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Motivation

Boundary homogenization in bounded domains

An elliptic operator HF in

o ©
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Perforation all o Frequently alternatin
erforation along Fast oscillating boundary 9 yooane €
a curve boundary conditions

The usual result is a strong resolvent convergence: f € L,
(HE — N)7H — (H® — \)~1f strongly in L and weakly in W}

Main questions (motivated by works by M.Sh. Birman, T.A. Suslina &
V.V. Zhikov, S.E. Pastukhova)

e Is there a norm resolvent convergence?
e If yes, what is the rate of the convergence?
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Formulation of the problem

{::% choeeg o e oW IO

Distances between the holes are ~ ¢, their sizes are ~en(e), 0 <n <1
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Formulation of the problem

{::% choeeg o e oW IO

Distances between the holes are ~ ¢, their sizes are ~en(e), 0 <n <1
The operator is

o _ .
Zax, ,J6XJ+§:<J(9XJ —XJAJ>+A0 in L(Q)

7J_
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Formulation of the problem

<1

Distances between the holes are ~ ¢, their sizes are ~ en(e), 0 <7

The operator is

0 — _ R
Ai ) +A0 in L(Q)

=X Gy 2 (45 5
subject to the on some of the holes and to the Robin

condition
9 2 _
<6Nf+a>u ZA,JV Xj+jz_;Aij’

ij=1

on the others, where v* = (v{,15) is the inward normal.
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Formulation of the problem
Distances between the holes are ~ ¢, their sizes are ~en(e), 0 <n <1

The operator is

o _ .
Zax, ,J6XJ+§:<18XJ —XJAJ>+A0 in  L,(Q°)

7J_

subject to the on some of the holes and to the Robin

condition

9 9 : <
— _:E( - E:_.§
<a/v€ " a> “=0 owe A o +J_:1 A

ij=1

on the others, where v* = (v{,15) is the inward normal.
The main aim: to study the norm resolvent convergence for H. as ¢ — +0.
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Notations

The domain and curve: Q := {x:0 < xo < d}, 7 is a C?-curve in Q
separated from 0%, with a bounded curvature, with no self-intersections
and is either infinite or finite and closed, s is the arc length of v
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The domain and curve: Q := {x:0 < xo < d}, 7 is a C?-curve in Q
separated from 0%, with a bounded curvature, with no self-intersections
and is either infinite or finite and closed, s is the arc length of v

Position of holes: IM¢ C Z is an arbitrary set, and si, k € IM® are some
points, s, < Sk4+1, ¥ € v are associated with s = sie.
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and is either infinite or finite and closed, s is the arc length of v
Position of holes: IM¢ C Z is an arbitrary set, and si, k € IM® are some
points, s, < Sk4+1, ¥ € v are associated with s = sie.

Holes: wg, k € IME, are bounded domains in R?,

wi = {x e e (x — yE) € wi}, QF:=Q\ 65
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Notations

The domain and curve: Q := {x:0 < xo < d}, 7 is a C?-curve in Q
separated from 0%, with a bounded curvature, with no self-intersections
and is either infinite or finite and closed, s is the arc length of v

Position of holes: IM¢ C Z is an arbitrary set, and si, k € IM® are some
points, s, < Sk4+1, ¥ € v are associated with s = sie.

Holes: wg, k € IME, are bounded domains in R?,
wi = {x e e (x — yE) € wi}, QF:=Q\ 65
Holes with Dirichlet and Robin conditions: 65 := |J wi, 0% = U wi,

keMp keMg
S U M3, = ME,
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Assumptions

Sizes and position of the holes:

3 fixed numbers 0 < Ry < Ry, b > 1,
L > 0, and points x¥ € R? k € M¢,
sit. Br,(x¥) C wkx C Bg,(0), |0wx| < L,
BszE(y/f) N BszE(yF) =0,i#k.
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Assumptions

Sizes and position of the holes:

3 fixed numbers 0 < Ry < Ry, b > 1,
L > 0, and points x¥ € R? k € M¢,
sit. Br,(x¥) C wkx C Bg,(0), |0wx| < L,
BszE(y/f) N Bszs(yf) =0,i#k.

Uniform regularity of the holes:
For R3 := Ra(b+1)/2 and k € IM® the b.v.p.

diVXk =0in BR3(O) \wk,
Xi-v=—1on 0wk, Xg-v =k on IdBg,(0),
is solvable in Lo (Bg,(0) \ wk) and bounded in this space

uniformly in k € IM®. Here v is the outward normal, ¢ €

Loo(OBg,(0)) satisfies [ ¢k ds = |Owk].
OBr, (0)
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Perforation

Main results: Homogenized Dirichlet condition on ~

Theorem

Let elnn(e) — 0, ¢ = +0. Suppose there exists a constant Ry > bR
such that

{x : dist(x,v) < ebRy} C U Br,e(vk)-
ke,
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Main results: Homogenized Dirichlet condition on ~

Theorem

Let elnn(e) — 0, ¢ = +0. Suppose there exists a constant Ry > bR
such that

{x : dist(x,v) < ebRy} C U Br,e(vk)-
ke,
Then

1 = 1) = (HD — D) @ wiger) < CeV2(Inn(e)? + 1),

where ’H% is the operator with the same differential expression and subject
to the Dirichlet condition of v and 990, C is a positive constant
independent of .

The estimate is order sharp.
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)-interaction on -y

For 8 € WL(), ’H% denotes the operator with the above differential
expression subject to the boundary conditions

2
B ou o 0 L . 00
[U]W—O, [W:L‘FBUL,_O’ W = ijz_:lAina_Xj’ (1)

where 10 = (19,19) and [u], = u‘T:JrO —ul___,

D. Borisov (IM USC & BSPU & UHK) On norm resolvent convergence. .. http://borisovdi.narod.ru/ 7/ 24



Perforation

Homogenized d-interaction on : exponentially small
Dirichlet holes

Theorem

Let (elnn(e))~! — —p, e = +0, and M5, # 0.
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Perforation

Homogenized d-interaction on : exponentially small
Dirichlet holes
Theorem

Let (cInn(e))~t — —p, € = +0, and M, # 0. Denote o (s) := & as
|s — esk| < bRae, k € M5, and af(s) := 0 otherwise.
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Homogenized d-interaction on : exponentially small
Dirichlet holes

Theorem

Let (Inn(e))~t — —p, e = +0, and M, # 0. Denote o (s) := & as
|s — esk| < bRae, k € M5, and af(s) := 0 otherwise. Assume that there

exists o € WL () and s = »(g), »(¢) — +0, € — +0, such that

n++¢ iq 2
[ @@ - ale)e e ol <),
n

S
= lg| +1

where n = —|vy|/2, { = |y
infinite.

, if v is a finite curve, and n € Z, ¢ =1, if y is
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Homogenized d-interaction on ~y: exponentially small
Dirichlet holes

Theorem

Let (Inn(e))~t — —p, e = +0, and M, # 0. Denote o (s) := & as
|s — esk| < bRae, k € M5, and af(s) := 0 otherwise. Assume that there

exists o € WL () and s = »(g), »(¢) — +0, € — +0, such that

S
= lg| +1

n+4 iq 2
/ (a%(s) — als))e 2" ds| < 52(e),

where n = —|vy|/2, ¢ = |v|, if v is a finite curve, and n € Z, L =1, if vy is
infinite. Denote (3 := —am, p(e) == —(elnn(e))™t —p — 0. Then
1~ 1) = (43— ) lia(@) oy < CEY2 4 54(6) + 1(9)),

where C is a positive constant independent of .
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Homogenized d-interaction: absence of Dirichlet holes

Theorem

Let n = const, M%, = 0.

v
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Homogenized d-interaction: absence of Dirichlet holes

Theorem

Let n = const, M}, = (. Denote o°(s) 1= gfé' as |s — esk| < bRaen,
k € M?, and of(s) := 0 otherwise.

4
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Homogenized d-interaction: absence of Dirichlet holes

Theorem

Let n = const, Mg = (). Denote of(s) := ?fé' as |s — esk| < bRyen,

k € M?, and o°(s) := 0 otherwise. Assume that there exists a € W1 (7)
and »x = x(e), #(e) — 40, ¢ = 40, such that

Z|q|+1

n+/4 2

(a(s) — a(s))e e (M ds| < 52(e)

is valid.

4
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e

Homogenized d-interaction: absence of Dirichlet holes

Theorem

Let n = const, M3, = 0. Denote af(s) := ?fé' as |s — esk| < bRyen,

k € M?, and o°(s) := 0 otherwise. Assume that there exists a € W1 (7)
and »x = x(¢), »(e) = +0, e = 40, such that

1
Z|q|+1

is valid. Then

n+¢ g 2
(a(s) — a(s))e 7" ds| < 5(e)

1 =07 = (M = D) i@ wicae) < C(E72 4 (e)),

where C is a positive constant independent of .
Term £'/2 s order sharp.
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Homogenized “no condition”

HO is the operator with the above differential expression subject to
Dirichlet condition on 9Q and with no condition on ~.
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Homogenized “no condition”

HO is the operator with the above differential expression subject to
Dirichlet condition on 9Q and with no condition on ~.

Theorem

Let M7, = () and either a = 0 or n(g) — 0, € — +0.
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Homogenized “no condition”

HO is the operator with the above differential expression subject to
Dirichlet condition on 9Q and with no condition on ~.

Theorem
Let M7, = () and either a = 0 or n(e) — 0, ¢ — +0. Then

1+ =) = (H° = ) @ wiee) < Cn(e)([Inn(e)] +1),
ifa#0, and
(7 =) 7H = (H® =)l @) wioe) < Ce'n(e)(|Inn(e)| Y2 + 1),

if a= 0, where C is a positive constant independent of ¢.
The estimates are order sharp up to the absence of the term | Inn|'/2.

D. Borisov (IM USC & BSPU & UHK) On norm resolvent convergence. .. http://borisovdi.narod.ru/ 10 / 24



Fast oscillating boundary

Domain: d Q.

L. =
A\VAVAVAVAVAVAVAVAVA/AVAVAVAVAVAVAVisdl
Q. = {x € R? : nb(x1e7 1) < xo < d}, b € C3(R), b is 1-periodic, b > 0,
n=mn(e) >0,e— +0
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Fast oscillating boundary

Domain: Q.
L. = _
AVAVAVAVAVAVAVAVAVAAVAVAVAVAVAVAV fiad
Q. == {x € R? : nb(x1e7 1) < xo < d}, b € C?(R), b is 1-periodic, b > 0,
n=n(e) >0, 5—>—|—0
RSN B By
Operator: H, := — Z 8xj i Dx; ; 8— — O—XJ-AJ + Ao in L2(Q.)

ij=1
u=0onTl
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Fast oscillating boundary

Domain: Q.
FE l—| _

vvvvvvvvuwwvvvvvvvi~n
Q. == {x € R? : nb(x1e7 1) < xo < d}, b € C?(R), b is 1-periodic, b > 0,
n=n(e) >0, 5—>—|—0

0 . ~a 0 0T -

Operator: H, = —WZI 8xj i Dx; ; 8_ — a—XjAj + Ao in L2(Q.)
u=0onTl
Boundary condition on I'; is the Dirichlet, Neumann or Robin one
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Fast oscillating boundary

Dirichlet condition on I,

Suppose we have the Dirichlet condition on T..

D. Borisov (IM USC & BSPU & UHK) On norm resolvent convergence...  http://borisovdi.narod.ru/ 12 / 24



Fast oscillating boundary

Dirichlet condition on I,

Suppose we have the Dirichlet condition on T..
Homogenized operator: Qy := {x € R2:0<x < d}
2 2
.__ 0 2. 0 0 _ 0= ; ;
Ho = i’jZZI 37/%37/ +J§1 Ajayj 37/4] + Ap in Lp(Qp) subject to

the Dirichlet condition on I and on I := {x : xo = 0}.
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Fast oscillating boundary

Dirichlet condition on I,

Suppose we have the Dirichlet condition on T..
Homogenized operator: Qp:= {x € R2: 0 < x, < d}
2 2
— 0 4. 0 .0 _ 07 ; ;
Ho = i%l 87/4,187/ +J§1 Ajayj 871./4] + Ap in Lp(Qp) subject to
the Dirichlet condition on I and on I := {x : xo = 0}.

Main result: The estimate holds:

1(He = 1) = (Ho = )Ml o) wicany < Cn'/?

This estimate is order sharp.
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Fast oscillating boundary

Neumann condition on I,

Suppose we have Neumann condition on I..
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Fast oscillating boundary

Neumann condition on I,

Suppose we have Neumann condition on I..
Homogenized operator: Qo ={x € R?2:0<x < d}
2
o d_p. 0 0 _ 0 =7 : :
Ho = ,JZ1 O ’18X + Z Aj Bx; anAJ + Ap in Lp(Qp) subject to

the Dirichlet condition on F and to the Neumann condition on
Mo = {x:xx = 0}.
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Fast oscillating boundary

Neumann condition on I,

Suppose we have Neumann condition on I..
Homogenized operator: Q2 0 ={xeR?:0< x < d}

2 A . .
Ho:=— > 8(?( ’182 + Z Af@ij %Af + Ag in L2(Qp) subject to

ij=1
the Dirichlet condition on F and to the Neumann condition on

Mo = {x:xx = 0}.

Main result: The estimate holds:

1(He = 1) = (Ho = )l o) wi(.y < Cn'/?

This estimate is order sharp.
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Fast oscillating boundary

Robin condition on I,

Boundary condition on I',: (8—u + a) u.=0,a>=0.
€
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Fast oscillating boundary

Robin condition on I,

Boundary condition on I',: (8_

Cases
@ Weakly oscillating boundary:  lim e 1n(s) =a >0
e—40
@ Highly oscillating boundary:  lim e71p(e) = +oo
e—+0
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Fast oscillating boundary

Robin condition on I;:

li -1 =a>0
fmye ) =

Weakly oscillating boundary:
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Fast oscillating boundary

Robin condition on I:

Weakly oscillating boundary:  lim e~ !n(e) = a >0
e—+40

Homogenized operator:
2 a a 0 a
7.[

Boundary condition on Ig: (8V0 + ao) =0.

agp := a(x1,0) fol 1+ a?b/(t)?dt.
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Fast oscillating boundary

Robin condition on I:

Weakly oscillating boundary:  lim e~1n(e) =
€

—+0
Homogenized operator:

2
Ho=— 3 gcAize +ZA188 ~ oA

ij=1
Boundary condition on Ig: (8V0 + ao) =0.

ag = a(xl, 0) fol 1+ Oézb,(t')2 dt.

Main result: The estimate holds

I(He =) = (Ho — 1) Iy @)—wicn) < €

The estimate is order sharp.
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Fast oscillating boundary

Robin condition on I.: highly oscillating boundary and
positive coefficient

Highly oscillating boundary:  lim e71n(e) = +oo

e—+0
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Fast oscillating boundary

Robin condition on I.: highly oscillating boundary and
positive coefficient

Highly oscillating boundary:  lim e71n(e) = +oo

e—+0
Homogenized operator:
2 a a 0 a
7.[

Boundary condltlon on ro. D|r|ch|et condltlon.
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Fast oscillating boundary

Robin condition on I'.: highly oscillating boundary and
positive coefficient

Highly oscillating boundary:  lim e71n(e) = +oo

e—+0
Homogenized operator:
2 a a 0 a

ij=1
Boundary condltlon on ro. D|r|ch|et condltlon.

Main result: Let a > ¢ > 0. Then the estimate holds

[(He =) = (Ho — )Ml 00y win) < C2 +72712)

The term £1/2y~1/2 is order sharp.
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Fast oscillating boundary

Robin condition on I.: highly oscillating boundary and
non-negative coefficient

Highly oscillating boundary:  lim 71
e—+0

Homogenized operator: as above

n(e) = 400
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Fast oscillating boundary

Robin condition on I'.: highly oscillating boundary and
non-negative coefficient

1

Highly oscillating boundary:  lim 7 'n(e) = +0

e—40
Homogenized operator: as above

Main result: Let a > 0 and for small § the set

{x:a(x) <6, 0<x2 < (supb+1)n} is contained in at most countably
many rectangles {x : |x; — Xp| < p(6), 0 < xo < (sup b+ 1)n}, where
w(0) — +0 as § — 40, numbers X, n € Z are independent of 6 and
satisfy the estimate | X, — Xm| = ¢ > 0, n # m. Then the estimate holds

1 = )7 = (Ho = ) iz wica)
< C(n'2 + 225712 4 yM2(5) I pu(6)[1/3),

where § = 6(¢) — +0, € — +0 is an arbitrary function.
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Fast oscillating boundary

Robin condition on I.: highly oscillating boundary and
non-negative coefficient

Highly oscillating boundary:  lim e71n(e) = +oo

e—+0
The most general case: 11(8) ~ 6'/2
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Fast oscillating boundary

Robin condition on I.: highly oscillating boundary and
non-negative coefficient

Highly oscillating boundary:  lim e71n(e) = +oo
e—+0
The most general case: 11(8) ~ 6'/2

Main estimate:

[(He = 1) = (Ho — )l La(@0)— La(02)
< C(n1/2 4 61/677—1/6‘ In 677_1\_2/3)~
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Frequently alternating boundary conditions

Formulation of the problem

Consider the waveguide

e=+0,n=n() 0<n<3F
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Frequently alternating boundary conditions

Formulation of the problem

Consider the waveguide

)
m
+=
i

e=+0,n=n() 0<n<3F
He = —A in L5() subject to D.b.c. on B and to N.b.c. on M
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Frequently alternating boundary conditions

Homogenized operators

lfelnn(e) - 0ase —0,
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Frequently alternating boundary conditions

Homogenized operators

If elnn(e) — 0 as e — 0, then the homogenized operator is Hp := —A
in L>(€2) subject to the b.c. as on the figure
Iy 0
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Frequently alternating boundary conditions

Homogenized operators

If elnn(e) — 0 as e — 0, then the homogenized operator is Hp := —A
in L>(€2) subject to the b.c. as on the figure
Iy 0

If elnn(e) - —oco ase — 0,
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Frequently alternating boundary conditions

Homogenized operators

If elnn(e) — 0 as e — 0, then the homogenized operator is Hp := —A
in L>(€2) subject to the b.c. as on the figure
Iy 0

If elnn(e) — —oco as € — 0, then the homogenized operator is
Hy = —A in Ly(R2) subject to the b.c. as on the figure

L'y

N I
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Frequently alternating boundary conditions

Homogenized operators

lfelnn(e) > —1/Kase—0 K=>0
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Frequently alternating boundary conditions

Homogenized operators

If elnn(e) - —1/K as ¢ — 0, K > 0 then the homogenized operator is
Hr = —A in L»(2) subject to the b.c. as on the figure

Iy

Q0
R {8

0
R: <_87 + K) u = 0 is the condition modeling d-potential
2
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Frequently alternating boundary conditions

Resolvent convergence

Theorem (Dirichlet case). Let eInn(e) — 0. Then
[(He =17 = (Hp — 1) Ml (@) wi(e) < Ce¥2|Insinn(e)[/?

holds true, where || ® || x_,y is the norm of an operator from X to Y.
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Frequently alternating boundary conditions

Resolvent convergence

Theorem (Dirichlet case). Let e Inn(e) — 0. Then
[(He = 1) = (Ho — 1) My @)—wi@) < Ce¥?[Insing(e)]
holds true, where || ® || x_,y is the norm of an operator from X to Y.

Theorem (Neumann case). Let e Inn(e) — —oo,
p = —(elnn(e))~t — +0. Then

I(He = 1) = (M = ) i) wig) < CH
I(He = 1) = (Hn = 1) "Ml @) Lo(2) < C



Frequently alternating boundary conditions

Resolvent convergence

Theorem (Dirichlet case). Let eInn(e) — 0. Then
[(He —1)7" = (Hp — 1) My, Q)W) S < CeM?|Insinn(e)|M?
holds true, where || ® || x_,y is the norm of an operator from X to Y.

Theorem (Neumann case). Let e Inn(e) — —oo,
p = —(elnn(e))~t — +0. Then

I(He =)™ = (A =) Mliy@)swz) < Cut/?
I(He = 1) 7" = (Hn — ) Hn@)=1o(0) < Co
[(He — 1)~ - (7'[5\7) — 1) 1p@) s 10(0) < CeplInepl

’H(”) —A with Dirichlet b.c. on T and( +p)u=0o0nT_.
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Frequently alternating boundary conditions

Resolvent convergence

Theorem (Dirichlet case). Let e Inn(e) — 0. Then
[(He =17 = (Hp — 1) Ml (@) wi(e) < Ce¥2|Insinn(e)[/?
holds true, where || ® ||x_,y is the norm of an operator from X to Y.

Theorem (Neumann case). Let e Inn(e) — —oo,
p = —(elnn(e))~t — +0. Then

I(He =) = (Hn = D) i) wie) < Cu'l?
I(He = 1) 7" = (Hnv — 1) Mlp(@)=Lo(0) < Cu
[(He = 1)1 = (M) =) M@)o 1o(0) < Cepl Inepl

’H(“) —A with Dirichlet b.c. on T and( +pu)u=0onT_. There
exists a corrector W = W (x,e, u) defined exp/lc1t/y such that

1(He = )71 = @+ WYHY =)y wi) < CenlInepl.
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Frequently alternating boundary conditions

Resolvent convergence

Theorem (Robin case). LeteIlnn(e) - —1/K,
p:=—(eInn(e))™t — K — +0. Then

I(He =) = (Hr — 1) M@= L(0) < ClelIne| + )
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Frequently alternating boundary conditions

Resolvent convergence

Theorem (Robin case). LeteIlnn(e) - —1/K,
p:=—(eInn(e))™t — K — +0. Then

I(He =) = (Hr — 1) M@= L(0) < ClelIne| + )
[(He —i)7" — (H%L) — 1) @) 10(0) < Cellne]

’H%ﬁ := —A with Dirichlet b.c. on Ty and (. + K + p)u=0onT_.
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Frequently alternating boundary conditions

Resolvent convergence

Theorem (Robin case). LeteIlnn(e) - —1/K,
p:=—(eInn(e))™t — K — +0. Then

I(He =) = (Hr — 1) M@= L(0) < ClelIne| + )
[(He —i)7" — (H%L) — 1) @) 10(0) < Cellne]

’Hgf) := —A with Dirichlet b.c. on Ty and (. + K + p)u=0onT_.
There exists a corrector W = W(x, e, 1) defined explicitly such that

1(He = )71 = @+ W)HY — ) @) wi) < CelInel.
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