\leqslant\varkappa^{2}(\varepsilon),$$

where $n = -|\gamma|/2$, $\ell = |\gamma|$, if γ is a finite curve, and $n \in \mathbb{Z}$, $\ell = 1$, if γ is infinite.

Homogenized δ -interaction on γ : exponentially small Dirichlet holes

Theorem

Let $(\varepsilon \ln \eta(\varepsilon))^{-1} \to -\rho$, $\varepsilon \to +0$, and $\mathbb{M}_D^{\varepsilon} \neq \emptyset$. Denote $\alpha^{\varepsilon}(s) := \frac{\pi}{bR_2}$ as $|s - \varepsilon s_k| < bR_2 \varepsilon$, $k \in \mathbb{M}_D^{\varepsilon}$, and $\alpha^{\varepsilon}(s) := 0$ otherwise. Assume that there exists $\alpha \in W_{\infty}^1(\gamma)$ and $\varkappa = \varkappa(\varepsilon)$, $\varkappa(\varepsilon) \to +0$, $\varepsilon \to +0$, such that

$$\sum_{q\in\mathbb{Z}}\frac{1}{|q|+1}\left|\int_{n}^{n+\ell}\left(\alpha^{\varepsilon}(s)-\alpha(s)\right)\mathrm{e}^{-\frac{\mathrm{i}q}{2\pi\ell}(s-n)}\,ds\right|^{2}\leqslant\varkappa^{2}(\varepsilon),$$

where $n=-|\gamma|/2$, $\ell=|\gamma|$, if γ is a finite curve, and $n\in\mathbb{Z}$, $\ell=1$, if γ is infinite. Denote $\beta:=-\alpha\frac{\rho}{A_{11}A_{22}-A_{12}^2}$, $\mu(\varepsilon):=-(\varepsilon\ln\eta(\varepsilon))^{-1}-\rho\to 0$. Then

$$\|(\mathcal{H}^{\varepsilon}-\mathrm{i})^{-1}-(\mathcal{H}^{0}_{\beta}-\mathrm{i})^{-1}\|_{L_{2}(\Omega)\to L_{2}(\Omega^{\varepsilon})}\leqslant C(\varepsilon^{1/2}+\varkappa(\varepsilon)+\mu(\varepsilon)),$$

where C is a positive constant independent of ε .

Theorem

Let
$$\eta = \text{const}$$
, $M_D^{\varepsilon} = \emptyset$.

Theorem

Let
$$\eta = \text{const}$$
, $\mathbb{M}_D^{\varepsilon} = \emptyset$. Denote $\alpha^{\varepsilon}(s) := \frac{|\partial \omega_k|}{2bR_2}$ as $|s - \varepsilon s_k| < bR_2 \varepsilon \eta$, $k \in \mathbb{M}^{\varepsilon}$, and $\alpha^{\varepsilon}(s) := 0$ otherwise.

Theorem

Let $\eta = \text{const}$, $\mathbb{M}_D^{\varepsilon} = \emptyset$. Denote $\alpha^{\varepsilon}(s) := \frac{|\partial \omega_k|}{2bR_2}$ as $|s - \varepsilon s_k| < bR_2 \varepsilon \eta$, $k \in \mathbb{M}^{\varepsilon}$, and $\alpha^{\varepsilon}(s) := 0$ otherwise. Assume that there exists $\alpha \in W^1_{\infty}(\gamma)$ and $\varkappa = \varkappa(\varepsilon)$, $\varkappa(\varepsilon) \to +0$, $\varepsilon \to +0$, such that

$$\sum_{q\in\mathbb{Z}}\frac{1}{|q|+1}\left|\int_{n}^{n+\ell}\left(\alpha^{\varepsilon}(s)-\alpha(s)\right)\mathrm{e}^{-\frac{\mathrm{i}q}{2\pi\ell}(s-n)}\,ds\right|^{2}\leqslant\varkappa^{2}(\varepsilon)$$

is valid.

Theorem

Let $\eta = \text{const}$, $\mathbb{M}_D^{\varepsilon} = \emptyset$. Denote $\alpha^{\varepsilon}(s) := \frac{|\partial \omega_k|}{2bR_2}$ as $|s - \varepsilon s_k| < bR_2 \varepsilon \eta$, $k \in \mathbb{M}^{\varepsilon}$, and $\alpha^{\varepsilon}(s) := 0$ otherwise. Assume that there exists $\alpha \in W_{\infty}^1(\gamma)$ and $\varkappa = \varkappa(\varepsilon)$, $\varkappa(\varepsilon) \to +0$, $\varepsilon \to +0$, such that

$$\sum_{q\in\mathbb{Z}}\frac{1}{|q|+1}\left|\int_{n}^{n+\ell}\left(\alpha^{\varepsilon}(s)-\alpha(s)\right)\mathrm{e}^{-\frac{\mathrm{i}q}{2\pi\ell}(s-n)}\,ds\right|^{2}\leqslant\varkappa^{2}(\varepsilon)$$

is valid. Then

$$\|(\mathcal{H}^{\varepsilon}-\mathrm{i})^{-1}-(\mathcal{H}_{\alpha \mathrm{a}}^{0}-\mathrm{i})^{-1}\|_{L_{2}(\Omega)\to W_{2}^{1}(\Omega^{\varepsilon})}\leqslant C(\varepsilon^{1/2}+\varkappa(\varepsilon)),$$

where C is a positive constant independent of ε . Term $\varepsilon^{1/2}$ is order sharp.

Homogenized "no condition"

 \mathcal{H}^0 is the operator with the above differential expression subject to Dirichlet condition on $\partial\Omega$ and with no condition on γ .

http://borisovdi.narod.ru/

Homogenized "no condition"

 \mathcal{H}^0 is the operator with the above differential expression subject to Dirichlet condition on $\partial\Omega$ and with no condition on γ .

Theorem

Let $\mathbb{M}_D^{\varepsilon} = \emptyset$ and either $\mathbf{a} \equiv \mathbf{0}$ or $\eta(\varepsilon) \to \mathbf{0}$, $\varepsilon \to +0$.

Homogenized "no condition"

 \mathcal{H}^0 is the operator with the above differential expression subject to Dirichlet condition on $\partial\Omega$ and with no condition on γ .

Theorem

Let $\mathbb{M}_D^{\varepsilon} = \emptyset$ and either $\mathbf{a} \equiv \mathbf{0}$ or $\eta(\varepsilon) \to \mathbf{0}$, $\varepsilon \to +0$. Then

$$\|(\mathcal{H}^{\varepsilon}-\mathrm{i})^{-1}-(\mathcal{H}^{0}-\mathrm{i})^{-1}\|_{L_{2}(\Omega)\to W_{2}^{1}(\Omega^{\varepsilon})}\leqslant C\eta(\varepsilon)\big(|\ln\eta(\varepsilon)|+1\big),$$

if $a \not\equiv 0$, and

$$\|(\mathcal{H}^{\varepsilon}-\mathrm{i})^{-1}f-(\mathcal{H}^{0}-\mathrm{i})^{-1}f\|_{L_{2}(\Omega)\to W_{2}^{1}(\Omega^{\varepsilon})}\leqslant C\varepsilon^{1/2}\eta(\varepsilon)(|\ln\eta(\varepsilon)|^{1/2}+1),$$

if $a \equiv 0$, where C is a positive constant independent of ε . The estimates are order sharp up to the absence of the term $|\ln \eta|^{1/2}$.

Model

Domain: Γ d $\Omega_{arepsilon}$ $\Omega_{arepsilon}$

$$\Omega_{\varepsilon} := \{x \in \mathbb{R}^2 : \eta b(x_1 \varepsilon^{-1}) < x_2 < d\}, \ b \in C^2(\mathbb{R}), \ b \text{ is 1-periodic, } b \geqslant 0, \ \eta = \eta(\varepsilon) > 0, \ \varepsilon \to +0$$

Model

$$\Omega_{\varepsilon} := \{x \in \mathbb{R}^2 : \eta b(x_1 \varepsilon^{-1}) < x_2 < d\}, \ b \in C^2(\mathbb{R}), \ b \text{ is 1-periodic, } b \geqslant 0, \ \eta = \eta(\varepsilon) > 0, \ \varepsilon \to +0$$

Operator:
$$\mathcal{H}_{\varepsilon} := -\sum_{i,j=1}^{2} \frac{\partial}{\partial x_{j}} A_{ij} \frac{\partial}{\partial x_{i}} + \sum_{j=1}^{2} A_{j} \frac{\partial}{\partial x_{j}} - \frac{\partial}{\partial x_{j}} \overline{A_{j}} + A_{0} \text{ in } L_{2}(\Omega_{\varepsilon})$$

u=0 on Γ

Model

Domain: $\begin{array}{c|c} \Gamma & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & & \\$

$$\Omega_{\varepsilon} := \{x \in \mathbb{R}^2 : \eta b(x_1 \varepsilon^{-1}) < x_2 < d\}, \ b \in C^2(\mathbb{R}), \ b \text{ is 1-periodic, } b \geqslant 0, \ \eta = \eta(\varepsilon) > 0, \ \varepsilon \to +0$$

Operator:
$$\mathcal{H}_{\varepsilon} := -\sum_{i,j=1}^{2} \frac{\partial}{\partial x_{j}} A_{ij} \frac{\partial}{\partial x_{i}} + \sum_{j=1}^{2} A_{j} \frac{\partial}{\partial x_{j}} - \frac{\partial}{\partial x_{j}} \overline{A_{j}} + A_{0} \text{ in } L_{2}(\Omega_{\varepsilon})$$

u=0 on Γ

Boundary condition on Γ_{ε} is the Dirichlet, Neumann or Robin one

Dirichlet condition on Γ_{ε}

Suppose we have the Dirichlet condition on Γ_{ε} .

Dirichlet condition on Γ_{ε}

Suppose we have the Dirichlet condition on Γ_{ε} .

Homogenized operator:
$$\Omega_0 := \{x \in \mathbb{R}^2 : 0 < x_2 < d\}$$

$$\mathcal{H}_0 := -\sum_{i,j=1}^2 \frac{\partial}{\partial x_j} A_{ij} \frac{\partial}{\partial x_i} + \sum_{j=1}^2 A_j \frac{\partial}{\partial x_j} - \frac{\partial}{\partial x_j} \overline{A_j} + A_0 \text{ in } L_2(\Omega_0) \text{ subject to}$$

the Dirichlet condition on Γ and on $\Gamma_0 := \{x : x_2 = 0\}$.

Dirichlet condition on Γ_{ε}

Suppose we have the Dirichlet condition on Γ_{ε} .

Homogenized operator: $\Omega_0 := \{x \in \mathbb{R}^2 : 0 < x_2 < d\}$

$$\mathcal{H}_0 := -\sum_{i,j=1}^2 \frac{\partial}{\partial x_j} A_{ij} \frac{\partial}{\partial x_i} + \sum_{j=1}^2 A_j \frac{\partial}{\partial x_j} - \frac{\partial}{\partial x_j} \overline{A_j} + A_0 \text{ in } L_2(\Omega_0) \text{ subject to}$$

the Dirichlet condition on Γ and on $\Gamma_0 := \{x : x_2 = 0\}$.

Main result: The estimate holds:

$$\|(\mathcal{H}_{\varepsilon}-\mathrm{i})^{-1}-(\mathcal{H}_{0}-\mathrm{i})^{-1}\|_{L_{2}(\Omega_{0})\to\mathcal{W}_{2}^{1}(\Omega_{\varepsilon})}\leqslant C\eta^{1/2}$$

This estimate is order sharp.

Neumann condition on Γ_{ε}

Suppose we have Neumann condition on Γ_{ε} .

Neumann condition on Γ_{ε}

Suppose we have Neumann condition on Γ_{ε} .

Homogenized operator: $\Omega_0 := \{x \in \mathbb{R}^2 : 0 < x_2 < d\}$

$$\mathcal{H}_0 := -\sum_{i,j=1}^2 \frac{\partial}{\partial x_j} A_{ij} \frac{\partial}{\partial x_i} + \sum_{j=1}^2 A_j \frac{\partial}{\partial x_j} - \frac{\partial}{\partial x_j} \overline{A_j} + A_0 \text{ in } L_2(\Omega_0) \text{ subject to}$$

the Dirichlet condition on Γ and to the Neumann condition on

$$\Gamma_0 := \{x : x_2 = 0\}.$$

Neumann condition on Γ_{ε}

Suppose we have Neumann condition on Γ_{ε} .

Homogenized operator: $\Omega_0 := \{x \in \mathbb{R}^2 : 0 < x_2 < d\}$

$$\mathcal{H}_0 := -\sum_{i,j=1}^2 \frac{\partial}{\partial x_j} A_{ij} \frac{\partial}{\partial x_i} + \sum_{j=1}^2 A_j \frac{\partial}{\partial x_j} - \frac{\partial}{\partial x_j} \overline{A_j} + A_0 \text{ in } L_2(\Omega_0) \text{ subject to}$$

the Dirichlet condition on Γ and to the Neumann condition on $\Gamma_0 := \{x : x_2 = 0\}.$

Main result: The estimate holds:

$$\|(\mathcal{H}_{\varepsilon}-\mathrm{i})^{-1}-(\mathcal{H}_{0}-\mathrm{i})^{-1}\|_{L_{2}(\Omega_{0})\to W_{2}^{1}(\Omega_{\varepsilon})}\leqslant C\eta^{1/2}$$

This estimate is order sharp.

Robin condition on $\Gamma_{arepsilon}$

Boundary condition on
$$\Gamma_{\varepsilon}$$
: $\left(\frac{\partial}{\partial \nu_{\varepsilon}} + a\right) u_{\varepsilon} = 0$, $a \geqslant 0$.

Robin condition on $\Gamma_{arepsilon}$

Boundary condition on Γ_{ε} : $\left(\frac{\partial}{\partial \nu_{\varepsilon}} + a\right) u_{\varepsilon} = 0$, $a \geqslant 0$.

Cases

- Weakly oscillating boundary: $\lim_{\varepsilon \to +0} \varepsilon^{-1} \eta(\varepsilon) = \alpha \geqslant 0$
- $\bullet \ \ \text{Highly oscillating boundary:} \quad \lim_{\varepsilon \to +0} \varepsilon^{-1} \eta(\varepsilon) = +\infty$

Robin condition on Γ_{ε} :

Weakly oscillating boundary:
$$\lim_{\varepsilon \to +0} \varepsilon^{-1} \eta(\varepsilon) = \alpha \geqslant 0$$

Robin condition on Γ_{ε} :

Weakly oscillating boundary: $\lim_{\varepsilon \to +0} \varepsilon^{-1} \eta(\varepsilon) = \alpha \geqslant 0$

Homogenized operator:

$$\mathcal{H}_0 := -\sum_{i,j=1}^2 \frac{\partial}{\partial x_j} A_{ij} \frac{\partial}{\partial x_i} + \sum_{j=1}^2 A_j \frac{\partial}{\partial x_j} - \frac{\partial}{\partial x_j} \overline{A_j} + A_0 \text{ in } L_2(\Omega_0)$$

Boundary condition on Γ_0 : $\left(\frac{\partial}{\partial \nu_0} + a_0\right) u = 0$.

$$a_0 := a(x_1,0) \int_0^1 \sqrt{1 + \alpha^2 b'(t)^2} dt.$$

Robin condition on Γ_{ε} :

Weakly oscillating boundary: $\lim_{\varepsilon \to +0} \varepsilon^{-1} \eta(\varepsilon) = \alpha \geqslant 0$

Homogenized operator:

$$\mathcal{H}_0 := -\sum_{i,i=1}^2 \frac{\partial}{\partial x_i} A_{ij} \frac{\partial}{\partial x_i} + \sum_{i=1}^2 A_j \frac{\partial}{\partial x_j} - \frac{\partial}{\partial x_j} \overline{A_j} + A_0 \text{ in } L_2(\Omega_0)$$

Boundary condition on Γ_0 : $\left(\frac{\partial}{\partial \nu_0} + a_0\right) u = 0$.

$$a_0 := a(x_1,0) \int_0^1 \sqrt{1 + \alpha^2 b'(t)^2} dt.$$

Main result: The estimate holds

$$\|(\mathcal{H}_{\varepsilon}-\mathrm{i})^{-1}-(\mathcal{H}_{0}-\mathrm{i})^{-1}\|_{L_{2}(\Omega_{0})\to\mathcal{W}_{2}^{1}(\Omega_{\varepsilon})}\leqslant C(\eta^{1/2}+|\varepsilon^{-1}\eta-\alpha|)$$

The estimate is order sharp.

Robin condition on Γ_{ε} : highly oscillating boundary and positive coefficient

Highly oscillating boundary:
$$\lim_{\varepsilon \to +0} \varepsilon^{-1} \eta(\varepsilon) = +\infty$$

http://borisovdi.narod.ru/

Robin condition on Γ_{ε} : highly oscillating boundary and positive coefficient

Highly oscillating boundary:
$$\lim_{\varepsilon \to +0} \varepsilon^{-1} \eta(\varepsilon) = +\infty$$

Homogenized operator:

$$\mathcal{H}_0 := -\sum_{i,j=1}^2 \frac{\partial}{\partial x_j} A_{ij} \frac{\partial}{\partial x_i} + \sum_{j=1}^2 A_j \frac{\partial}{\partial x_j} - \frac{\partial}{\partial x_j} \overline{A_j} + A_0 \text{ in } L_2(\Omega_0)$$

Boundary condition on Γ_0 : Dirichlet condition.

Robin condition on Γ_{ε} : highly oscillating boundary and positive coefficient

Highly oscillating boundary: $\lim_{\varepsilon \to +0} \varepsilon^{-1} \eta(\varepsilon) = +\infty$

Homogenized operator:

$$\mathcal{H}_0 := -\sum_{i,j=1}^2 \frac{\partial}{\partial x_j} A_{ij} \frac{\partial}{\partial x_i} + \sum_{j=1}^2 A_j \frac{\partial}{\partial x_j} - \frac{\partial}{\partial x_j} \overline{A_j} + A_0 \text{ in } L_2(\Omega_0)$$

Boundary condition on Γ_0 : Dirichlet condition.

Main result: Let $a \ge c > 0$. Then the estimate holds

$$\|(\mathcal{H}_{\varepsilon}-\mathrm{i})^{-1}-(\mathcal{H}_{0}-\mathrm{i})^{-1}\|_{L_{2}(\Omega_{0})\to\mathcal{W}_{2}^{1}(\Omega_{\varepsilon})}\leqslant C(\eta^{1/2}+\varepsilon^{1/2}\eta^{-1/2})$$

The term $\varepsilon^{1/2}n^{-1/2}$ is order sharp.

Robin condition on Γ_{ε} : highly oscillating boundary and non-negative coefficient

Highly oscillating boundary: $\lim_{\varepsilon \to +0} \varepsilon^{-1} \eta(\varepsilon) = +\infty$

Homogenized operator: as above

Robin condition on Γ_{ε} : highly oscillating boundary and non-negative coefficient

Highly oscillating boundary: $\lim_{\varepsilon \to +0} \varepsilon^{-1} \eta(\varepsilon) = +\infty$

Homogenized operator: as above

Main result: Let $a \ge 0$ and for small δ the set

 $\{x: a(x) \leqslant \delta, \ 0 < x_2 < (\sup b + 1)\eta \}$ is contained in at most countably many rectangles $\{x: |x_1 - X_n| < \mu(\delta), \ 0 < x_2 < (\sup b + 1)\eta \}$, where $\mu(\delta) \to +0$ as $\delta \to +0$, numbers X_n , $n \in \mathbb{Z}$ are independent of δ and satisfy the estimate $|X_n - X_m| \geqslant c > 0$, $n \neq m$. Then the estimate holds

$$\begin{aligned} \|(\mathcal{H}_{\varepsilon} - \mathrm{i})^{-1} - (\mathcal{H}_{0} - \mathrm{i})^{-1}\|_{L_{2}(\Omega_{0}) \to W_{2}^{1}(\Omega_{\varepsilon})} \\ & \leq C \left(\eta^{1/2} + \varepsilon^{1/2} \eta^{-1/2} \delta^{-1/2} + \mu^{1/2}(\delta) |\ln \mu(\delta)|^{1/2}\right), \end{aligned}$$

where $\delta = \delta(\varepsilon) \to +0$, $\varepsilon \to +0$ is an arbitrary function.

Robin condition on Γ_{ε} : highly oscillating boundary and non-negative coefficient

Highly oscillating boundary: $\lim_{\varepsilon \to +0} \varepsilon^{-1} \eta(\varepsilon) = +\infty$ The most general case: $\mu(\delta) \sim \delta^{1/2}$

Robin condition on Γ_{ε} : highly oscillating boundary and non-negative coefficient

Highly oscillating boundary: $\lim_{\varepsilon \to +0} \varepsilon^{-1} \eta(\varepsilon) = +\infty$

The most general case: $\mu(\delta) \sim \delta^{1/2}$

Main estimate:

$$\begin{split} \|(\mathcal{H}_{\varepsilon} - \mathrm{i})^{-1} - (\mathcal{H}_0 - \mathrm{i})^{-1}\|_{L_2(\Omega_0) \to L_2(\Omega_{\varepsilon})} \\ &\leqslant C \big(\eta^{1/2} + \varepsilon^{1/6} \eta^{-1/6} |\ln \varepsilon \eta^{-1}|^{-2/3}\big). \end{split}$$

Formulation of the problem

Consider the waveguide

$$arepsilon
ightarrow +0$$
, $\eta = \eta(arepsilon)$, $0 < \eta < rac{\pi}{2}$

Formulation of the problem

Consider the waveguide

$$arepsilon o +0$$
, $\eta = \eta(arepsilon)$, $0 < \eta < \frac{\pi}{2}$
 $\mathcal{H}_{\varepsilon} := -\Delta$ in $L_2(\Omega)$ subject to D.b.c. on \blacksquare and to N.b.c. on \blacksquare

If
$$\varepsilon \ln \eta(\varepsilon) \to 0$$
 as $\varepsilon \to 0$,

If $\varepsilon \ln \eta(\varepsilon) \to 0$ as $\varepsilon \to 0$, then the homogenized operator is $\mathcal{H}_D := -\Delta$ in $L_2(\Omega)$ subject to the b.c. as on the figure

$$\Gamma_+$$
 Γ_-

If $\varepsilon \ln \eta(\varepsilon) \to 0$ as $\varepsilon \to 0$, then the homogenized operator is $\mathcal{H}_D := -\Delta$ in $L_2(\Omega)$ subject to the b.c. as on the figure

$$\Gamma_+$$
 Γ_-

If
$$\varepsilon \ln \eta(\varepsilon) \to -\infty$$
 as $\varepsilon \to 0$,

If $\varepsilon \ln \eta(\varepsilon) \to 0$ as $\varepsilon \to 0$, then the homogenized operator is $\mathcal{H}_D := -\Delta$ in $L_2(\Omega)$ subject to the b.c. as on the figure

$$\Gamma_+$$
 Γ_-

If $\varepsilon \ln \eta(\varepsilon) \to -\infty$ as $\varepsilon \to 0$, then the homogenized operator is $\mathcal{H}_N := -\Delta$ in $L_2(\Omega)$ subject to the b.c. as on the figure

$$\Gamma_+$$
 Ω

/ 1

If
$$\varepsilon \ln \eta(\varepsilon) \to -1/K$$
 as $\varepsilon \to 0$, $K \geqslant 0$

http://borisovdi.narod.ru/

If $\varepsilon \ln \eta(\varepsilon) \to -1/K$ as $\varepsilon \to 0$, $K \geqslant 0$ then the homogenized operator is $\mathcal{H}_R := -\Delta$ in $L_2(\Omega)$ subject to the b.c. as on the figure

$$\Gamma_+$$
 $\Gamma_ \Gamma_-$

R:
$$\left(-\frac{\partial}{\partial x_2} + K\right)u = 0$$
 is the condition modeling δ -potential

Theorem (Dirichlet case). Let $\varepsilon \ln \eta(\varepsilon) \to 0$. Then

$$\|(\mathcal{H}_{\varepsilon}-\mathrm{i})^{-1}-(\mathcal{H}_{D}-\mathrm{i})^{-1}\|_{L_{2}(\Omega)\to W_{2}^{1}(\Omega)}\leqslant C\varepsilon^{1/2}|\ln\sin\eta(\varepsilon)|^{1/2}$$

holds true, where $\| \bullet \|_{X \to Y}$ is the norm of an operator from X to Y.

Theorem (Dirichlet case). Let $\varepsilon \ln \eta(\varepsilon) \to 0$. Then

$$\|(\mathcal{H}_{\varepsilon}-\mathrm{i})^{-1}-(\mathcal{H}_{D}-\mathrm{i})^{-1}\|_{L_{2}(\Omega)\to W_{2}^{1}(\Omega)}\leqslant C\varepsilon^{1/2}|\ln\sin\eta(\varepsilon)|^{1/2}$$

holds true, where $\| \bullet \|_{X \to Y}$ is the norm of an operator from X to Y.

Theorem (Neumann case). Let
$$\varepsilon \ln \eta(\varepsilon) \to -\infty$$
,
$$\mu := -(\varepsilon \ln \eta(\varepsilon))^{-1} \to +0. \text{ Then}$$

$$\|(\mathcal{H}_{\varepsilon} - \mathrm{i})^{-1} - (\mathcal{H}_{N} - \mathrm{i})^{-1}\|_{L_{2}(\Omega) \to W_{2}^{1}(\Omega)} \leqslant C\mu^{1/2}$$

$$\|(\mathcal{H}_{\varepsilon} - \mathrm{i})^{-1} - (\mathcal{H}_{N} - \mathrm{i})^{-1}\|_{L_{2}(\Omega) \to L_{2}(\Omega)} \leqslant C\mu$$

Theorem (Dirichlet case). Let $\varepsilon \ln \eta(\varepsilon) \to 0$. Then

$$\|(\mathcal{H}_{\varepsilon}-\mathrm{i})^{-1}-(\mathcal{H}_{D}-\mathrm{i})^{-1}\|_{L_{2}(\Omega)\to W_{2}^{1}(\Omega)}\leqslant C\varepsilon^{1/2}|\ln\sin\eta(\varepsilon)|^{1/2}$$

holds true, where $\| \bullet \|_{X \to Y}$ is the norm of an operator from X to Y.

Theorem (Neumann case). Let
$$\varepsilon \ln \eta(\varepsilon) \to -\infty$$
,
$$\mu := -(\varepsilon \ln \eta(\varepsilon))^{-1} \to +0. \text{ Then}$$

$$\|(\mathcal{H}_{\varepsilon} - \mathrm{i})^{-1} - (\mathcal{H}_{N} - \mathrm{i})^{-1}\|_{L_{2}(\Omega) \to W_{2}^{1}(\Omega)} \leqslant C\mu^{1/2}$$

$$\|(\mathcal{H}_{\varepsilon} - \mathrm{i})^{-1} - (\mathcal{H}_{N} - \mathrm{i})^{-1}\|_{L_{2}(\Omega) \to L_{2}(\Omega)} \leqslant C\mu$$

$$\|(\mathcal{H}_{\varepsilon} - \mathrm{i})^{-1} - (\mathcal{H}_{N}^{(\mu)} - \mathrm{i})^{-1}\|_{L_{2}(\Omega) \to L_{2}(\Omega)} \leqslant C\varepsilon\mu |\ln \varepsilon\mu|$$

 $\mathcal{H}_{N}^{(\mu)}:=-\Delta$ with Dirichlet b.c. on Γ_{+} and $(\frac{\partial}{\partial \nu}+\mu)u=0$ on Γ_{-} .

Theorem (Dirichlet case). Let $\varepsilon \ln \eta(\varepsilon) \to 0$. Then

$$\|(\mathcal{H}_{\varepsilon}-\mathrm{i})^{-1}-(\mathcal{H}_{D}-\mathrm{i})^{-1}\|_{L_{2}(\Omega)\to\mathcal{W}_{2}^{1}(\Omega)}\leqslant C\varepsilon^{1/2}|\ln\sin\eta(\varepsilon)|^{1/2}$$

holds true, where $\| \bullet \|_{X \to Y}$ is the norm of an operator from X to Y.

Theorem (Neumann case). Let
$$\varepsilon \ln \eta(\varepsilon) \to -\infty$$
,
$$\mu := -(\varepsilon \ln \eta(\varepsilon))^{-1} \to +0. \text{ Then}$$

$$\|(\mathcal{H}_{\varepsilon} - \mathrm{i})^{-1} - (\mathcal{H}_{N} - \mathrm{i})^{-1}\|_{L_{2}(\Omega) \to W_{2}^{1}(\Omega)} \leqslant C\mu^{1/2}$$

$$\|(\mathcal{H}_{\varepsilon} - \mathrm{i})^{-1} - (\mathcal{H}_{N} - \mathrm{i})^{-1}\|_{L_{2}(\Omega) \to L_{2}(\Omega)} \leqslant C\mu$$

$$\|(\mathcal{H}_{\varepsilon} - \mathrm{i})^{-1} - (\mathcal{H}_{N}^{(\mu)} - \mathrm{i})^{-1}\|_{L_{2}(\Omega) \to L_{2}(\Omega)} \leqslant C\varepsilon\mu |\ln \varepsilon\mu|$$

 $\mathcal{H}_N^{(\mu)}:=-\Delta$ with Dirichlet b.c. on Γ_+ and $(\frac{\partial}{\partial \nu}+\mu)u=0$ on Γ_- . There exists a corrector $W=W(x,\varepsilon,\mu)$ defined explicitly such that

$$\|(\mathcal{H}_{\varepsilon}-\mathrm{i})^{-1}-(1+W)(\mathcal{H}_{N}^{(\mu)}-\mathrm{i})^{-1}\|_{L_{2}(\Omega)\to W_{2}^{1}(\Omega)}\leqslant C\varepsilon\mu|\ln\varepsilon\mu|.$$

Theorem (Robin case). Let
$$\varepsilon \ln \eta(\varepsilon) \to -1/K$$
, $\mu := -(\varepsilon \ln \eta(\varepsilon))^{-1} - K \to +0$. Then
$$\|(\mathcal{H}_{\varepsilon} - \mathrm{i})^{-1} - (\mathcal{H}_{R} - \mathrm{i})^{-1}\|_{L_{2}(\Omega) \to L_{2}(\Omega)} \leqslant C(\varepsilon |\ln \varepsilon| + \mu)$$

Theorem (Robin case). Let
$$\varepsilon \ln \eta(\varepsilon) \to -1/K$$
, $\mu := -(\varepsilon \ln \eta(\varepsilon))^{-1} - K \to +0$. Then
$$\| (\mathcal{H}_{\varepsilon} - \mathrm{i})^{-1} - (\mathcal{H}_R - \mathrm{i})^{-1} \|_{L_2(\Omega) \to L_2(\Omega)} \leqslant C(\varepsilon |\ln \varepsilon| + \mu)$$

$$\| (\mathcal{H}_{\varepsilon} - \mathrm{i})^{-1} - (\mathcal{H}_R^{(\mu)} - \mathrm{i})^{-1} \|_{L_2(\Omega) \to L_2(\Omega)} \leqslant C\varepsilon |\ln \varepsilon|$$

$$\mathcal{H}_R^{(\mu)} := -\Delta \text{ with Dirichlet b.c. on } \Gamma_+ \text{ and } (\frac{\partial}{\partial u} + K + \mu)u = 0 \text{ on } \Gamma_-.$$

Theorem (Robin case). Let
$$\varepsilon \ln \eta(\varepsilon) \to -1/K$$
, $\mu := -(\varepsilon \ln \eta(\varepsilon))^{-1} - K \to +0$. Then
$$\|(\mathcal{H}_{\varepsilon} - \mathrm{i})^{-1} - (\mathcal{H}_{R} - \mathrm{i})^{-1}\|_{L_{2}(\Omega) \to L_{2}(\Omega)} \leqslant C(\varepsilon |\ln \varepsilon| + \mu)$$
$$\|(\mathcal{H}_{\varepsilon} - \mathrm{i})^{-1} - (\mathcal{H}_{R}^{(\mu)} - \mathrm{i})^{-1}\|_{L_{2}(\Omega) \to L_{2}(\Omega)} \leqslant C\varepsilon |\ln \varepsilon|$$

 $\mathcal{H}_R^{(\mu)}:=-\Delta$ with Dirichlet b.c. on Γ_+ and $(\frac{\partial}{\partial \nu}+K+\mu)u=0$ on Γ_- . There exists a corrector $W=W(x,\varepsilon,\mu)$ defined explicitly such that

$$\|(\mathcal{H}_{\varepsilon}-\mathrm{i})^{-1}-(1+W)(\mathcal{H}_{R}^{(\mu)}-\mathrm{i})^{-1}\|_{L_{2}(\Omega)\to W_{2}^{1}(\Omega)}\leqslant C\varepsilon|\ln\varepsilon|.$$

Based on the papers:

- D. Borisov, G. Cardone, T. Durante. Proc. Royal Soc. Edinb. A. 2016, to appear.
- D. Borisov, G. Cardone, T. Durante. C.R. Math. 32:9, 679-683 (2014).
- D. Borisov, G. Cardone, L. Faella, C. Perugia. J. Diff. Equat. 255:12, 4378-4402 (2013).
- D. Borisov, R. Bunoiu, G. Cardone. Zeit. Ang. Math. Phys. 64:3, 439-472 (2013).
- D. Borisov, R. Bunoiu, G. Cardone. J. Math. Sci. 176:6, 774-785 (2011).
- D. Borisov, R. Bunoiu, and G. Cardone. C.R. Math. 349:1-2, 53-56 (2011).
- D. Borisov, R. Bunoiu, and G. Cardone. Annales Henri Poincaré. 11:8, 1591-1627 (2010).
- D. Borisov, and G. Cardone. J. Phys. A. 42:36, id 365205 (2009).

