
Homogenization
of Hyperbolic-type Equations
with Periodic Coefficients

Mark Dorodnyi and Tatiana Suslina

St. Petersburg State University

Summer school
“Spectral Theory, Differential Equations and Probability”

Mainz, 2016

M.Dorodnyi, T.Suslina Homogenization of hyperbolic equations 1 / 30



Statement of the problem

Let Γ be a lattice in Rd , let Ω be the cell of Γ. Let Γ̃ be the dual lattice. By
Ω̃ we denote the central Brillouin zone of Γ̃.
Example:

Γ = Zd , Ω = (0, 1)d ; Γ̃ = (2πZ)d , Ω̃ = (−π, π)d .

Let ε > 0 be a parameter. We use the notation φε(x) = φ
(x
ε

)
.

Main object

In L2(Rd ;Cn), we consider elliptic second order DO

Aε = b(D)∗g ε(x)b(D).
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Statement of the problem

Main object

Aε = b(D)∗g ε(x)b(D).

Here g(x) is Hermitian (m ×m)-matrix with complex entries. We assume
that g(x) is Γ-periodic, bounded and positive definite:

c ′1m 6 g(x) 6 c ′′1m, 0 < c ′′ 6 c ′′ <∞.

b(D) =
∑d

j=1 bjDj is a first order (m × n)-matrix DO; bj are constant
matrices, and m > n. The symbol b(ξ) =

∑d
j=1 bjξj is such that

rank b(ξ) = n, 0 6= ξ ∈ Rd .
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Statement of the problem

Precise Definition: Aε is a selfadjoint operator in L2(Rd ;Cn) generated
by the quadratic form

aε[u,u] =

∫
Rd

〈g ε(x)b(D)u, b(D)u〉 dx, u ∈ H1(Rd ;Cn).

Under our assumptions,

c0

∫
Rd

|Du|2dx 6 aε[u,u] 6 c1

∫
Rd

|Du|2 dx, u ∈ H1(Rd ;Cn).

The operator Aε is strongly elliptic.

Example: Aε = −div g ε(x)∇ = D∗g ε(x)D.
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Statement of the problem

Problem

The problem is to study the behavior of the operator

cos(τA1/2
ε ), τ ∈ R,

for small ε, and to apply the results to the Cauchy problem for the
hyperbolic-type equation:{

∂2
τuε(x, τ) = −(Aεuε)(x, τ), x ∈ Rd , τ ∈ R,
uε(x, 0) = φ(x), ∂τuε(x, 0) = ψ(x).

We show that, in some sense,

cos(τA1/2
ε ) ∼ cos(τ(A0)1/2), ε→ 0,

where A0 is the effective operator with constant effective coefficients.
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The effective operator

The effective operator

The effective operator is given by

b(D)∗g0b(D)

where g0 is a constant positive matrix called the effective matrix.

Definition of the effective matrix:
Let Λ(x) be the (n ×m)-matrix-valued Γ-periodic solution of the problem

b(D)∗g(x)(b(D)Λ(x) + 1m) = 0;

∫
Ω

Λ(x) dx = 0.

Then g0 is an (m ×m)-matrix given by

g0 = |Ω|−1
∫

Ω
g̃(x) dx, g̃(x) := g(x)(b(D)Λ(x) + 1m).
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Survey

In 2001 M. Birman and T. Suslina proved that

‖(Aε + I )−1 − (A0 + I )−1‖L2(Rd )→L2(Rd ) 6 Cε. (1)

The method was based on the scaling transformation, the
Floquet-Bloch theory and the analytic perturbation theory.
In 2004 T. Suslina proved that

‖e−Aετ − e−A
0τ‖L2(Rd )→L2(Rd ) 6 C (τ)ε, τ > 0. (2)

Estimates (1) and (2) are order-sharp. Such inequalities are called the
operator error estimates in homogenization theory.
A different approach to operator error estimates was suggested by
V. Zhikov and S. Pastukhova (2005–2006).
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Survey

Also, more accurate approximations for the resolvent (Aε + I )−1 and the
exponential e−Aετ are known.

So, for elliptic and parabolic problems, the spectral approach to
homogenization is developed in detail. The situation with homogenization
of nonstationary Schrödinger type and hyperbolic equations is different.

In 2008 M. Birman and T. Suslina studied homogenization of
nonstationary problems. In operator terms, the behavior of the
operators exp(−iτAε) and cos(τA1/2

ε ) for τ ∈ R and small ε was
studied. For these operators it is impossible to obtain approximations
in the L2(Rd)-operator norm. It was proved that

‖ exp(−iτAε)− exp(−iτA0)‖H3(Rd )→L2(Rd ) 6 (C̃1 + C̃2|τ |)ε,

‖ cos(τA1/2
ε )− cos(τ(A0)1/2)‖H2(Rd )→L2(Rd ) 6 (C1 + C2|τ |)ε. (3)
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Main questions

Main questions

Is the result

‖ cos(τA1/2
ε )− cos(τ(A0)1/2)‖H2(Rd )→L2(Rd ) 6 C (τ)ε

sharp (with respect to the type of operator norm)?

Is it possible to improve this result, probably, under some additional
assumptions?

Answers

YES!, YES!

Similar results were obtained also for nonstationary Schrödinger type
equations by T.A. Suslina.
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Reduction 1: Scaling transformation

Question: for what (minimal) s the estimate

‖e−iτA
1/2
ε − e−iτ(A0)1/2‖Hs(Rd )→L2(Rd ) 6 C (τ)ε (4)

holds?

Let H0 = −∆. Clearly, (4) is equivalent to∥∥∥(e−iτA1/2
ε − e−iτ(A0)1/2

)
(H0 + I )−s/2

∥∥∥
L2(Rd )→L2(Rd )

6 C (τ)ε. (5)

Next, by the scaling transformation, (5) is equivalent to∥∥∥(e−iτε−1A1/2 − e−iτε
−1(A0)1/2

)
εs(H0 + ε2I )−s/2

∥∥∥
L2(Rd )→L2(Rd )

6 C (τ)ε.

(6)

Here A = b(D)∗g(x)b(D).
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Reduction 2: Direct integral expansion

Using the Floquet-Bloch theory, we expand the operators A, A0 and H0
(acting in L2(Rd ;Cn)) in the direct integrals:

A ∼
∫

Ω̃
⊕A(k) dk, A0 ∼

∫
Ω̃
⊕A0(k) dk, H0 ∼

∫
Ω̃
⊕H0(k) dk.

The parameter k ∈ Ω̃ is called the quasimomentum. The operators A(k),
A0(k) and H0(k) act in L2(Ω;Cn) and are defined by the expressions

A(k) = b(D + k)∗g(x)b(D + k),

A0(k) = b(D + k)∗g0b(D + k),

H0(k) = |D + k|2

with periodic boundary conditions. The precise definitions are given in
terms of the corresponding quadratic forms.

M.Dorodnyi, T.Suslina Homogenization of hyperbolic equations 11 / 30



Reduction 2: Direct integral expansion

Using the Floquet-Bloch theory, we expand the operators A, A0 and H0
(acting in L2(Rd ;Cn)) in the direct integrals:

A ∼
∫

Ω̃
⊕A(k) dk, A0 ∼

∫
Ω̃
⊕A0(k) dk, H0 ∼

∫
Ω̃
⊕H0(k) dk.

The parameter k ∈ Ω̃ is called the quasimomentum.

The operators A(k),
A0(k) and H0(k) act in L2(Ω;Cn) and are defined by the expressions

A(k) = b(D + k)∗g(x)b(D + k),

A0(k) = b(D + k)∗g0b(D + k),

H0(k) = |D + k|2

with periodic boundary conditions. The precise definitions are given in
terms of the corresponding quadratic forms.

M.Dorodnyi, T.Suslina Homogenization of hyperbolic equations 11 / 30



Reduction 2: Direct integral expansion

Using the Floquet-Bloch theory, we expand the operators A, A0 and H0
(acting in L2(Rd ;Cn)) in the direct integrals:

A ∼
∫

Ω̃
⊕A(k) dk, A0 ∼

∫
Ω̃
⊕A0(k) dk, H0 ∼

∫
Ω̃
⊕H0(k) dk.

The parameter k ∈ Ω̃ is called the quasimomentum. The operators A(k),
A0(k) and H0(k) act in L2(Ω;Cn) and are defined by the expressions

A(k) = b(D + k)∗g(x)b(D + k),

A0(k) = b(D + k)∗g0b(D + k),

H0(k) = |D + k|2

with periodic boundary conditions. The precise definitions are given in
terms of the corresponding quadratic forms.

M.Dorodnyi, T.Suslina Homogenization of hyperbolic equations 11 / 30



Reduction 2: Direct integral expansion

Using the direct integral expansions, we see that estimate∥∥∥(e−iτε−1A1/2 − e−iτε
−1(A0)1/2

)
εs(H0 + ε2I )−s/2

∥∥∥
L2(Rd )→L2(Rd )

6 C (τ)ε

(6)
is equivalent to estimate∥∥∥(e−iτε−1A(k)1/2 − e−iτε

−1A0(k)1/2
)
εs(H0(k) + ε2I )−s/2

∥∥∥
L2(Ω)→L2(Ω)

6

6 C (τ)ε, (7)

for almost every k ∈ Ω̃.
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Reduction 3: Projection onto the subspace of constant
vector-valued functions

Next, let P be the projection onto the subspace

N = {u ∈ L2(Ω;Cn) : u = c ∈ Cn}.

Then
Pu = |Ω|−1

∫
Ω
u(x) dx.

It is easily seen that for s > 1 estimate (7) is equivalent to∥∥∥(e−iτε−1A(k)1/2 − e−iτε
−1S(k)1/2

)
P
∥∥∥
L2(Ω)→L2(Ω)

εs(|k|2+ε2)−s/2 6 C (τ)ε

(8)
for |k| 6 t0. Here

S(k) = b(k)∗g0b(k).
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Analytic perturbation theory

The operator A(k) acting in L2(Ω;Cn) is an elliptic operator in a bounded
domain; its spectrum is discrete. This operator depends on k analytically.
We consider A(0) as an unperturbed operator and A(k) as a perturbed
operator.
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Analytic perturbation theory

For k = 0 the operator A(0) (given by b(D)∗g(x)b(D) with periodic
boundary conditions) has a kernel N consisting of constant vector-valued
functions:

KerA(0) = N = {u ∈ L2(Ω;Cn) : u = c ∈ Cn}.

So, the point λ0 = 0 is an isolated eigenvalue of multiplicity n for A(0).

Then for |k| 6 t0 the “perturbed” operator has exactly n eigenvalues
λ1(k), . . . , λn(k) (counted with multiplicities) on [0, δ], and the interval
(δ, 3δ) is a gap in the spectrum of A(k). (We control δ and t0.)

λ0=0(mult. = n)
spec A(0)

0 δ 3δ spec A(k),  |k|≤ t0

λ1(k),…,λn(k)

Only these eigenvalues λ1(k), . . . , λn(k) (and the corresponding
eigenfunctions) are important for our problem.

M.Dorodnyi, T.Suslina Homogenization of hyperbolic equations 15 / 30



Analytic perturbation theory

For k = 0 the operator A(0) (given by b(D)∗g(x)b(D) with periodic
boundary conditions) has a kernel N consisting of constant vector-valued
functions:

KerA(0) = N = {u ∈ L2(Ω;Cn) : u = c ∈ Cn}.

So, the point λ0 = 0 is an isolated eigenvalue of multiplicity n for A(0).
Then for |k| 6 t0 the “perturbed” operator has exactly n eigenvalues
λ1(k), . . . , λn(k) (counted with multiplicities) on [0, δ], and the interval
(δ, 3δ) is a gap in the spectrum of A(k). (We control δ and t0.)

λ0=0(mult. = n)
spec A(0)

0 δ 3δ spec A(k),  |k|≤ t0

λ1(k),…,λn(k)

Only these eigenvalues λ1(k), . . . , λn(k) (and the corresponding
eigenfunctions) are important for our problem.

M.Dorodnyi, T.Suslina Homogenization of hyperbolic equations 15 / 30



Analytic perturbation theory

For k = 0 the operator A(0) (given by b(D)∗g(x)b(D) with periodic
boundary conditions) has a kernel N consisting of constant vector-valued
functions:

KerA(0) = N = {u ∈ L2(Ω;Cn) : u = c ∈ Cn}.

So, the point λ0 = 0 is an isolated eigenvalue of multiplicity n for A(0).
Then for |k| 6 t0 the “perturbed” operator has exactly n eigenvalues
λ1(k), . . . , λn(k) (counted with multiplicities) on [0, δ], and the interval
(δ, 3δ) is a gap in the spectrum of A(k). (We control δ and t0.)

λ0=0(mult. = n)
spec A(0)

0 δ 3δ spec A(k),  |k|≤ t0

λ1(k),…,λn(k)

Only these eigenvalues λ1(k), . . . , λn(k) (and the corresponding
eigenfunctions) are important for our problem.
M.Dorodnyi, T.Suslina Homogenization of hyperbolic equations 15 / 30



Analytic perturbation theory

We put
k = tθ, t = |k|, θ ∈ Sd−1.

and study the operator family A(k) = A(tθ) =: A(t,θ) by methods of the
analytic perturbation theory with respect to the one-dimentional parameter
t. But we have to make our constructions and estimates uniform in θ.

By the Rellich–Kato theorem, for t 6 t0 there exist real-analytic branches
of eigenvalues λl(t,θ) and eigenvectors ϕl(t,θ) of the operator A(t,θ),
l = 1, . . . , n. We have

A(t,θ)ϕl(t,θ) = λl(t,θ)ϕl(t,θ), l = 1, . . . , n,

and {ϕl(t,θ)} form an orthonormal basis in the eigenspace of A(t,θ)
corresponding to [0, δ].
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Analytic perturbation theory

Then we have the following power series expansions

λl(t,θ) = γl(θ)t2 + µl(θ)t3 + . . . , l = 1, . . . , n,

ϕl(t,θ) = ωl(θ) + tϕ
(1)
l (θ) + . . . , l = 1, . . . , n.

Here γl(θ) > c∗ > 0 and µl(θ) ∈ R. The “embryos” ω1(θ), . . . , ωn(θ) form
an orthonormal basis in N. However, we do not control the radius of
convergence t∗(θ) of these expansions.
The operator S(θ) = b(θ)∗g0b(θ) is called the spectral germ of the
operator family A(t,θ) at t = 0.

Proposition 1 [M. Birman and T. Suslina, 2003]

S(θ)ωl(θ) = γl(θ)ωl(θ), l = 1, . . . , n.

M.Dorodnyi, T.Suslina Homogenization of hyperbolic equations 17 / 30



Analytic perturbation theory

Then we have the following power series expansions

λl(t,θ) = γl(θ)t2 + µl(θ)t3 + . . . , l = 1, . . . , n,

ϕl(t,θ) = ωl(θ) + tϕ
(1)
l (θ) + . . . , l = 1, . . . , n.

Here γl(θ) > c∗ > 0 and µl(θ) ∈ R. The “embryos” ω1(θ), . . . , ωn(θ) form
an orthonormal basis in N.

However, we do not control the radius of
convergence t∗(θ) of these expansions.
The operator S(θ) = b(θ)∗g0b(θ) is called the spectral germ of the
operator family A(t,θ) at t = 0.

Proposition 1 [M. Birman and T. Suslina, 2003]

S(θ)ωl(θ) = γl(θ)ωl(θ), l = 1, . . . , n.

M.Dorodnyi, T.Suslina Homogenization of hyperbolic equations 17 / 30



Analytic perturbation theory

Then we have the following power series expansions

λl(t,θ) = γl(θ)t2 + µl(θ)t3 + . . . , l = 1, . . . , n,

ϕl(t,θ) = ωl(θ) + tϕ
(1)
l (θ) + . . . , l = 1, . . . , n.

Here γl(θ) > c∗ > 0 and µl(θ) ∈ R. The “embryos” ω1(θ), . . . , ωn(θ) form
an orthonormal basis in N. However, we do not control the radius of
convergence t∗(θ) of these expansions.

The operator S(θ) = b(θ)∗g0b(θ) is called the spectral germ of the
operator family A(t,θ) at t = 0.

Proposition 1 [M. Birman and T. Suslina, 2003]

S(θ)ωl(θ) = γl(θ)ωl(θ), l = 1, . . . , n.

M.Dorodnyi, T.Suslina Homogenization of hyperbolic equations 17 / 30



Analytic perturbation theory

Then we have the following power series expansions

λl(t,θ) = γl(θ)t2 + µl(θ)t3 + . . . , l = 1, . . . , n,

ϕl(t,θ) = ωl(θ) + tϕ
(1)
l (θ) + . . . , l = 1, . . . , n.

Here γl(θ) > c∗ > 0 and µl(θ) ∈ R. The “embryos” ω1(θ), . . . , ωn(θ) form
an orthonormal basis in N. However, we do not control the radius of
convergence t∗(θ) of these expansions.
The operator S(θ) = b(θ)∗g0b(θ) is called the spectral germ of the
operator family A(t,θ) at t = 0.

Proposition 1 [M. Birman and T. Suslina, 2003]

S(θ)ωl(θ) = γl(θ)ωl(θ), l = 1, . . . , n.

M.Dorodnyi, T.Suslina Homogenization of hyperbolic equations 17 / 30



Threshold approximations

We need the so called threshold approximations for the spectral projection
F (t,θ) of the operator A(t,θ) corresponding to [0, δ] and for the operator
A(t,θ)F (t,θ).

Proposition 2 [M. Birman and T. Suslina, 2003]

Let S(θ) = b(θ)∗g0b(θ). For t 6 t0 we have

‖F (t,θ)− P‖L2(Ω)→L2(Ω) 6 C1t, (9)

‖A(t,θ)F (t,θ)− t2S(θ)P‖L2(Ω)→L2(Ω) 6 C2t
3 (10)

uniformly for θ ∈ Sd−1.

Proposition 3 [M. Birman and T. Suslina, 2008]

‖A(t,θ)1/2F (t,θ)− (t2S(θ))1/2P‖L2(Ω)→L2(Ω) 6 C3t
2 (11)
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Proof of estimate (8) with s = 2

We have(
e−iτA(t,θ)1/2 − e−iτ(t2S(θ))1/2

)
P

= e−iτA(t,θ)1/2
(P − F (t,θ))P − (P − F (t,θ))e−iτ(t2S(θ))1/2

P−

− i

τ∫
0

e i(τ̃−τ)A(t,θ)1/2
(
A(t,θ)1/2F (t,θ)− (t2S(θ))1/2P

)
e−i τ̃(t2S(θ))1/2

P d τ̃ .

Using estimates (9) and (11), we obtain∥∥∥(e−iτA(t,θ)1/2 − e−iτ(t2S(θ))1/2
)
P
∥∥∥ 6 2C1t + C3|τ |t2, t 6 t0.
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Proof of estimate (8) with s = 2

In the estimate∥∥∥(e−iτA(t,θ)1/2 − e−iτ(t2S(θ))1/2
)
P
∥∥∥ 6 2C1t + C3|τ |t2, t 6 t0.

we replace τ by τε−1 and multiply by the smoothing factor ε2(t2 + ε2)−1.

Then∥∥∥(e−iτε−1A(t,θ) − e−iτε
−1(t2S(θ))1/2

)
P
∥∥∥ ε2(t2 + ε2)−1 6

6 (2C1t + C3ε
−1|τ |t2)ε2(t2 + ε2)−1 6 (C1 + C3|τ |)ε, t 6 t0.

This completes the proof. We arrive at the following result.

Theorem 1 [M. Birman and T. Suslina, 2008]

‖ cos(τA1/2
ε )− cos(τ(A0)1/2)‖H2(Rd )→L2(Rd ) 6 (C1 + C3|τ |)ε.
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More accurate threshold approximations

For more subtle considerations, we need more accurate approximation for
A(t,θ)F (t,θ):

Proposition 4 [M. Birman and T. Suslina, 2005]

For t 6 t0 we have

A(t,θ)F (t,θ) = t2S(θ)P + t3K (θ) + Ψ(t,θ). (12)

The remainder term Ψ(t,θ) satisfies

‖Ψ(t,θ)‖L2(Ω)→L2(Ω) 6 C4t
4, t 6 t0. (13)

The operator K (θ) is described in the invariant terms, as well as in terms
of the coefficients of power series expansions for the eigenvalues and the
eigenvectors of A(t,θ).
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More accurate threshold approximations

For our problem, only the block of K (θ) in the subspace N is important.
We have the following invariant representation:

N(θ) := PK (θ)P = b(θ)∗L(θ)b(θ)P,

L(θ) := |Ω|−1
∫

Ω
(Λ(x)∗b(θ)∗g̃(x) + g̃(x)∗b(θ)Λ(x)) dx.

In terms of the coefficients,

N(θ) = N0(θ) + N∗(θ),

N0(θ) =
n∑

l=1

µl(θ)(·, ωl(θ))ωl(θ),

N∗(θ) =
n∑

l=1

γl(θ) ((·, ω̃l(θ))ωl(θ) + (·, ωl(θ))ω̃l(θ)) ,

Here ω̃l(θ) ∈ N are defined by ω̃l(θ) := Pϕ
(1)
l (θ).
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More accurate threshold approximations

Proposition 5 [M. Dorodnyi and T. Suslina, 2016]

For t 6 t0 we have

A(t,θ)1/2F (t,θ) = t S(θ)1/2P + t2G (θ) + Φ(t,θ).

The remainder term Φ(t,θ) satisfies

‖Φ(t,θ)‖L2(Ω)→L2(Ω) 6 C5t
3, t 6 t0.

Only the block of G (θ) in the subspace N is needed:

PG (θ)P =
1
2
N0(θ)S(θ)−1/2P + S(θ)−1/2N∗(θ)P+

+ N∗(θ)S(θ)−1/2P + I∗(θ)P,

where

I∗(θ) = − 1
π

∫ ∞
0

s−1/2(Ξ(t, s)N∗(θ) + N∗(θ)Ξ(t, s)− sΞ(t, s)N∗(θ)Ξ(t, s)) ds

and Ξ(t, s) = (t2S(θ) + sI )−1P.
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Improvement of the result under additional assumptions

Theorem 2 [M. Dorodnyi and T. Suslina, 2016]

Suppose that N(θ) = 0 for any θ ∈ Sd−1. Then

‖ cos(τA1/2
ε )− cos(τ(A0)1/2)‖H3/2(Rd )→L2(Rd ) 6 (C̃1 + C̃2|τ |)ε. (14)

The proof is similar to that of Theorem 1. We use more accurate threshold
approximations.
Remark. If Aε = − div g ε(x)∇, where g(x) is a symmetric matrix with real
entries, then N(θ) = 0 for any θ ∈ Sd−1. Hence, (14) is true.
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Improvement of the result under additional assumptions

Theorem 3 [M. Dorodnyi and T. Suslina, 2016]

Suppose that N0(θ) = 0 for any θ ∈ Sd−1 (this is equivalent to the
assumption that µl(θ) = 0 for all l = 1, . . . , n and any θ ∈ Sd−1).
Suppose that the number p of different eigenvalues of S(θ) does not
depend on θ. Then

‖ cos(τA1/2
ε )− cos(τ(A0)1/2)‖H3/2(Rd )→L2(Rd ) 6 (Č1 + Č2|τ |)ε. (15)

Corollary

Suppose that Aε has real-valued coefficients. Suppose also that all
eigenvalues of the germ S(θ) are simple for any θ ∈ Sd−1. Then estimate
(15) is valid.
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Sharpness of [BSu, 2008] estimate in the general case

Finally, we confirm that Theorem 1 is sharp in the following sense.

Theorem 4 [M. Dorodnyi and T. Suslina, 2016]

Suppose that N0(θ0) 6= 0 for some θ0 ∈ Sd−1 (it means that µl(θ0) 6= 0
for some l). Let τ 6= 0 and s < 2. Then there does not exist a constant
C (τ) > 0 such that the estimate

‖ cos(τA1/2
ε )− cos(τ(A0)1/2)‖Hs(Rd )→L2(Rd ) 6 C (τ)ε

holds for all sufficiently small ε > 0.

There are concrete examples of operators Aε satisfying the assumptions of
Theorem 4. One example is of the form −div g ε(x)∇, where g(x) is
Hermitian matrix with complex entries. Another example is the matrix
operator with real-valued coefficients (the operator of elasticity theory in
the cases of anisotropic and isotropic media, d = 2).
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Generalization. Applications

Similar results are obtained for more general operators of the form

Ãε = (f ε(x))∗b(D)∗g ε(x)b(D)f ε(x),

where f (x) is a Γ-periodic (n × n)-matrix-valued function such that
f , f −1 ∈ L∞.

The analogs of Theorems 1–4 are obtained for the operator
f εcos(τ(Ãε)

1/2)(f ε)−1.
We apply the results to the following equations:

The acoustics equation,
The system of elasticity theory.
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Ãε = (f ε(x))∗b(D)∗g ε(x)b(D)f ε(x),

where f (x) is a Γ-periodic (n × n)-matrix-valued function such that
f , f −1 ∈ L∞. The analogs of Theorems 1–4 are obtained for the operator
f εcos(τ(Ãε)
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