Logvinenko-Sereda Theorems for periodic functions

Michela Egidi (joint with I. Veselić)

German-Russian-Ukrainian Summer School 'Spectral Theory, Differential Equations and Probability' Johannes Gutenberg Universität Mainz

13th September 2016

Intro

2 Results

Applications

Sketch of proofs

æ

э

1. Introduction

3

- 一司

Michela Egidi (joint with I. Veselić) (German Logvinenko-Sereda Theorems for periodic fun 13th September 2016 4 / 25

æ

- 一司

Let $S \subset \mathbb{R}$. S is (γ, a) -thick if there exist $\gamma > 0$ and a > 0 such that for all I intervals of \mathbb{R} of length a we have

 $|S \cap I| \geq \gamma a.$

Let $S \subset \mathbb{R}$. S is (γ, a) -thick if there exist $\gamma > 0$ and a > 0 such that for all I intervals of \mathbb{R} of length a we have

$$|S \cap I| \geq \gamma a.$$

Theorem 1 (Logvinenko-Sereda '78)

Let $J \subset \mathbb{R}$ of length b > 0. If $f \in L^p(\mathbb{R})$, $p \in [1, \infty]$, with supp $\widehat{f} \subset J$ and if S is (γ, a) -thick, then

$$\|f\|_{L^p(\mathcal{S})} \ge \exp\left(-C\frac{ab+1}{\gamma}\right)\|f\|_{L^p(\mathbb{R})}.$$

Let $S \subset \mathbb{R}$. S is (γ, a) -thick if there exist $\gamma > 0$ and a > 0 such that for all I intervals of \mathbb{R} of length a we have

$$|S \cap I| \geq \gamma a.$$

Theorem 1 (Logvinenko-Sereda '78)

Let $J \subset \mathbb{R}$ of length b > 0. If $f \in L^p(\mathbb{R})$, $p \in [1, \infty]$, with supp $\widehat{f} \subset J$ and if S is (γ, a) -thick, then

$$\|f\|_{L^p(\mathcal{S})} \ge \exp\left(-C\frac{ab+1}{\gamma}\right)\|f\|_{L^p(\mathbb{R})}.$$

• The position of J is irrelevant.

Improvements by Kovrijkine (2001).

3

< A

Improvements by Kovrijkine (2001).

• Polynomial constant

Theorem 2 (Kovrijkine, '01)

Under the same assumptions of Thm 1, we have

$$\|f\|_{L^p(S)} \geq \left(\frac{\gamma}{C}\right)^{C(ab+1)} \|f\|_{L^p(\mathbb{R})}.$$

Improvements by Kovrijkine (2001).

Polynomial constant

Theorem 2 (Kovrijkine, '01)

Under the same assumptions of Thm 1, we have

$$\|f\|_{L^p(S)} \ge \left(\frac{\gamma}{C}\right)^{C(ab+1)} \|f\|_{L^p(\mathbb{R})}.$$

• Extended support assumption

Theorem 3 (Kovrijkine, '01)

Let $n \in \mathbb{N}$, $f \in L^p(\mathbb{R})$ with $p \in [1, \infty]$ and assume that supp $\hat{f} \subset J_1 \cup \ldots \cup J_n$, where each J_k is an interval of length b. Let S be a (γ, a) -thick set. Then,

$$\|f\|_{L^{p}(S)} \geq \left(\frac{\gamma}{C}\right)^{ab\left(\frac{C}{\gamma}\right)^{n} + n - \frac{p-1}{p}} \|f\|_{L^{p}(\mathbb{R})}.$$
(1)

$$\int_{S} |f|^{2} \ge C(\gamma, a) \int_{\mathbb{T}_{L}} |f|^{2}, \qquad (2)$$

hold true?

$$\int_{\mathcal{S}} |f|^2 \ge C(\gamma, \mathbf{a}) \int_{\mathbb{T}_L} |f|^2, \tag{2}$$

hold true? The main point: the constant doesn't depend E_0 , the position of the energy interval of unit length, and it is independent of L.

$$\int_{S} |f|^2 \ge C(\gamma, \mathbf{a}) \int_{\mathbb{T}_L} |f|^2, \tag{2}$$

hold true? The main point: the constant doesn't depend E_0 , the position of the energy interval of unit length, and it is independent of *L*. **Answer:** work in progress...

$$\int_{S} |f|^2 \ge C(\gamma, \mathbf{a}) \int_{\mathbb{T}_L} |f|^2, \tag{2}$$

hold true? The main point: the constant doesn't depend E_0 , the position of the energy interval of unit length, and it is independent of *L*. **Answer:** work in progress...

Question 2: What if I replace the energy interval with a momentum interval of any length?

$$\int_{\mathcal{S}} |f|^2 \ge C(\gamma, \mathbf{a}) \int_{\mathbb{T}_L} |f|^2, \tag{2}$$

hold true? The main point: the constant doesn't depend E_0 , the position of the energy interval of unit length, and it is independent of *L*. **Answer:** work in progress...

Question 2: What if I replace the energy interval with a momentum interval of any length? **Answer:** Yes!

2. Results

æ

Theorem 4

Let $\mathbb{T}_L = [0, 2\pi L]$, $f \in L^p(\mathbb{T}_L)$ with $p \in [1, \infty]$ such that supp $\hat{f} \subset J$, where $J \subset \mathbb{R}$ is an interval of length b. Let $S \subset \mathbb{R}$ be a (γ, a) -thick set with $0 < a \leq 2\pi L$. Then,

$$\|f\|_{L^{p}(\mathbb{T}_{L})} \leq \left(\frac{c_{1}}{\gamma}\right)^{c_{2}ab+\frac{3}{p}} \|f\|_{L^{p}(S\cap\mathbb{T}_{L})},\tag{3}$$

Theorem 4

Let $\mathbb{T}_L = [0, 2\pi L]$, $f \in L^p(\mathbb{T}_L)$ with $p \in [1, \infty]$ such that supp $\hat{f} \subset J$, where $J \subset \mathbb{R}$ is an interval of length b. Let $S \subset \mathbb{R}$ be a (γ, a) -thick set with $0 < a \leq 2\pi L$. Then,

$$\|f\|_{L^{p}(\mathbb{T}_{L})} \leq \left(\frac{c_{1}}{\gamma}\right)^{c_{2}ab+\frac{3}{\rho}} \|f\|_{L^{p}(S\cap\mathbb{T}_{L})},\tag{3}$$

•
$$\widehat{f}: \frac{1}{L}\mathbb{Z} \longrightarrow \mathbb{R}, \ \widehat{f}\left(\frac{k}{L}\right) = \frac{1}{2\pi L} \int_{\mathbb{T}_L} f(x) e^{-i\frac{k}{L}x} \ dx, k \in \mathbb{Z}.$$

Theorem 4

Let $\mathbb{T}_L = [0, 2\pi L]$, $f \in L^p(\mathbb{T}_L)$ with $p \in [1, \infty]$ such that supp $\hat{f} \subset J$, where $J \subset \mathbb{R}$ is an interval of length b. Let $S \subset \mathbb{R}$ be a (γ, a) -thick set with $0 < a \leq 2\pi L$. Then,

$$\|f\|_{L^{p}(\mathbb{T}_{L})} \leq \left(\frac{c_{1}}{\gamma}\right)^{c_{2}ab+\frac{3}{p}} \|f\|_{L^{p}(S\cap\mathbb{T}_{L})},\tag{3}$$

•
$$\widehat{f}: \frac{1}{L}\mathbb{Z} \longrightarrow \mathbb{R}, \ \widehat{f}\left(\frac{k}{L}\right) = \frac{1}{2\pi L} \int_{\mathbb{T}_L} f(x) e^{-i\frac{k}{L}x} dx, k \in \mathbb{Z}.$$

• $\operatorname{supp} \widehat{f}:= \{k \in \mathbb{Z} \mid \frac{k}{L} \in \frac{1}{L}\mathbb{Z} \cap J\} \subset J.$

Theorem 4

Let $\mathbb{T}_L = [0, 2\pi L]$, $f \in L^p(\mathbb{T}_L)$ with $p \in [1, \infty]$ such that supp $\hat{f} \subset J$, where $J \subset \mathbb{R}$ is an interval of length b. Let $S \subset \mathbb{R}$ be a (γ, a) -thick set with $0 < a \leq 2\pi L$. Then,

$$\|f\|_{L^{p}(\mathbb{T}_{L})} \leq \left(\frac{c_{1}}{\gamma}\right)^{c_{2}ab+\frac{3}{\rho}} \|f\|_{L^{p}(S\cap\mathbb{T}_{L})},\tag{3}$$

8 / 25

where c_1, c_2 are universal constants.

•
$$\widehat{f}: \frac{1}{L}\mathbb{Z} \longrightarrow \mathbb{R}, \ \widehat{f}\left(\frac{k}{L}\right) = \frac{1}{2\pi L} \int_{\mathbb{T}_{L}} f(x) e^{-i\frac{k}{L}x} dx, k \in \mathbb{Z}.$$

• supp
$$\widehat{f} := \{k \in \mathbb{Z} \mid \frac{k}{L} \in \frac{1}{L}\mathbb{Z} \cap J\} \subset J.$$

• The bigger *L*, the more active Fourier coefficients are in *J*, but this does not affect the estimate

Theorem 4

Let $\mathbb{T}_L = [0, 2\pi L]$, $f \in L^p(\mathbb{T}_L)$ with $p \in [1, \infty]$ such that supp $\hat{f} \subset J$, where $J \subset \mathbb{R}$ is an interval of length b. Let $S \subset \mathbb{R}$ be a (γ, a) -thick set with $0 < a \leq 2\pi L$. Then,

$$\|f\|_{L^{p}(\mathbb{T}_{L})} \leq \left(\frac{c_{1}}{\gamma}\right)^{c_{2}ab+\frac{3}{p}} \|f\|_{L^{p}(S\cap\mathbb{T}_{L})},\tag{3}$$

•
$$\widehat{f}: \frac{1}{L}\mathbb{Z} \longrightarrow \mathbb{R}, \ \widehat{f}\left(\frac{k}{L}\right) = \frac{1}{2\pi L} \int_{\mathbb{T}_{I}} f(x) e^{-i\frac{k}{L}x} dx, k \in \mathbb{Z}.$$

• supp
$$\widehat{f} := \{k \in \mathbb{Z} \mid \frac{k}{L} \in \frac{1}{L}\mathbb{Z} \cap J\} \subset J.$$

- The bigger *L*, the more active Fourier coefficients are in *J*, but this does not affect the estimate
- The position of J is irrelevant.

Theorem 5

Let $f \in L^{p}(\mathbb{T}_{L})$ with $p \in [1, \infty]$. Assume that supp $\widehat{f} \subset \bigcup_{l=1}^{n} J_{l}$, where $J_{l} \subset \mathbb{R}$ are intervals of length *b*. Let *S* be a (γ, a) -thick set with $0 < a \leq 2\pi L$. Then,

$$\|f\|_{L^{p}(\mathbb{T}_{L})} \leq \left(\frac{\tilde{c}_{1}}{\gamma}\right)^{\left(\frac{\tilde{c}_{2}}{\gamma}\right)^{n}ab+n-\frac{(p-1)}{p}} \|f\|_{L^{p}(S\cap\mathbb{T}_{L})},\tag{4}$$

where \tilde{c}_1 and \tilde{c}_2 are universal constants.

3. Application to PDE

э

Application to PDE

Assume $J \subset \mathbb{R}$ such that |J| = b and consider

 $\Delta_{\mathbb{T}_L} u_k = -\lambda_k^2 u_k$ with periodic boundary conditions. (5)

Application to PDE

Assume $J \subset \mathbb{R}$ such that |J| = b and consider

 $\Delta_{\mathbb{T}_{k}} u_{k} = -\lambda_{k}^{2} u_{k}$ with periodic boundary conditions. (5)

Corollary 6

Let f be a linear combination of eigenfunctions of (5), i.e.,

$$f(x) = \sum_{\substack{k \in \frac{1}{L} \mathbb{Z} \cap J \\ \overline{L}}} c_{\underline{k}} e^{i \frac{k}{L} x}$$

and let S be (γ, a) -thick. Then,

$$\|f\|_{L^{2}(S \cap \mathbb{T}_{L})} \ge \left(\frac{\gamma}{c_{1}}\right)^{c_{2}ab+\frac{3}{2}} \|f\|_{L^{2}(\mathbb{T}_{L})}.$$
 (6)

Michela Egidi (joint with I. Veselić) (German Logvinenko-Sereda Theorems for periodic fun

・ロン ・四 ・ ・ ヨン ・ ヨン

4. Application to Control Theory

A warm-up result - the uncontrolled heat equation

We consider the uncontrolled heat equation with periodic boundary conditions

$$\begin{cases} \partial_t u - \Delta u = 0 & \text{in } (0, T) \times \mathbb{T}_L \\ \frac{\partial^m u}{\partial x^m}(t, x) = \frac{\partial^m u}{\partial x^m}(t, x) & \forall \ m \ge 0 & \text{in } (0, T) \times \partial \mathbb{T}_L \\ u(0, x) = u_0 \in V & \text{in } \mathbb{T}_L, \end{cases}$$
(7)

where $V = \{f \in L^2(\mathbb{T}_L) \mid \text{supp } \widehat{f} \subset \bigcup_{l=1}^n J_l\}$ with J_l 's intervals of length b > 0.

A warm-up result - the uncontrolled heat equation

We consider the uncontrolled heat equation with periodic boundary conditions

$$\begin{cases} \partial_t u - \Delta u = 0 & \text{in } (0, T) \times \mathbb{T}_L \\ \frac{\partial^m u}{\partial x^m}(t, x) = \frac{\partial^m u}{\partial x^m}(t, x) & \forall \ m \ge 0 & \text{in } (0, T) \times \partial \mathbb{T}_L \\ u(0, x) = u_0 \in V & \text{in } \mathbb{T}_L, \end{cases}$$
(7)

where $V = \{f \in L^2(\mathbb{T}_L) \mid \text{supp } \widehat{f} \subset \bigcup_{l=1}^n J_l\}$ with J_l 's intervals of length b > 0.

Proposition 7

The solution of the above system satisfies the observability inequality

$$\|u(\mathcal{T},\cdot)\|_{L^2(\mathbb{T}_L)}^2 \leq \frac{1}{\mathcal{T}} \Big(\frac{\tilde{c}_1}{\gamma}\Big)^{2\left(\frac{\tilde{c}_2}{\gamma}\right)^n ab+2n-1} \|u\|_{L^2((0,\mathcal{T})\times\omega)}^2,$$

where $\omega = S \cap \mathbb{T}_L$ and S is (γ, a) -thick.

Proof of Prop. 7

<ロ> (日) (日) (日) (日) (日)

Following [Le Roussea-Lebeau '12], we observe that

$$u(0,x) = \sum_{\frac{k}{L} \in \bigcup_{l=1}^{n} J_{l}} \beta_{k/L} u_{k/L}(x)$$

where $u_{k/L}$ are the eigenfunctions of the periodic Laplacian on \mathbb{T}_L arising from the active Fourier modes,

Following [Le Roussea-Lebeau '12], we observe that

$$u(0,x) = \sum_{\substack{k \in \bigcup_{l=1}^n J_l}} \beta_{k/L} u_{k/L}(x)$$

where $u_{k/L}$ are the eigenfunctions of the periodic Laplacian on \mathbb{T}_L arising from the active Fourier modes,

Consequently, we have

$$u(t,x)=\sum_{\substack{k\\L}\in\bigcup_{l=1}^{n}J_{l}}e^{-tE_{k}}\beta_{k/L}u_{k/L}(x)=\sum_{\substack{k\\L}\in\bigcup_{l=1}^{n}J_{l}}\beta_{k/L}(t)u_{k/L}(x),$$

where E_k 's denote the eigenvalues arising from the active Fourier modes.

$$T \| u(T, \cdot) \|_{L^2(\mathbb{T}_L)}^2 \leq \int_0^T \int_{\mathbb{T}_L} |u(t, x)|^2 \, \mathrm{d} x \, \mathrm{d} t$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$T \| u(T, \cdot) \|_{L^2(\mathbb{T}_L)}^2 \leq \int_0^T \int_{\mathbb{T}_L} |u(t, x)|^2 \, \mathrm{d} x \, \mathrm{d} t$$
$$= \int_0^T \int_{\mathbb{T}_L} |\sum_{\substack{k \in \bigcup_{l=1}^n J_l}} \beta_{k/L}(t) u_{k/L}(x)|^2 \, \mathrm{d} x \, \mathrm{d} t$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$T \| u(T, \cdot) \|_{L^{2}(\mathbb{T}_{L})}^{2} \leq \int_{0}^{T} \int_{\mathbb{T}_{L}} |u(t, x)|^{2} d x d t$$

$$= \int_{0}^{T} \int_{\mathbb{T}_{L}} |\sum_{\substack{k \in \bigcup_{l=1}^{n} J_{l} \\ \frac{k}{L} \in \bigcup_{l=1}^{n} J_{l}}} \beta_{k/L}(t) u_{k/L}(x)|^{2} d x d t$$

$$\leq \left(\frac{\tilde{c}_{1}}{\gamma}\right)^{2 \left(\frac{\tilde{c}_{2}}{\gamma}\right)^{n} ab + 2n - 1} \int_{0}^{T} \int_{S \cap \mathbb{T}_{L}} |\sum_{\substack{k \in \bigcup_{l=1}^{n} J_{l} \\ \frac{k}{L} \in \bigcup_{l=1}^{n} J_{l}}} \beta_{k/L}(t) u_{k/L}(x)|^{2} d x d t$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$\begin{split} T \| u(T, \cdot) \|_{L^2(\mathbb{T}_L)}^2 &\leq \int_0^T \int_{\mathbb{T}_L} |u(t, x)|^2 \, \mathrm{d} \, x \, \mathrm{d} \, t \\ &= \int_0^T \int_{\mathbb{T}_L} |\sum_{\substack{k \in \bigcup_{l=1}^n J_l}} \beta_{k/L}(t) u_{k/L}(x)|^2 \, \mathrm{d} \, x \, \mathrm{d} \, t \\ &\leq \left(\frac{\tilde{c}_1}{\gamma}\right)^{2\left(\frac{\tilde{c}_2}{\gamma}\right)^n ab + 2n - 1} \int_0^T \int_{S \cap \mathbb{T}_L} |\sum_{\substack{k \in \bigcup_{l=1}^n J_l}} \beta_{k/L}(t) u_{k/L}(x)|^2 \, \mathrm{d} \, x \, \mathrm{d} \, t \\ &= \left(\frac{\tilde{c}_1}{\gamma}\right)^{2\left(\frac{\tilde{c}_2}{\gamma}\right)^n ab + 2n - 1} \| u \|_{L^2((0,T) \times (S \cap \mathbb{T}_L))}^2, \end{split}$$

・ロト ・四ト ・ヨト ・ヨト

э.

$$\begin{split} T \| u(T, \cdot) \|_{L^2(\mathbb{T}_L)}^2 &\leq \int_0^T \int_{\mathbb{T}_L} |u(t, x)|^2 \, \mathrm{d} x \, \mathrm{d} t \\ &= \int_0^T \int_{\mathbb{T}_L} |\sum_{\substack{k \in \bigcup_{l=1}^n J_l}} \beta_{k/L}(t) u_{k/L}(x)|^2 \, \mathrm{d} x \, \mathrm{d} t \\ &\leq \left(\frac{\tilde{c}_1}{\gamma}\right)^{2\left(\frac{\tilde{c}_2}{\gamma}\right)^n ab + 2n - 1} \int_0^T \int_{S \cap \mathbb{T}_L} |\sum_{\substack{k \in \bigcup_{l=1}^n J_l}} \beta_{k/L}(t) u_{k/L}(x)|^2 \, \mathrm{d} x \, \mathrm{d} t \\ &= \left(\frac{\tilde{c}_1}{\gamma}\right)^{2\left(\frac{\tilde{c}_2}{\gamma}\right)^n ab + 2n - 1} \| u \|_{L^2((0,T) \times (S \cap \mathbb{T}_L))}^2, \end{split}$$

and so

$$\|u(\mathcal{T},\cdot)\|_{L^{2}(\mathbb{T}_{L})}^{2} \leq \frac{1}{\mathcal{T}} \left(\frac{\tilde{c}_{1}}{\gamma}\right)^{2\left(\frac{\tilde{c}_{2}}{\gamma}\right)^{n} ab+2n-1} \|u\|_{L^{2}((0,\mathcal{T})\times\omega)}^{2}.$$

<ロ> (日) (日) (日) (日) (日)

$$\begin{cases}
\partial_t u - \Delta u = v \chi_\omega & \text{in } (0, T) \times \mathbb{T}_L, \\
\omega = (0, T) \times (\mathbb{T}_L \cap S)
\end{cases}$$

$$\frac{\partial^m u}{\partial x^m}(t, x) = \frac{\partial^m u}{\partial x^m}(t, x) \quad \forall \ m \ge 0 \quad \text{in } (0, T) \times \partial \mathbb{T}_L$$

$$u(x, 0) = u_0(x) \in L^2(\mathbb{T}_L)
\end{cases}$$
(8)

$$\begin{cases}
\partial_t u - \Delta u = v \chi_\omega & \text{in } (0, T) \times \mathbb{T}_L, \\
\omega = (0, T) \times (\mathbb{T}_L \cap S) \\
\frac{\partial^m u}{\partial x^m}(t, x) = \frac{\partial^m u}{\partial x^m}(t, x) \quad \forall \ m \ge 0 \quad \text{in } (0, T) \times \partial \mathbb{T}_L \\
u(x, 0) = u_0(x) \in L^2(\mathbb{T}_L)
\end{cases}$$
(8)

Null-controllability: driving the solution u to zero at time T > 0, yet only acting in the sub-domain ω . (For null-controllability results on general non-empty set ω , see [Lebeau-Robbiano '95] and [Fursikov-Immanuvilov '96].

$$\begin{cases}
\partial_t u - \Delta u = v \chi_\omega & \text{in } (0, T) \times \mathbb{T}_L, \\
\omega = (0, T) \times (\mathbb{T}_L \cap S) \\
\frac{\partial^m u}{\partial x^m}(t, x) = \frac{\partial^m u}{\partial x^m}(t, x) \quad \forall \ m \ge 0 \quad \text{in } (0, T) \times \partial \mathbb{T}_L \\
u(x, 0) = u_0(x) \in L^2(\mathbb{T}_L)
\end{cases}$$
(8)

Null-controllability: driving the solution u to zero at time T > 0, yet only acting in the sub-domain ω . (For null-controllability results on general non-empty set ω , see [Lebeau-Robbiano '95] and [Fursikov-Immanuvilov '96].

Control-cost: $\inf\{\|v\|_{L^2((0,T)\times\omega)} \mid u \text{ sol. of } (8) \text{ and } u(\cdot,T)=0\}.$

$$\begin{cases}
\partial_t u - \Delta u = v \chi_{\omega} & \text{in } (0, T) \times \mathbb{T}_L, \\
\omega = (0, T) \times (\mathbb{T}_L \cap S)
\end{cases}$$

$$\frac{\partial^m u}{\partial x^m}(t, x) = \frac{\partial^m u}{\partial x^m}(t, x) \quad \forall \ m \ge 0 \quad \text{in } (0, T) \times \partial \mathbb{T}_L$$

$$u(x, 0) = u_0(x) \in L^2(\mathbb{T}_L)
\end{cases}$$
(8)

Null-controllability: driving the solution u to zero at time T > 0, yet only acting in the sub-domain ω . (For null-controllability results on general non-empty set ω , see [Lebeau-Robbiano '95] and [Fursikov-Immanuvilov '96].

Control-cost: $\inf\{\|v\|_{L^2((0,T)\times\omega)} \mid u \text{ sol. of } (8) \text{ and } u(\cdot, T) = 0\}.$ Goal: estimate the control cost with respect to the geometric properties of

the subset ω .

Lemma 8

Consider

$$\begin{cases} \partial_t u - \Delta u = \prod_F (v\chi_\omega) & \text{in } (0,T) \times \mathbb{T}_L, \omega = (0,T) \times (\mathbb{T}_L \cap S) \\ u(x,0) = u_0(x) \in F \end{cases}$$

with periodic boundary condition on $\partial \mathbb{T}_L \times (0, T)$, and where $F = span\{\phi_{k/L} \text{ eigenfunction of } \Delta_{\mathbb{T}_L} \mid (k/L)^2 \leq b^2\}$. Then, there exists a v that drives the solution to zero and such that

$$\|v\|_{L^{2}((0,T)\times\omega)} \leq \frac{1}{\sqrt{T}} \left(\frac{c_{1}}{\gamma}\right)^{c_{2}ab+\frac{3}{2}} \|u_{0}\|_{L^{2}(\mathbb{T}_{L})}.$$
(9)

 Π_F is the orthogonal projection on F.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• By duality between null-controllability and observability, we consider

$$\begin{cases} -\partial_t q - \Delta q = 0 & \text{in } (0, T) \times \mathbb{T}_L \\ q(T) = q_f \in F \end{cases}$$
(10)

with periodic boundary conditions on $(0, T) \times \partial \mathbb{T}_L$.

• By duality between null-controllability and observability, we consider

$$\begin{cases} -\partial_t q - \Delta q = 0 & \text{in } (0, T) \times \mathbb{T}_L \\ q(T) = q_f \in F \end{cases}$$
(10)

with periodic boundary conditions on $(0, T) \times \partial \mathbb{T}_L$.

• Use same method of the proof of Prop. 7 to obtain

$$\|T\|q(0)\|_{L^2(\mathbb{T}_L)}^2 \leq \left(rac{c_1}{\gamma}
ight)^{c_2ab+3} \|q\|_{L^2((0,T) imes\omega)}.$$

• By duality between null-controllability and observability, we consider

$$\begin{cases} -\partial_t q - \Delta q = 0 & \text{in } (0, T) \times \mathbb{T}_L \\ q(T) = q_f \in F \end{cases}$$
(10)

with periodic boundary conditions on $(0, T) \times \partial \mathbb{T}_L$.

• Use same method of the proof of Prop. 7 to obtain

$$\|T\|q(0)\|^2_{L^2(\mathbb{T}_L)} \leq \left(rac{c_1}{\gamma}
ight)^{c_2ab+3} \|q\|_{L^2((0,\mathcal{T}) imes\omega)}.$$

• This already yields

$$\|\mathbf{v}\|_{L^2((0,T)\times\omega)} \leq \frac{1}{\sqrt{T}} \left(\frac{c_1}{\gamma}\right)^{c_2ab+\frac{3}{2}} \|u_0\|_{L^2(\mathbb{T}_L)}$$

Controlled heat equation - Full result

Proposition 9

Consider the following system

 $\begin{cases} \partial_t u - \Delta u = v\chi_{\omega} & \text{in } (0, T) \times \mathbb{T}_L, \\ \omega = (0, T) \times (\mathbb{T}_L \cap S) \\ \frac{\partial^m u}{\partial x^m}(t, x) = \frac{\partial^m u}{\partial x^m}(t, x) & \forall \ m \ge 0 & \text{in } (0, T) \times \partial \mathbb{T}_L \\ u(x, 0) = u_0(x) \in L^2(\mathbb{T}_L) \end{cases}$

Then, there exists a v that drives the solution to zero and such that

$$\|v\|_{L^{2}((0,T)\times\omega)} \leq C(T,a,\gamma)\|u_{0}\|_{L^{2}(\mathbb{T}_{L})}$$
(11)

Controlled heat equation - Full result

Proposition 9

Consider the following system

 $\begin{cases} \partial_t u - \Delta u = v\chi_{\omega} & \text{in } (0, T) \times \mathbb{T}_L, \\ \omega = (0, T) \times (\mathbb{T}_L \cap S) \\ \frac{\partial^m u}{\partial x^m}(t, x) = \frac{\partial^m u}{\partial x^m}(t, x) & \forall \ m \ge 0 & \text{in } (0, T) \times \partial \mathbb{T}_L \\ u(x, 0) = u_0(x) \in L^2(\mathbb{T}_L) \end{cases}$

Then, there exists a v that drives the solution to zero and such that

$$\|v\|_{L^{2}((0,T)\times\omega)} \leq C(T,a,\gamma)\|u_{0}\|_{L^{2}(\mathbb{T}_{L})}$$
(11)

Controlled heat equation - Full result

Proposition 9

Consider the following system

 $\begin{cases} \partial_t u - \Delta u = v\chi_{\omega} & \text{in } (0, T) \times \mathbb{T}_L, \\ \omega = (0, T) \times (\mathbb{T}_L \cap S) \\ \frac{\partial^m u}{\partial x^m}(t, x) = \frac{\partial^m u}{\partial x^m}(t, x) & \forall \ m \ge 0 & \text{in } (0, T) \times \partial \mathbb{T}_L \\ u(x, 0) = u_0(x) \in L^2(\mathbb{T}_L) \end{cases}$

Then, there exists a v that drives the solution to zero and such that

$$\|v\|_{L^{2}((0,T)\times\omega)} \leq C(T,a,\gamma)\|u_{0}\|_{L^{2}(\mathbb{T}_{L})}$$
(11)

イロト イポト イヨト イヨト

æ

• Set $F_j = span\{\phi_{k/L} \text{ eigenfunction of } \Delta_{\mathbb{T}_L} \mid (k/L)^2 \leq b_j^2\}$, with increasing b_j .

- Set $F_j = span\{\phi_{k/L} \text{ eigenfunction of } \Delta_{\mathbb{T}_L} \mid (k/L)^2 \leq b_j^2\}$, with increasing b_j .
- $[0, T] = \bigcup_{j \ge 0} [a_j, a_{j+1}]$ with $a_0 = 0$ and $a_{j+1} = a_j + 2T_j$, T_j decreases as j grows.

- Set $F_j = span\{\phi_{k/L} \text{ eigenfunction of } \Delta_{\mathbb{T}_L} \mid (k/L)^2 \leq b_j^2\}$, with increasing b_j .
- $[0, T] = \bigcup_{j \ge 0} [a_j, a_{j+1}]$ with $a_0 = 0$ and $a_{j+1} = a_j + 2T_j$, T_j decreases as j grows.
- [a_j, a_{j+1}] = (a_j, a_j + T_j] ∪ [a_j + T_j, a_{j+1}). On (a_j, a_j + T_j] we solve a controlled heat equation with a control v that satisfies Lemma 8 with initial data in F_j. On [a_j + T_j, a_{j+1}) we solve an uncontrolled heat equation. On both part, we estimate the L²-norm of the solution.

- Set $F_j = span\{\phi_{k/L} \text{ eigenfunction of } \Delta_{\mathbb{T}_L} \mid (k/L)^2 \leq b_j^2\}$, with increasing b_j .
- $[0, T] = \bigcup_{j \ge 0} [a_j, a_{j+1}]$ with $a_0 = 0$ and $a_{j+1} = a_j + 2T_j$, T_j decreases as j grows.
- [a_j, a_{j+1}] = (a_j, a_j + T_j] ∪ [a_j + T_j, a_{j+1}). On (a_j, a_j + T_j] we solve a controlled heat equation with a control v that satisfies Lemma 8 with initial data in F_j. On [a_j + T_j, a_{j+1}) we solve an uncontrolled heat equation. On both part, we estimate the L²-norm of the solution.
- 'Glue together' the two estimates to infer that the solution goes to zero at time *T*.

- Set $F_j = span\{\phi_{k/L} \text{ eigenfunction of } \Delta_{\mathbb{T}_L} \mid (k/L)^2 \leq b_j^2\}$, with increasing b_j .
- $[0, T] = \bigcup_{j \ge 0} [a_j, a_{j+1}]$ with $a_0 = 0$ and $a_{j+1} = a_j + 2T_j$, T_j decreases as j grows.
- [a_j, a_{j+1}] = (a_j, a_j + T_j] ∪ [a_j + T_j, a_{j+1}). On (a_j, a_j + T_j] we solve a controlled heat equation with a control v that satisfies Lemma 8 with initial data in F_j. On [a_j + T_j, a_{j+1}) we solve an uncontrolled heat equation. On both part, we estimate the L²-norm of the solution.
- 'Glue together' the two estimates to infer that the solution goes to zero at time *T*.
- Write $\|v\|_{L^2((0,T)\times\mathbb{T}_L)}^2 = \sum_{j\geq 0} \|v\|_{L^2((a_j,a_j+T_j]\times\mathbb{T}_L)}^2$ and use Lemma 8 on each interval together with estimates of the solution to get the final estimate.

æ

э

< 一型

• Assume $p \in [1, \infty)$, $2\pi L > 1$, a = 1. The case for general a follows by a scaling argument. Shift J by $c \in \frac{1}{I}\mathbb{Z} \cap J$ so that $J - c \subset [-b, b]$.

- Assume $p \in [1, \infty)$, $2\pi L > 1$, a = 1. The case for general a follows by a scaling argument. Shift J by $c \in \frac{1}{I}\mathbb{Z} \cap J$ so that $J - c \subset [-b, b]$.
- Cover $\mathbb{T}_L = \bigcup_{j=1}^N I_j$, $|I_j| = 1$.

• Assume $p \in [1, \infty)$, $2\pi L > 1$, a = 1. The case for general a follows by a scaling argument. Shift J by $c \in \frac{1}{L}\mathbb{Z} \cap J$ so that $J - c \subset [-b, b]$.

• Cover
$$\mathbb{T}_L = \bigcup_{j=1}^N I_j$$
, $|I_j| = 1$.

• Let A > 1. I_j is bad if there exists $\alpha \ge 1$ such that

$$\|f^{(\alpha)}\|_{L^{p}(I_{j})}^{p} \geq A^{\alpha}(Cb)^{\alpha}\|f\|_{L^{p}(I_{j})}^{p},$$

and I_j is good if for all $\alpha \ge 1$ we have

$$\|f^{(\alpha)}\|_{L^{p}(I_{j})}^{p} \leq A^{\alpha}(Cb)^{\alpha}\|f\|_{L^{p}(I_{j})}^{p}$$

Then, we can prove that $||f||_{L^p(\cup_{l \text{ bad}} I_j)}^p \leq \frac{1}{2} ||f||_{L^p(\mathbb{T}_L)}^p$ so we can discard the bad boxes.

• It is all about proving

$$\|f\|_{L^p(l_j\cap S)}^p \leq \left(\frac{\gamma}{c_1}\right)^{pc_2b+3} \|f\|_{L^p(l_j)}^p,$$

as the full result follows by summing up over all good intervals I_i .

• It is all about proving

$$\|f\|_{L^{p}(l_{j}\cap S)}^{p} \leq \left(\frac{\gamma}{c_{1}}\right)^{pc_{2}b+3} \|f\|_{L^{p}(l_{j})}^{p},$$

as the full result follows by summing up over all good intervals I_j .

• $\exists B > 1$ such that if I_j is good there exists $x_0 \in I_j$ such that

$$|f^{(\alpha)}(x_0)| \leq 2B^{\alpha p}(CB)^{\alpha p} \int_{I_J} |f|^p \qquad \forall \ \alpha > 0.$$

It is all about proving

$$\|f\|_{L^{p}(l_{j}\cap S)}^{p} \leq \left(\frac{\gamma}{c_{1}}\right)^{pc_{2}b+3} \|f\|_{L^{p}(l_{j})}^{p},$$

as the full result follows by summing up over all good intervals I_j .

• $\exists B > 1$ such that if I_j is good there exists $x_0 \in I_j$ such that

$$|f^{(\alpha)}(x_0)| \leq 2B^{\alpha p}(CB)^{\alpha p} \int_{I_J} |f|^p \qquad \forall \ \alpha > 0.$$

• Assume $I_j = [-1/2, 1/2]$ by shifting f by an appropriate n. Then, if $z \in D(x, R + 1/2)$ for $x \in I_j$, using Taylor's series we have

$$|f(z)| \le 2^{1/p} \exp(Cb(R+1/2)) ||f||_{L^p(I_i)}^p$$
(12)

• Using a technical lemma for analytic functions, we conclude

$$\begin{split} \int_{I_j \cap S} |f|^p &\geq \left(\frac{|S \cap I_j|}{C}\right)^{2p \log M/\log 2 + 1} \int_{I_j} |f|^p \\ &\geq \left(\frac{\gamma}{C}\right)^{2p C b + 3} \int_{I_j} |f|^p, \end{split}$$

where $M \le \max_{|z| \le 4+1/2} |f(z)| \le 2^{1/p} \exp(5CB)$.

• Using a technical lemma for analytic functions, we conclude

$$\begin{split} \int_{I_j \cap S} |f|^p &\geq \left(\frac{|S \cap I_j|}{C}\right)^{2p \log M/\log 2 + 1} \int_{I_j} |f|^p \\ &\geq \left(\frac{\gamma}{C}\right)^{2p C b + 3} \int_{I_j} |f|^p, \end{split}$$

where $M \le \max_{|z| \le 4+1/2} |f(z)| \le 2^{1/p} \exp(5CB)$.

Lemma 10

Let $p \in [1, \infty)$ and let ϕ be an analytic function on $D(0,5) := \{z \in \mathbb{C} \mid |z| < 5\}$. Let $I \subset \mathbb{R}$ be an interval of unit length such that $0 \in I$ and let $A \subset I$ be a measurable set of non-zero measure, i.e., |A| > 0. Set $M = \max_{|z| \le 4} |\phi(z)|$ and assume that $|\phi(0)| \ge 1$, then

$$\int_{I} |\phi|^{p} \leq \left(\frac{C}{|A|}\right)^{2p \frac{\log M}{\log 2} + 1} \int_{A} |\phi|^{p}.$$

THANK YOU FOR YOUR ATTENTION

Michela Egidi (joint with I. Veselić) (German Logvinenko-Sereda Theorems for periodic fun 13th September 2016 25 / 25

э