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The theory of DAEs

Differential-Algebraic Equations (DAEs) are also called descriptor,
algebraic-differential and degenerate differential equations.

Fields of application of the theory of semilinear DAEs are
radio engineering, economics, control theory, robotics technology, mechanics,
chemical kinetics.

The development of DAE theory: K. Weierstrass (1867), L. Kronecker
(1890), V.P. Skripnik (1964), A.G. Rutkas (1975), R.E. Showalter (1975),
S.L. Campbell (1976), Yu.E. Boyarintsev (1977), A. Favini (1977),
V.F. Chistyakov (1980), L.R. Petzold (1982), L.A. Vlasenko (1987), E. Hairer
(1988), P. Kunkel (1991), V. Mehrmann (1991), V.P. Yakovecz (1991), R. März
(1994), C. Tischendorf (1994), A.A. Shcheglova (1995), A.M. Samoilenko (2000),
R. Riaza (2000).

The research of the DAE global solvability: R. März (1994); C. Tischendorf
(1994); L.A. Vlasenko, A.G. Rutkas (2003), A.D. Myshkis (2008);
Yu.E. Gliklikh (2014).

The stability of DAEs: L. Dai (1989), R. März (1994), C. Tischendorf (1994),
A.A. Shcheglova (2004), V.F. Chistyakov (2004), Yu.E. Boyarintsev (2006),
S.L. Campbell (2009), V.H. Linh (2009), Sh. Xu, J. Lam (2006).
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Problem setting
Consider the Cauchy problem for the systems of differential-algebraic

equations which in a vector form have the representation as
the semilinear differential-algebraic equation (DAE)

d

dt
[Ax(t)]+Bx(t) = f(t,x), (1)

x(t0) = x0, (2)

– t, t0 ≥ 0, x,x0 ∈ Rn, f(t,x) : [0,∞)×Rn → Rm is a nonlinear function;

– A,B : Rn →Rm are linear operators (A,B are corresponding m×n matrices),
for n = m the operator A is degenerate (noninvertible);

denote by rk(λA+B) the rank of the pencil λA+B (λ ∈ C);

The pencil λA+B is called regular if n = m = rk(λA+B) (n=m,
det(λA+B) 6≡0). Otherwise, if n 6= m or n = m and rk(λA+B)< n

(det(λA+B)≡ 0), the pencil is called singular.
Notice that the system of equations corresponding the DAE (1) with the singular
pencil may be underdetermined or overdetermined.

A function x(t) is called a solution of the Cauchy problem (1), (2) on some
interval [t0,t1), t1 ≤ ∞, if x(t) ∈ C([t0,t1),R

n), Ax(t) ∈ C1([t0,t1),R
n), x(t)

satisfies the equation (1) on [t0,t1) and the initial condition (2).
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Definitions. The objective of the work

The Cauchy problem (1), (2):
d

dt
[Ax(t)]+Bx(t) = f(t,x), x(t0) = x0

A solution x(t) of the Cauchy problem (1), (2) is called global if it exists on
the whole interval [t0,∞).

A solution x(t) of the Cauchy problem (1), (2) has a finite escape time if it
exists on some finite interval [t0,T) and is unbounded, i.e., there exists T < ∞
(T > t0) such that lim

t→T−0
‖x(t)‖=+∞.

A solution x(t) of the Cauchy problem (1), (2) is called Lagrange stable if it
is global and bounded, i.e., the solution x(t) exists on [t0,∞) and
sup

t∈[t0,∞)
‖x(t)‖<+∞.

A solution x(t) of the Cauchy problem (1), (2) is called Lagrange instable if
it has a finite escape time.

The objective of the work is to find conditions of the existence and uniqueness
of a global solution, as well as conditions of the boundedness of global solutions,
and to find conditions of the existence and uniqueness of a solution with finite
escape time for the semilinear DAE (1). The obtained results are applied to a
study of the dynamics of nonlinear electrical circuits.
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Preliminaries [1]

The nonlinear function on the right side of the DAE generates one of the main
challenge for the research of the global solvability and stability. To solve this
challenge we use, in particular, the solution extension method. The following

lemma is the generalization of La Salle’s theorem on extension of solutions of an
ordinary differential equation (ODE) [J. La Salle, S. Lefschetz, Stability by

Liapunov’s direct method with applications].

Lemma. Let f(t,x) ∈ C([0,∞)×Rn,Rn), ∂
∂x

f(t,x) be continuous on [0,∞)×Rn

and there exist K(t,v) ∈ C([0,∞)× (0,∞),R) and a positive definite function
V(t,x) ∈ C1([0,∞)×Rn,R) such that:

1) V(t,x)→+∞ as ‖x‖→+∞ uniformly in t on every finite interval [a,b)⊂ [0,∞);
2) for any T> 0 there exists a bounded set ΩT ∈Rn, containing the origin, such

that V̇
∣

∣

(3)
≤ K(t,V(t,x)) ∀x ∈ Ωc

T, t ≥ 0, where V̇
∣

∣

(3)
= ∂V

∂t
+(gradV,fT(t,x))

ẋ = fT(t,x), fT(t,x) =

{

f(t,x), 0 ≤ t ≤ T,

f(T,x), t > T (T > 0)
(3)

(fT(t,x) is the truncation of f(t,x) over t).
3) the differential inequality v̇ ≤ K(t,v), t ≥ 0, has no positive solution v(t) with

finite escape time.
Then every solution x(t) of the ODE ẋ = f(t,x) exists on the semiaxis [t0,∞).
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Preliminaries [2]

A system of one-dimensional projectors {Θk}s
k=1 such that Θk : Z → Z,

Θi Θj = Θj Θi = δij Θi (δij is the Kronecker delta), and EZ=
s

∑
k=1

Θk is called an

additive resolution of the identity in s-dimensional normed linear space Z.

Let X, Z be s-dimensional normed linear spaces, D ⊂ X. An operator function
Φ(x) : D → L(X,Z) is called basis invertible on the convex hull conv{u,v}
of vectors u,v ∈ D if for any set of vectors {xk}s

k=1 ⊂ conv{u,v} and some
additive resolution of the identity {Θk}s

k=1 in the space Z the operator

Λ =
s

∑
k=1

ΘkΦ(xk) ∈ L(X,Z) has the inverse operator Λ−1 ∈ L(Z,X).

Let us represent the mapping Φ(x) : D → L(X,Z) as the matrix relative to some
bases in the s-dimensional spaces X, Z:

Φ(x) =





Φ11(x) · · · Φ1s(x)
· · · · · · · · ·

Φs1(x) · · · Φss(x)



 ,

then the operator Λ has the form

Λ =





Φ11(x
1) · · · Φ1s(x

1)
· · · · · · · · ·

Φs1(x
s) · · · Φss(x

s)



 .
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The case of the regular pencil λA+B

Recall that λA+B is regular if n = m = rk(λA+B).

Let λA+B be a regular pencil of index 1, that is

∃C1,C2 > 0 :
∥

∥(λA+B)−1
∥

∥≤ C1 ∀λ ∈ C : |λ | ≥ C2. (4)

Then there exist the spectral projectors of Riss type [ A.G. Rutkas, Cauchy

problem for the equation Ax′(t)+Bx(t) = f(t)]:

P1 =
1

2π i

∮

|λ |=C2

(λA+B)−1Adλ , P2 = E−P1

Q1 =
1

2π i

∮

|λ |=C2

A(λA+B)−1 dλ , Q2 = E−Q1,
(E is an identity operator) (5)

which decompose the space R
n into direct sums of subspaces:

R
n = X1+̇X2 = Y1+̇Y2, Xj = PjR

n, Yj = QjR
n, j = 1,2. (6)

Aj = A|Xj
: Xj → Yj, Bj = B|Xj

: Xj → Yj, j = 1,2 are such that A2 = 0,

∃A−1
1 ∈ L(Y1,X1) (if X1 6= {0}), ∃B−1

2 ∈ L(Y2,X2) (if X2 6= {0}).
The invertible auxiliary operator G= AP1+BP2 = Q1A+Q2B [ L.A. Vlasenko,

Implicit linear time-dependent differential-difference equations and applications].
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The case of the regular pencil λA+B

The method of Riss type spectral projectors

Applying Q1, Q2 and G−1 to the DAE (1) d
dt
[Ax(t)]+Bx(t) = f(t,x), we obtain

the equivalent system







d

dt
(P1x)+G−1BP1x = G−1Q1f(t,x),

G−1Q2f(t,x)−P2x = 0.
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The global solvability of the regular DAE
The Cauchy problem for the DAE (1), (2): d

dt [Ax(t)]+Bx(t) = f(t,x), x(t0) = x0.

Theorem 1. Let f(t,x) ∈ C([0,∞)×Rn,Rn), ∂
∂x

f(t,x) be continuous on

[0,∞)×Rn, λA+B be a regular pencil of index 1 and

1) ∀t ≥ 0∀x1 ∈ X1 ∃x2 ∈ X2 : (t,x1+x2) ∈ L0 = {(t,x) ∈ [0,∞) × Rn |
Q2 [Bx− f(t,x)] = 0};

2) ∀(t,x1 +ui) ∈ L0, i = 1,2, where x1 ∈ X1, ui ∈ X2, the operator function

Φ(u)=
[

∂
∂x
(Q2f(t,x1 +u))−B

]

P2 : X2→L(X2,Y2) be basis invertible on the

convex hull conv{u1,u2};
3) there exist a self-adjoint positive operator H ∈ L(X1) and for each T > 0

there exist a number RT > 0 such that

(HP1x,G
−1Q1f(t,x)) ≤ 0 ∀(t,x) ∈ L0 : 0 ≤ t ≤ T, ‖P1x‖ ≥ RT. (7)

Then for every initial point (t0,x0) ∈ L0 there exists a unique solution x(t)

of the Cauchy problem (1), (2) on [t0,∞).

Corollary 1. Suppose that in Theorem 1 the projection Q1f is of the form

Q1f(t,x) = S1(t)P1x+ψ(t,x)+ e(t), where S1(t) ∈ C([0,∞),L(X1,Y1)),

ψ(t,x) ∈ C([0,∞)×Rn ,Y1),
∂ ψ(t,x)

∂x
is continuous on [0,∞)×Rn, e(t) ∈ C([0,∞),Rn).

Then Theorem 1 remains valid if instead of (7) the condition
(HP1x,G

−1ψ(t,x))≤ 0 ∀(t,x) ∈ L0 : 0 ≤ t ≤ T, ‖P1x‖ ≥ RT is fulfilled.
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The global solvability of ODEs

Notice that if n = m and the operator A : Rn → Rn is invertible

(nondegenerate), then the semilinear DAE (1) d
dt
[Ax(t)]+Bx(t) = f(t,x) is

equivalent to the ODE d
dt

x(t)+A−1Bx(t) = A−1f(t,x).

In this case Corollary 1 may be represented in the following form.

Theorem (The existence and uniqueness theorem of the ODE global solution).

Let F(t,x) ∈ C([0,∞)×R
n,Rn), ∂F(t,x)

∂x
be continuous on [0,∞)×R

n, S is a real

n×n matrix, e(t) ∈ C([0,∞),Rn) and

there exist the matrix H = H∗ > 0 and for each T > 0 there exist RT > 0 such

that
(Hx,F(t,x)) ≤ 0, 0 ≤ t ≤ T, ‖x‖ ≥ RT.

Then for every initial point (t0,x0) ∈ [0,∞)×Rn there exists a unique solution of

the Cauchy problem for the ODE d
dt

x(t) = Sx(t)+F(t,x)+ e(t), x(t0) = x0

on [t0,∞).
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The model of a hybrid four-pole radio engineering filter
An input current I1, an input voltage U1,
nonlinear resistances ϕ1, ϕ2, ϕ3,
a nonlinear conductance h,
linear resistances r1, r2, r3,
a linear conductance g,
an inductance L and
a capacitance C are given.

Let I1(t),U1(t)∈C([0,∞),R),
h(y),ϕ1(y),ϕ2(y),ϕ3(y)∈C1(R,R),
r1, r2, r3, g, L, C > 0.

The model of the circuit Fig. 1 is described
by the system with the variables
x1 = IL, x2 = UC, x3 = I3, x4 = I4:

L d
dtx1+ r1 x1 = U1(t)−ϕ1(x1), (8)

C d
dtx2+gx2 −x3 = I1(t)−h(x2), (9)
−x2− r3 x3 = ϕ3(x3)−ϕ2(x4), (10)
r2(x3 +x4) = U1(t)−ϕ2(x4). (11)

The vector form of the system is the DAE
d

dt
[Ax(t)]+Bx(t) = f(t,x), (12)

where x = (x1,x2,x3,x4)
T ∈ R4

Fig. 1. The electric circuit diagram

A =









L 0 0 0

0 C 0 0

0 0 0 0

0 0 0 0









B =









r1 0 0 0

0 g −1 0

0 −1 −r3 0

0 0 r2 r2









f(t,x) =









U1(t)−ϕ1(x1)
I1(t)−h(x2)

ϕ3(x3)−ϕ2(x4)
U1(t)−ϕ2(x4)








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The model of a hybrid four-pole radio engineering filter

It is easy to verify that λA+B is a regular pencil of index 1.

The projection matrices Pk, Qk, k = 1,2, and the matrix G−1 have the form

P1 =







1 0 0 0
0 1 0 0

0 −r−1
3 0 0

0 r−1
3 0 0






,P2 =







0 0 0 0
0 0 0 0

0 r−1
3 1 0

0 −r−1
3 0 1






, Q1 =







1 0 0 0

0 1 −r−1
3 0

0 0 0 0
0 0 0 0






,

Q2 =







0 0 0 0

0 0 r−1
3 0

0 0 1 0
0 0 0 1






, G−1 =











L−1 0 0 0

0 C−1 −(r3C)−1 0

0 −(r3C)−1 −r−1
3 + r−2

3 C−1 0

0 (r3C)−1 r−1
3 − r−2

3 C−1 r−1
2











.

The projections of the vector x have the form

z = P1x =









x1

x2

−r−1
3 x2

r−1
3 x2









=









z1

z2

z3

z4









, u = P2x =









0

0

x3+ r−1
3 x2

x4− r−1
3 x2









=









u1

u2

u3

u4









.
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The model of a hybrid four-pole radio engineering filter
Conclusions. Let the following conditions be fulfilled:

1) ∀t ≥ 0∀z2 ∈ R∃u3,u4 ∈ R such that
{

−r3u3 = ϕ3(u3− r−1
3 z2)−ϕ2(u4+ r−1

3 z2),

r2(u3+u4) = U1(t)−ϕ2(u4+ r−1
3 z2);

(13)

2) for any v,w ∈ X2 satisfying (13) under u = v and u = w, the condition
[

ϕ ′
2(u

2
4 +ξ )+ r2

][

ϕ ′
3(u

1
3−ξ )+ r3

]

+ r2ϕ ′
2(u

1
4+ξ ) 6= 0, ξ ∈ R, is fulfilled for any

uk = (uk
1,u

k
2,u

k
3,u

k
4)

T ∈ conv{v,w}, k = 1,2;

3) −x1ϕ1(x1)−3x2h(x2)+3r−1
3 x2

2+3x2x3 ≤0 ∀x∈R4 :
√

x2
1+x2

2(1+
2
r2
3

)≥RT, (11).

Then by Corollary 1 for every initial point (t0,x0) ∈ [0,∞)×R4 satisfying the

algebraic equations (10), (11) there exists a unique solution of the Cauchy problem

for the DAE (12), x(t0) = x0 on [t0,∞) (x(t0) = (IL(t0),UC(t0),I3(t0),I4(t0))
T).

It means that for any initial moment t0 and any initial currents and voltages

IL(t0), UC(t0), I3(t0), I4(t0) satisfying −UC(t0)− r3 I3(t0)=ϕ3(I3(t0))−ϕ2(I4(t0)),

r2(I3(t0)+ I4(t0))=U1(t0)−ϕ2(I4(t0)) there exists a unique distribution of the

currents and voltages in the circuit Fig. 1 for all t ≥ t0.

The particular case. The conditions of Corollary 1 are satisfied for

ϕ1(y) = α1 y2m+1, h(y) = α2 y2s+1, ϕ3(y) = α3 y2n−1, ϕ2(y) = α4 y2r−1, y ∈ R,

m,n, r, s ∈ N, αk > 0,k = 1,4.
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Lagrange stability

The Cauchy problem (1), (2):
d

dt
[Ax(t)]+Bx(t) = f(t,x), x(t0) = x0.

A solution x(t) of the Cauchy problem (1), (2) is called Lagrange stable if it

is global and bounded, i.e., the solution x(t) exists on [t0,∞) and

sup
t∈[t0,∞)

‖x(t)‖<+∞.

The equation (1) is Lagrange stable if every solution of the Cauchy

problem (1), (2) is Lagrange stable.

A solution x(t) of the Cauchy problem (1), (2) has a finite escape time if it

exists on some finite interval [t0,T) and is unbounded ( lim
t→T−0

‖x(t)‖=+∞).

The equation (1) is Lagrange instable if every solution of the Cauchy

problem (1), (2) has a finite escape time.
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The Lagrange stability of the regular DAE

The Cauchy problem (1), (2): d
dt [Ax(t)]+Bx(t) = f(t,x), x(t0) = x0.

Theorem 2. Let f(t,x) ∈ C([0,∞)×Rn,Rn), ∂
∂x

f(t,x) be continuous on

[0,∞)×Rn, λA+B be a regular pencil of index 1 and

1) ∀t≥0∀x1∈X1∃x2∈X2 : (t,x1+x2)∈L0 = {(t,x)∈ [0,∞)×Rn |Q2[Bx− f(t,x)] = 0};
2) ∀(t,x1+ui) ∈ L0, i = 1,2, where x1 ∈ X1, ui ∈ X2, the operator function

Φ(u)=
[

∂
∂x

(Q2f(t,x1+u))−B
]

P2 : X2→L(X2,Y2) be basis invertible on conv{u1,u2};
3) for some self-adjoint positive operator H ∈ L(X1) and some number R > 0

there exist functions k(t) ∈ C([0,∞),R), U(v) ∈ C((0,∞),(0,∞)) such that

v = 1
2
(HP1x,P1x),

+∞
∫

c

dv
U(v) =+∞ (c > 0) and

(HP1x,G
−1[−BP1x+Q1f(t,x)]) ≤ k(t)U(v) ∀(t,x) ∈ L0 : ‖P1x‖ ≥ R.

Then for every initial point (t0,x0) ∈ L0 there exists a unique solution x(t)

of the Cauchy problem (1), (2) on [t0,∞).

If, additionally,
+∞
∫

t0

k(t)dt <+∞ and ∃C,M > 0 such that

‖G−1Q2f(t,P1x)‖ ≤ C ∀t ∈ [0,∞),‖P1x‖ ≤ M, then for the initial points

(t0,x0) ∈ L0 the equation (1) is Lagrange stable.
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The Lagrange instability of the regular DAE

The Cauchy problem (1), (2): d
dt [Ax(t)]+Bx(t) = f(t,x), x(t0) = x0.

Theorem 3. Let f(t,x) ∈ C([0,∞)×Rn,Rn), ∂
∂x

f(t,x) be continuous on

[0,∞)×Rn, λA+B be a regular pencil of index 1 and

1) ∀t≥0∀x1∈X1∃x2∈X2 : (t,x1+x2)∈L0 = {(t,x)∈ [0,∞)×R
n |Q2[Bx− f(t,x)] = 0};

2) ∀(t,x1+ui) ∈ L0, i = 1,2, where x1 ∈ X1, ui ∈ X2, the operator function

Φ(u)=
[

∂
∂x

(Q2f(t,x1+u))−B
]

P2 : X2→L(X2,Y2) be basis invertible on conv{u1,u2};
3) there exist a region Ω ⊂ X1 such that P1x = 0 6∈ Ω and the component

P1x(t) of every existing solution x(t) with the initial point (t0,x0) ∈ L0, where

P1x0 ∈ Ω, remains all the time in Ω;

4) for some self-adjoint positive operator H ∈ L(X1) there exist functions

k(t) ∈ C([0,∞),R), U(v) ∈ C((0,∞),(0,∞)) such that v = 1
2
(HP1x,P1x),

+∞
∫

c

dv
U(v) <+∞ (c > 0),

+∞
∫

t0

k(t)dt = ∞ and

(HP1x,G
−1[−BP1x+Q1f(t,x)]) ≥ k(t)U(v) ∀(t,x) ∈ L0 : P1x ∈ Ω.

Then for every initial point (t0,x0) ∈ L0, where P1x0 ∈ Ω, there exists a

unique solution of the Cauchy problem (1), (2) and this solution has a finite

escape time.
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The numerical method for solving the regular DAE
Consider the Cauchy problem (1), (2): d

dt
[Ax(t)]+Bx(t) = f(t,x), x(t0) = x0,

where λA+B is a regular pencil of index 1.

{ti = t0+ ih, i = 0,...,N, tN = T} is a uniform grid on an interval [t0,T] (h = (T− t0)/N).

z = P1x, u = P2x are the projections of the vector x = z+u ∈ Rn onto the subspaces

X1, X2 correspondingly;

xi = zi+ui, i = 0,...,N are the values of an approximate solution of the problem at ti.

E is the identity n×n matrix.

Initial values z0, u0 are chosen so that the consistency condition

u0 = G−1Q2f(t0,z0 +u0) is satisfied (the condition (t0,x0)∈L0 of the theorems).

The numerical method:
x0 = z0+u0, zi+1 = (E−hG−1B)zi+hG−1Q1f(ti,zi+ui), (14)

ui+1 =
[

E−G−1Q2
∂

∂x
f(ti+1,zi+1+ui)

]−1

G−1Q2×

×
[

f(ti+1,zi+1+ui)− ∂
∂x

f(ti+1,zi+1+ui)ui

]

,
(15)

xi+1 = zi+1+ui+1, i = 0,...,N− 1, (16)

The spectral projectors of Riss type can be calculated by the formulas

P1 = Res
µ=0

(

(A+µB)−1A

µ

)

, Q1 = Res
µ=0

(

A(A+µB)−1

µ

)

, P2 = E−P1, Q2 = E−Q1
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The model of an impedance four-pole radio engineering filter
Input currents I1, I2,
nonlinear resistances ϕ1, ϕ2,
nonlinear conductances h1, h2,
linear resistances r1, r2,
a linear conductance g,
an inductance L and
a capacitance C are given.

Let I1(t),I2(t)∈C([0,∞),R),
ϕ1(y),ϕ2(y),h1(y),h2(y)∈C1(R,R),
r1, r2, g, L, C > 0.

The model of Fig. 2 is described
by the system with the variables

Fig. 2. The electric circuit diagram

x1 = Iϕ1
, x2 = IL, x3 = UC, γ(x1) = h1(ϕ1(x1)):

L d
dtx2− r1 x1+ r2 x2−x3 = ϕ1(x1)+ r1 γ(x1)−ϕ2(x2), (17)

C d
dt

x3−x1 +gx3 = I2(t)+ γ(x1)−h2(x3), (18)
x1+x2 = I1(t)− γ(x1). (19)

A =





0 L 0

0 0 C

0 0 0





B =





−r1 r2 −1

−1 0 g

1 1 0





The vector form of the system is the DAE
d

dt
[Ax(t)]+Bx(t) = f(t,x), (20)

where x = (x1,x2,x3)
T ∈ R

3
f(t,x) =







ϕ1(x1)+ r1γ(x1)−ϕ2(x2)

I2(t)+ γ(x1)−h2(x3)

I1(t)− γ(x1)






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The model of an impedance four-pole radio engineering filter
It is easy to verify that λA+B is a regular pencil of index 1.

Let the following conditions be fulfilled:

1) ∀t ≥ 0∀x2 ∈ R∃w ∈R such that

w = I1(t)− γ(w−x2). (21)

2) for any w1, w2 ∈ R satisfying (21) the condition γ ′(w−x2) 6=−1 is fulfilled
for any w ∈ conv{w1,w2}, x2 ∈ R;

3) there exist R > 0 and functions k(t) ∈ C([0,∞),R), U(v) ∈ C((0,∞),(0,∞))

such that v = Lx2
2+Cx2

3,
+∞
∫

c

dv
U(v) = ∞ and −(r1+ r2)x

2
2− gx2

3−x2ϕ2(x2)−

−x3h2(x3)+x2ϕ1(x1)+ r1x2I1(t)+x3I2(t)≤ k(t)U(v) ∀t ≥ 0,
√

2x2
2+x2

3 ≥ R.

Then by Theorem 2 for every initial point (t0,x
0) ∈ [0,∞)×R3 satisfying

x0
1+x0

2 = I1(t)− γ(x0
1) there exists a unique solution x(t) of the Cauchy problem

for the DAE (20), x(t0) = x0 on [t0,∞)
(x0 = (x0

1,x
0
2,x

0
3)

T, x(t0) = (Iϕ1
(t0),IL(t0),UC(t0))

T).

If, additionally,
+∞
∫

t0

k(t)dt <+∞ and ∃C,M > 0 : sup
t∈[0,∞)

max
|z1|≤M

|I1(t)− γ(z1)| ≤ C,

then for the initial points (t0,x
0) satisfying x0

1+x0
2 = I1(t)− γ(x0

1) the equation

(20) is Lagrange stable.
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The model of an impedance four-pole radio engineering filter

It means that if the aforementioned conditions are fulfilled, then for any initial

moment t0 and any initial currents and voltage Iϕ1
(t0), IL(t0), UC(t0) satisfying

Iϕ1
(t0)+ IL(t0) = I1(t0)− γ(Iϕ1

(t0)) there exists a unique distribution of the

currents and voltages in the circuit Fig. 2 for all t ≥ t0.

The currents and voltages for the obtained distribution are bounded for all

t ≥ t0 (Lagrange stability) if
+∞
∫

t0

k(t)dt <+∞ and there exist M1,M2 > 0 such

that sup
t∈[0,∞)

max
|z1|≤M2

|I1(t)− γ(z1)| ≤ M1.
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The model of an impedance four-pole radio engineering filter

The particular cases.

ϕ1(y) = α1y
3,ϕ2(y) = α2y

3,
h2(y) = α3y

3, γ(y) = h1(ϕ1(y)) = α4y
9,αk > 0;

(22)

ϕ1(y) = α1 sin(y),ϕ2(y) = α2 sin(y),
h2(y) = α3 cos(y),γ(y) = 0.5cos(cos(y)),αk > 0,y ∈R

(23)

The conditions of Theorem 2 (the aforementioned conditions) are fulfilled for
the nonlinear resistances and conductances of the form (22) or (23).

The existing currents and voltages are bounded if

sup
t∈[0,∞)

|I1(t)|< ∞ and sup
t∈[0,∞)

|I2(t)| < ∞ or
+∞
∫

t0

|I2(t)|dt <+∞.

In particular, these requirements are fulfilled for input currents of the form

Ik(t) = bke
−akt, Ik(t) = bke

− (t−dk)
2

σ2
k , Ik(t) = bk sin(ωkt+θk), (24)

where ak > 0, bk, σk, dk, ωk ∈R, θk ∈ [0,2π ], k = 1,2.
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The model of an impedance four-pole radio engineering filter
L = 0.5 nH, C = 0.4 pF, r1 = 0.02 ohm, r2 = 0.01 ohm, g = 0.2 ohm−1.
ϕ1(y)=sin(y), ϕ2(y)=sin(y), h2(y)=cos(y), γ(y)=0.5cos(cos(y)),
I1(t)=50sin(0.5t− 1.6), I2(t)=50sin(t), t0 = 0, x0 = (0,−50.2488,0)T.
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Fig. 3. The current Iϕ1
(t) Fig. 4. The current IL(t)
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The model of an impedance four-pole radio engineering filter
L = 0.5 nH, C = 0.4 pF, r1 = 0.02 ohm, r2 = 0.01 ohm, g = 0.2 ohm−1.
ϕ1(y)=0.1y3, ϕ2(y)=0.1y3, h2(y)=0.1y3, γ(y)=0.1y9,
I1(t)=0.1t, I2(t)=0.001t2, t0 = 0, x0 = (0,0,0)T.
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The model of a radio engineering device
A voltage source e(t),
nonlinear resistances ϕ, ϕ0, ψ,
a nonlinear conductance h,
a linear resistance r,
a linear conductance g,
an inductance L and
a capacitance C are given.

Let e(t)∈C([0,∞),R),
ϕ(y),ϕ0(y),ψ(y),h(y)∈C1(R,R),
r, g, L, C > 0.

The model of the circuit Fig. 9 is described
by the system with the variables
x1 = IL, x2 = UC, x3 = I:

L
d

dt
x1+x2+ rx3 = e(t)−ϕ0(x1)−ϕ(x3), (25)

C
d

dt
x2+gx2 −x3 =−h(x2), (26)

x2+ rx3 = ψ(x1−x3)−ϕ(x3). (27)

The vector form of the system is the DAE
d

dt
[Ax(t)]+Bx(t) = f(t,x), (28)

where x = (x1,x2,x3)
T ∈ R3

Fig. 9. The electric circuit diagram

A =





L 0 0

0 C 0

0 0 0





B =





0 1 r

0 g −1

0 1 r





f(t,x) =





e(t)−ϕ0(x1)−ϕ(x3)
−h(x2)

ψ(x1−x3)−ϕ(x3)




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Lagrange stability of the model of a radio engineering device
It is easy to verify that λA+B is a regular pencil of index 1.

Let the following conditions be fulfilled:

1) for any a,b ∈ R there exists w ∈R such that

rw = ψ(a−b−w)−ϕ(b+w); (29)

2) for any a,b,w1,w2 ∈R satisfying (29) the condition
ψ ′(a−b−w)+ϕ ′(b+w) 6=−r is fulfilled for any w ∈ conv{w1,w2};

3) there exist R > 0 and functions k(t) ∈ C([0,∞),R), U(v) ∈ C((0,∞),(0,∞))

such that v = Lx2
1+Crx2

2,
+∞
∫

c

dv
U(v) =+∞ and −(gr+ 1)x2

2−x1ϕ0(x1)+

+(x2−x1)ψ(x1−x3)− rx2h(x2)−x2ϕ(x3)+x1e(t)≤ k(t)U(v) for any

(t,x) ∈ [0,∞)×R3 such that
√

x2
1+(1+ r−2)x2

2 ≥ R, (27).

Then by Theorem 2 for any initial moment t0 and any initial currents and
voltage IL(t0), UC(t0), I(t0) satisfying UC(t0)+ rI(t0) = ψ(IL(t0)− I(t0))−
−ϕ(I(t0)) there exists a unique distribution of the currents and voltages in the
circuit Fig. 9 for all t ≥ t0.

The currents and voltages for the obtained distribution are bounded for all

t ≥ t0 (Lagrange stability) if
+∞
∫

t0

k(t)dt < ∞.
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Lagrange stability of the model of a radio engineering device

The particular cases.

ϕ0(y) = α1y
2k−1, ϕ(y) = α2y

2l−1, ψ(y) = α3y
2j−1, h(y) = α4y

2s−1, (30)

αi > 0, k,r,j,s ∈ N;

ϕ0(y) = α1y
2k−1, ϕ(y) = α2 siny, ψ(y) = α3 siny, h(y) = α4 siny, (31)

αi > 0, k ∈ N.

The conditions of Theorem 2 (the aforementioned conditions) are fulfilled for
the nonlinear resistances and conductances of the form (30) if j ≤ k, j ≤ s and α3

is sufficiently small, and for the nonlinear resistances and conductances of the
form (31) if α2+α3 < r.

The existing currents and voltages are bounded (in both cases) if

sup
t∈[0,∞)

|e(t)|< ∞ or
+∞
∫

t0

|e(t)|dt < ∞.

In particular, these requirements are fulfilled for voltages of the form

e(t) = b(t+ a)−n, e(t) = be−at, e(t) = be
− (t−a)2

σ2 , e(t) = bsin(ωt+θ ), (32)

where a > 0, b,σ ,ω ∈ R, n ∈ N, θ ∈ [0,2π ].
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Lagrange stability. The numerical solution
L = 0.5 nH, C = 0.5 pF, r = 2 ohm, g = 0.2 ohm−1, t0 = 0, x0 = (0,0,0)T,
ϕ0(y) = y3, ϕ(y) = y3, h(y) = y3, ψ(y) = y3, e(t) = 100e−t sin(5t)
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Lagrange stability. The numerical solution
L = 0.3 nH, C = 0.5 pF, r = 2.6 ohm, g = 0.2 ohm−1, t0 = 0, x0 = (π/6,0.5,0)T,
ϕ0(y) = y3, ϕ(y) = siny, ψ(y) = siny, h(y) = siny, e(t) = 200sin(0.5t)− 0.2
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Fig. 13. The current IL(t) Fig. 14. The voltage UC(t)
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Lagrange stability. The numerical solution
L = 50 pH, C = 1 pF, r = 0.001 ohm, g = 1 ohm−1, t0 = 0, x0 = (0,0,0)T

ϕ0(y) = y3, ϕ(y) = y3, ψ(y) = y3, h(y) = 0.01y3, e(t) = 2sint
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Fig. 16. The current IL(t) Fig. 17. The voltage UC(t)
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Lagrange instability of the radio engineering device model
Consider the system (25)–(27) with the nonlinear resistances and conductance

ϕ0(y) =−y2, ϕ(y) = y3, ψ(y) = y3, h(y) = y2. (33)

It is assumed that there exists Me = sup
t∈[t0,∞)

|e(t)|<+∞. Choose

Ω =

{

(x1,x2)
T ∈ R2 | x1 > m1,m1 = max

{

1+
√

Me,
3
√

g+ r−1,3CL−1,
√

max
{

3−1(L(rC)−1− r),0
}

}

, x2 <−rx1−x3
1−m2,

m2 = max
{

g− 2CL−1r,0
}

}

.

(34)

Then by Theorem 3 for any initial moment t0 and any initial currents and
voltage IL(t0), UC(t0), I(t0) satisfying UC(t0)+ rI(t0) = ψ(IL(t0)− I(t0))−
−ϕ(I(t0)) and such that (IL(t0),UC(t0))

T ∈ Ω there exists a unique distribution
of the currents and voltages in the circuit Fig. 9 only for t0 ≤ t < T ( [t0,T) is
some finite interval ) and the currents and voltages are unbounded.

It means that there exists a unique solution of the Cauchy problem for the DAE
(28) with the functions (33), e(t) such that sup

t∈[t0,∞)
|e(t)|<+∞, and the initial

condition x(t0) = (IL(t0),UC(t0), I(t0))
T, and this solution has a finite escape

time.
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Lagrange instability. The numerical solution

L=10 pH, C=0.5 pF, r=2 ohm, g=0.2 ohm−1, x0=(2.45,− 20.625125,2.5)T

ϕ0(x1)=−x2
1, ϕ(x3)=x3

3, h(x2)=x2
2, ψ(x1−x3)=(x1−x3)

3, e(t)=2sint, t0=0
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Fig. 19. The current IL(t) Fig. 20. The voltage UC(t) Fig. 21. The current I(t)
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Lagrange instability. The numerical solution

L = 5 pH, C = 0.5 pF, r = 2 ohm, g = 0.5 ohm−1,
ϕ0(x1) =−x2

1, ϕ(x3) = x3
3, h(x2) = x2

2, ψ(x1−x3) = (x1−x3)
3, e(t) = 0,

t0 = 0, x0 = (1.1, − 4.129,1.2)T
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The case of the singular pencil λA+B

The block structure of the DAE operator coefficients [3]

Recall that λA+B is singular if n 6= m or n = m and rk(λA+B)< n.

There exist the direct decompositions of spaces

R
n = Xs+̇Xr = Xs1 +̇Xs2+̇Xr, R

m = Ys+̇Yr = Ys1+̇Ys2 +̇Yr (35)

such that the singular operator pencil λA+B takes the block form
(

λAs+Bs 0
0 λAr+Br

)

,
λAs+Bs : Xs → Ys is a purely singular pencil ,

λAr +Br : Xr → Yr is a regular pencil .
(36)

We introduce the projectors onto subspaces of the decompositions (35):
S : Rn→Xs, F : Rm→Ys, Si : Rn→Xsi , Fi : Rm→Ysi , P : Rn→Xr, Q : Rm→Yr.

As =

(

Agen 0

0 0

)

, Bs =

(

Bgen Bund

Bov 0

)

: Xs1+̇Xs2 → Ys = Ys1 +̇Ys2 , (37)

∃A−1
gen, Agen=F1AS1

∣

∣

Xs1

,Bgen=F1BS1

∣

∣

Xs1

,Bund=F1BS2|Xs2

,Bov =F2BS1|Xs1

If rk(λA+B) = m < n, the corresponding system of equations is underdetermined:

As=(Agen 0), Bs=(Bgen Bund) : Xs1 +̇Xs2 → Ys, Ys = Ys1 , Ys2 = {0}. (38)

If rk(λA+B) = n < m, the corresponding system of equations is overdetermined:

As=

(

Agen

0

)

, Bs=

(

Bgen

Bov

)

: Xs → Ys1 +̇Ys2 ,quadXs = Xs1 , Xs2 = {0}. (39)
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The case of the singular pencil λA+B

It is assumed that λAr +Br is a regular pencil of index 1: (4).

Then there exist the real spectral projectors of Riss type P̃i : Xr → Xi, Q̃i : Yr → Yi,

i = 1,2, which decompose spaces Xr, Yr into direct sums of subspaces

Xr = X1+̇X2, Yr = Y1+̇Y2. (40)

Ar=

(

A1 0

0 0

)

, Br=

(

B1 0

0 B2

)

: X1+̇X2 → Y1+̇Y2. (41)

By Pi : Rn → Xi, Qi : Rm → Yi denote the extensions of the projectors P̃i, Q̃i.

To construct the subspaces Xs, Ys, Xsi , Ysi , i = 1,2, Xr, Yr and the corresponding

projectors it is necessary to examine solutions of (λA+B)x = 0, (λAT+BT)y = 0.

With respect to the decompositions (35), (40) any vector x ∈ Rn can be uniquely

represented as the sum

x = xs1 +xs2 +x1+x2, xsi = Six ∈ Xsi , xi = Pix ∈ Xi, i = 1,2.

The DAE (1) d
dt
[Ax(t)]+Bx(t) = f(t,x) is equivalent to the system
d

dt
(Agenxs1)+Bgenxs1 +Bundxs2 = F1f(t,x), (42)

Bovxs1 −F2f(t,x) = 0, (43)
d

dt
(A1x1)+B1x1 = Q1f(t,x), (44)

Q2f(t,x)−B2x2 = 0. (45)
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The global solvability of the singular DAE

The Cauchy problem (1), (2): d
dt
[Ax(t)]+Bx(t) = f(t,x), x(t0) = x0.

Theorem 4. Let f(t,x) ∈ C([0,∞)×Rn,Rm), ∂
∂x

f(t,x) be continuous on

[0,∞)×Rn and λA+B be a singular pencil with the regular component

λAr +Br of index 1. Suppose

1) ∀t ≥ 0∀xs1 ∈ Xs1 ∀x1 ∈ X1 ∃xs2 ∈ Xs2 ∃u ∈ X2 : (t,xs1 +xs2 +x1+u) ∈
∈ L0 = {(t,x) ∈ [0,∞)×Rn | (F2+Q2)[Bx− f(t,x)] = 0};

2) ∀(t,xs1 +xs2 +x1+ui) ∈ L0, i = 1,2, where ui ∈ X2, the operator function

Φ(u) =
[

∂
∂x

(Q2f(t,xs1 +xs2 +x1+u))−B
]

P2 : X2 → L(X2,Y2) is basis invertible

on conv{u1,u2}.
3) there exist self-adjoint positive operators H1 ∈ L(Xs1), H2 ∈ L(X1) and for

each T > 0 there exists RT > 0 such that

(H1S1x,A
−1
genF1f(t,x))+ (H2P1x,A

−1
1 Q1f(t,x)) ≤ 0 ∀(t,x) ∈ L0 :

0 ≤ t ≤ T, ‖(S1+P1)x‖ ≥ RT.
(46)

Then for every initial point (t0,x0) ∈ L0 there exists a solution x(t) of the

Cauchy problem (1), (2) on [t0,∞), and if rk(λA+B) = n < m, the solution

is unique.
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The Lagrange stability of the singular DAE
Theorem 5. Let f(t,x) ∈ C([0,∞)×Rn,Rm), ∂

∂x
f(t,x) be continuous on

[0,∞)×Rn, λA+B be a singular pencil with the regular component λAr+Br of
index 1 and the conditions 1), 2) of Theorem 4 be fulfilled. Suppose there exist
self-adjoint positive operators H1 ∈ L(Xs1), H2 ∈ L(X1), number R > 0 and
functions U(v)∈C((0,∞),(0,∞)), k(t)∈C([0,∞),R), φs2(t)∈C([0,∞),Xs2 ) such
that (t,S1x+φs2(t)+Px)∈L0 for all t∈ [0,∞), v= 1

2
[(H1S1x,S1x)+(H2P1x,P1x)],

+∞
∫

c

dv
U(v) = ∞ (c>0) and

(

H1S1x,A
−1
genF1[−BS1x−Bφs2(t)+ f(t,x)]

)

+

+
(

H2P1x,A
−1
1 Q1[−BP1x+ f(t,x)]

)

≤ k(t)U(v) ∀(t,x)∈L0 :
0≤t≤T, ‖(S1+P1)x‖≥RT.

Then for every initial point (t0,x0) ∈ L0 there exists a unique solution x(t)
of the Cauchy problem (1), (2) ( d

dt [Ax(t)]+Bx(t) = f(t,x), x(t0) = x0) on [t0,∞),
for which a choice of the function φs2 with the initial value φs2(t0) = S2x0

uniquely defines the component S2x(t) = φs2(t) when rk(λA+B) = m < n.

If, additionally,
+∞
∫

t0

k(t)dt < ∞, sup
t∈[0,∞)

‖φs2(t)‖ < ∞ and ∃C1,C2,M,K > 0 such

that ‖Q2f(t,Sx+P1x)‖≤C1 for all t ∈ [0,∞), ‖Sx+P1x‖ ≤ M, and
‖F2f(t,x)‖≤C2 for all t∈ [0,∞), ‖x‖≤K, then for the initial points (t0,x0) ∈ L0

the equation (1) is Lagrange stable when substituted S2x = φs2(t), if
rk(λA+B) = n < m the component S2x is absent.
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The Lagrange instability of the singular DAE
Theorem 6. Let f(t,x) ∈ C([0,∞)×Rn,Rm), ∂

∂x
f(t,x) be continuous on

[0,∞)×R
n, λA+B be a singular pencil with the regular component λAr+Br of

index 1 and the conditions 1), 2) of Theorem 4 be fulfilled. Let there exist a

region Ω ⊂ Xs1+̇X1 such that (S1+P1)x = 0 6∈ Ω and the component

(S1+P1)x(t) of every existing solution x(t) with the initial point (t0,x0) ∈ L0,

where (S1+P1)x0 ∈ Ω, remains all the time in Ω. Suppose there exist self-adjoint

positive operators H1 ∈ L(Xs1), H2 ∈ L(X1) and functions k(t) ∈ C([0,∞),R),

φs2(t) ∈ C([0,∞),Xs2), U(v) ∈ C((0,∞),(0,∞)) such that

(t,S1x+φs2(t)+Px) ∈ L0 for all t ∈ [0,∞), v = 1
2
[(H1S1x,S1x)+ (H2P1x,P1x)],

+∞
∫

c

dv
U(v)

dv < ∞ (c > 0),
+∞
∫

t0

k(t)dt = ∞ and

(H1S1x,A
−1
genF1[−BS1x−Bφs2(t)+ f(t,x)])+ (H2P1x,A

−1
1 Q1[−BP1x+ f(t,x)])≥

≥ k(t)U(v) ∀(t,x)∈L0 : (S1+P1)x ∈ Ω.

Then for every initial point (t0,x0) ∈ L0, where (S1+P1)x0 ∈ Ω, there

exists a unique solution x(t) of the Cauchy problem (1), (2)

( d
dt [Ax(t)]+Bx(t) = f(t,x), x(t0) = x0), for which a choice of the function φs2 with

the initial value φs2(t0) = S2x0 uniquely defines the component S2x(t) = φs2(t)

when rk(λA+B) = m < n, and this solution has a finite escape time.
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Research of a mathematical model in the incomplete data conditions
To uniquely define the internal state of the quadripole electric circuit it is

necessary to know two input parameters.
In given case, the investigation of a mathematical model in the conditions

of incomplete data is make, because only one input parameter (the current I(t))
is given.

Fig. 25. The electric circuit diagram of the quadripole

An input current I(t) ∈ C([0,∞),R), a nonlinear resistance ϕ(y) ∈ C1(R,R), a
nonlinear conductance h(y) ∈ C1(R,R), linear resistances r1, r2, an inductance L

and a capacitance C are given, r1, r2, L, C > 0.
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Research of a mathematical model in the incomplete data conditions
The model of the circuit Fig. 25 [4] is described by the underdetermined

system of equations with the variables
x1 = IL, x2 = UC, x3 = I1, x4 = I2:

L
dx1

dt
+ r2x1−x2− r1x3 = −ϕ(x1), (47)

C
dx2

dt
−x3−x4 = −h(x2), (48)

x1+x3 = I(t). (49)
The vector form of the system is the DAE

d

dt
[Ax(t)]+Bx(t) = f(t,x), (50)

A =





L 0 0 0

0 C 0 0

0 0 0 0



 , B =





r2 −1 −r1 0

0 0 −1 −1

1 0 1 0



 ,

f(t,x) =







−ϕ(x1)

−h(x2)

I(t)






, x =









x1

x2

x3

x4









∈ R
4.

λA+B — is a singular pencil.
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Research of a mathematical model in the incomplete data conditions

Let there exist number R > 0 and functions k(t) ∈ C([0,∞),R),

U(v) ∈ C((0,∞),(0,∞)) such that v = 1
2
(Lx2

1+Cx2
2),

+∞
∫

c

dv
U(v) = ∞ and for any

t ∈ [0,∞),
√

3x2
1+x2

2 ≥ R the following condition is fulfilled:

−(r2+ r1)x
2
1−x1ϕ(x1)−x2h(x2)+x1x2+ ξ (t)x2+ r1x1I(t)≤ k(t)U(v).

Then by Theorem 5 for any initial values t0 ≥ 0,

x0 = (IL(t0),UC(t0), I1(t0), I2(t0))
T satisfying IL(t0)+ I1(t0) = I(t0) there exists

a unique solution x(t) of the equation (50) on [t0,∞) with the initial condition

x(t0) = x0, where the component S2x(t) = (0,0,0,ξ (t))T, ξ (t) ∈ C([0,∞),R), is

chosen such that ξ (t0) = I1(t0)+ I2(t0).

If, additionally, sup
t∈[0,∞)

|I(t)|< ∞, sup
t∈[0,∞)

|ξ (t)|< ∞ and
+∞
∫

t0

k(t)dt < ∞, the

solution x(t) will be bounded.

The conditions of Theorem 5 are satisfied for the particular case:

ϕ(y) = α1 y2k−1, h(y) = α2 y2r−1, where k, r ∈ N, αi > 0, i = 1,2, y ∈ R, and

sup
t∈[0,∞)

|I(t)|< ∞, sup
t∈[0,∞)

|ξ (t)|< ∞.
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The inverse problem for the two-pole radio engineering filter
Consider the following inverse problem for the two-pole radio engineering filter

(the bipole) shown in Fig. 26. Let us verify that by selecting an input current
I = I(t) and corresponding initial data it is possible to ensure the evolution of a
current I1 within the bipole so that it will be equal to a given function I1 = I1(t),
t0 ≤ t < ∞.

Fig. 26. The electric circuit diagram of the bipole

Here an inductance L, a capacitance C, linear resistances rk (k = 1,4) and
conductivity g are positive real parameters; functions
ϕ1(y), ϕ3(y), h(y) ∈ C1(R,R) characterize nonlinear resistances and conductivity;
I(t), I1(t) ∈ C([0,∞),R) are the given currents.
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The inverse problem for the two-pole radio engineering filter
The model of the circuit Fig. 26 [5] is described by the overdetermined system

of equations with the variables x1 = IL, x2 = UC, x3 = Iϕ1

L
dx1

dt
+(r2+ r3)x1 = r2 I1(t)+ϕ1(x3)−ϕ3(x1), (51)

C
dx2

dt
+ gx2 = I1(t)−h(x2), (52)

x2− r2x1 = r1 I(t)− (r1+ r2)I1(t), (53)
x1+x3 = I(t)−qϕ1(x3). (54)

The vector form of the system is the DAE

d

dt
[Ax(t)]+Bx(t) = f(t,x), (55)

A =









L 0 0

0 C 0

0 0 0

0 0 0









, B =









r2+ r3 0 0

0 g 0

−r2 1 0

1 0 1









, x =





x1

x2

x3



 ,

f(t,x) =









r2 I1(t)+ϕ1(x3)−ϕ3(x1)
I1(t)−h(x2)

r1 I(t)− (r1+ r2)I1(t)
I(t)−qϕ1(x3)









. rk(λA+B) = 3.

λA+B — is a singular pencil.
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The inverse problem for the two-pole radio engineering filter
The particular cases.

ϕ1(y) = α1 y2k−1,ϕ3(y) = α2 y2j−1,h(y) = α3 y2r−1,k,j,r ∈ N,αi > 0, (56)

ϕ1(y) = α1 sin(y),ϕ3(y) = α2 sin(y),h2(y) = α3 sin(y), αk > 0. (57)

By Theorem 5 for any initial values t0 ≥ 0, x0 =
(

IL(t0),UC(t0),Iϕ1
(t0)

)T

satisfying

{

UC(t0)− r2 IL(t0) = r1 I(t0)− (r1+ r2)I1(t0),
IL(t0)+ Iϕ1

(t0) = I(t0)−qϕ1(Iϕ1
(t0))

there exists a unique

solution x(t) of the Cauchy problem for the DAE (55) on [t0,∞) with the initial
condition x(t0) = x0 if:

the nonlinear functions have the form (56), α1 is sufficiently small and
L 6= C(r2+ r3)/g, k ≤ j or L = C(r2+ r3)/g, k ≤ j,r.

the nonlinear functions have the form (57) and α1 < r4.

The solution is bounded (in both cases) if sup
t∈[0,∞)

|I(t)|< ∞ and sup
t∈[0,∞)

|I1(t)|< ∞.

In particular, these requirements are fulfilled for currents of the form
I(t) = b1t

−n1 , I1(t) = b2t
−n2 , I1(t) = b1e

−a1t, I(t) = b2e
−a2t,

I1(t) = b1e
− (t−a1)

2

σ2
1 , I(t) = b2e

− (t−a2)
2

σ2
2 , I1(t) = b1 sin(ω1t+θ1),

I(t) = b2 sin(ω2t+θ2), where nk ∈ N, ak > 0, bk,σk,ωk ∈R, θk ∈ [0,2π ], k= 1,2.
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Thank you for your attention!
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