Spectral Theory, Differential Equations and Probability Johannes Gutenberg Universität Mainz, 4.09-15.09.2016

Homogenization in domains with traps. Part 2
 Spectral properties of domains with "room-and-passage" boundary

Andrii Khrabustovskyi

Institute for Analysis, Karlsruhe Institute of Technology

Joint work with Giuseppe Cardone (University of Sannio, Benevento, Italy)

Outline of the talk:

- Preliminaries
- Results: bounded domain
- Results: fix width strip
- Results: thin strip

Let Ω be a bounded domain in \mathbb{R}^{n}. We perturb it to a family of domains $\left\{\Omega^{\varepsilon} \subset \mathbb{R}^{n}\right\}_{\varepsilon}$, here $\varepsilon>0$ is a small parameter.

Let Ω be a bounded domain in \mathbb{R}^{n}. We perturb it to a family of domains $\left\{\Omega^{\varepsilon} \subset \mathbb{R}^{n}\right\}_{\varepsilon}$, here $\varepsilon>0$ is a small parameter.

It is well-known (see [R. Courant, D. Hilbert, Methoden der mathematischen Physik, 1924]) that under sufficiently regular perturbations of Ω the eigenvalues of $-\Delta$ subject to Neumann or Dirichlet boundary conditions vary continuously.

Let Ω be a bounded domain in \mathbb{R}^{n}. We perturb it to a family of domains $\left\{\Omega^{\varepsilon} \subset \mathbb{R}^{n}\right\}_{\varepsilon}$, here $\varepsilon>0$ is a small parameter.

It is well-known (see [R. Courant, D. Hilbert, Methoden der mathematischen Physik, 1924]) that under sufficiently regular perturbations of Ω the eigenvalues of $-\Delta$ subject to Neumann or Dirichlet boundary conditions vary continuously.

In general, however, this is not true - even if Ω^{ε} differs from Ω only in a ball of the radius $O(\varepsilon)$.

The example below demonstrates this.

Example by R. Courant and D. Hilbert

Let $\varepsilon>0$ be a small parameter. We set:

- $\Omega \subset \mathbb{R}^{2}$ - fixed bounded domain
- $B^{\varepsilon} \cong \varepsilon B, B$ is a fixed bounded domain - room
- $T^{\varepsilon} \cong\left[0, h^{\varepsilon}\right] \times\left(0, d^{\varepsilon}\right)$ - passage
- $\Omega^{\varepsilon}=\Omega \cup\left(T^{\varepsilon} \cup B^{\varepsilon}\right)$ - perturbed domain

Example by R. Courant and D. Hilbert

Let $\varepsilon>0$ be a small parameter. We set:

- $\Omega \subset \mathbb{R}^{2}$ - fixed bounded domain
- $B^{\varepsilon} \cong \varepsilon B, B$ is a fixed bounded domain - room
- $T^{\varepsilon} \cong\left[0, h^{\varepsilon}\right] \times\left(0, d^{\varepsilon}\right)$ - passage
- $\Omega^{\varepsilon}=\Omega \cup\left(T^{\varepsilon} \cup B^{\varepsilon}\right)$ - perturbed domain

We denote by $\lambda_{k}(\Omega)$ and $\lambda_{k}\left(\Omega^{\varepsilon}\right)$ the k-th eigenvalue of the Neumann Laplacians in Ω and Ω^{ε}.

Example by R. Courant and D. Hilbert

Let $\varepsilon>0$ be a small parameter. We set:

- $\Omega \subset \mathbb{R}^{2}$ - fixed bounded domain
- $B^{\varepsilon} \cong \varepsilon B, B$ is a fixed bounded domain - room
- $T^{\varepsilon} \cong\left[0, h^{\varepsilon}\right] \times\left(0, d^{\varepsilon}\right)$ - passage
- $\Omega^{\varepsilon}=\Omega \cup\left(T^{\varepsilon} \cup B^{\varepsilon}\right)$ - perturbed domain

We denote by $\lambda_{k}(\Omega)$ and $\lambda_{k}\left(\Omega^{\varepsilon}\right)$ the k-th eigenvalue of the Neumann Laplacians in Ω and Ω^{ε}. One has $\lambda_{1}(\Omega)=\lambda_{1}\left(\Omega^{\varepsilon}\right)=0, \lambda_{2}(\Omega)>0$

Example by R. Courant and D. Hilbert

Let $\varepsilon>0$ be a small parameter. We set:

- $\Omega \subset \mathbb{R}^{2}$ - fixed bounded domain
- $B^{\varepsilon} \cong \varepsilon B, B$ is a fixed bounded domain - room
- $T^{\varepsilon} \cong\left[0, h^{\varepsilon}\right] \times\left(0, d^{\varepsilon}\right)$ - passage
- $\Omega^{\varepsilon}=\Omega \cup\left(T^{\varepsilon} \cup B^{\varepsilon}\right)$ - perturbed domain

We denote by $\lambda_{k}(\Omega)$ and $\lambda_{k}\left(\Omega^{\varepsilon}\right)$ the k-th eigenvalue of the Neumann Laplacians in Ω and Ω^{ε}. One has $\lambda_{1}(\Omega)=\lambda_{1}\left(\Omega^{\varepsilon}\right)=0, \lambda_{2}(\Omega)>0$, while

$$
\lim _{\varepsilon \rightarrow 0} \lambda_{2}\left(\Omega^{\varepsilon}\right)=0 \text { provided } h^{\varepsilon}=\varepsilon, d^{\varepsilon}=\varepsilon^{\alpha}, \alpha>3
$$

- J.M. Arrieta, J.K. Hale, Q. Han, J. Differ. Equations 91 (1991)
- More general geometry (but the same "sizes")
- Finitely many "room-and-passage"s
- J.M. Arrieta, J.K. Hale, Q. Han, J. Differ. Equations 91 (1991)
- More general geometry (but the same "sizes")
- Finitely many "room-and-passage"s
- $\lim _{\varepsilon \rightarrow 0} \lambda_{k}\left(\Omega^{\varepsilon}\right)=0, k=2, \ldots, M+1$,
- $\lim _{\varepsilon \rightarrow 0} \lambda_{k}\left(\Omega^{\varepsilon}\right)=\lambda_{k-M}(\Omega), k \geq M+2$, where M is the number of attached domains.
- J.M. Arrieta, J.K. Hale, Q. Han, J. Differ. Equations 91 (1991)
- More general geometry (but the same "sizes")
- Finitely many "room-and-passage"s
- $\lim _{\varepsilon \rightarrow 0} \lambda_{k}\left(\Omega^{\varepsilon}\right)=0, k=2, \ldots, M+1$,
- $\lim _{\varepsilon \rightarrow 0} \lambda_{k}\left(\Omega^{\varepsilon}\right)=\lambda_{k-M}(\Omega), k \geq M+2$,
where M is the number of attached domains.
- E. Sanchez-Palencia, Nonhomogeneous media and vibration theory, Springer-Verlag, Berlin-New York, 1980
- The number of attached domains tends to infinity as $\varepsilon \rightarrow 0$
- "Sizes" of attached domains are the same as before
- J.M. Arrieta, J.K. Hale, Q. Han, J. Differ. Equations 91 (1991)
- More general geometry (but the same "sizes")
- Finitely many "room-and-passage"s
- $\lim _{\varepsilon \rightarrow 0} \lambda_{k}\left(\Omega^{\varepsilon}\right)=0, k=2, \ldots, M+1$,
- $\lim _{\varepsilon \rightarrow 0} \lambda_{k}\left(\Omega^{\varepsilon}\right)=\lambda_{k-M}(\Omega), k \geq M+2$,
where M is the number of attached domains.
- E. Sanchez-Palencia, Nonhomogeneous media and vibration theory, Springer-Verlag, Berlin-New York, 1980
- The number of attached domains tends to infinity as $\varepsilon \rightarrow 0$
- "Sizes" of attached domains are the same as before
- $\lambda_{2}\left(\Omega^{\varepsilon}\right) \rightarrow 0$ as $\varepsilon \rightarrow 0$,
- for any $\lambda \in \sigma\left(-\Delta_{\Omega}\right)$ there is $\lambda^{\varepsilon} \in \sigma\left(-\Delta_{\Omega^{\varepsilon}}\right)$ such that $\lim _{\varepsilon \rightarrow 0} \lambda^{\varepsilon}=\lambda$
- J.M. Arrieta, J.K. Hale, Q. Han, J. Differ. Equations 91 (1991)
- More general geometry (but the same "sizes")
- Finitely many "room-and-passage"s
- $\lim _{\varepsilon \rightarrow 0} \lambda_{k}\left(\Omega^{\varepsilon}\right)=0, k=2, \ldots, M+1$,
- $\lim _{\varepsilon \rightarrow 0} \lambda_{k}\left(\Omega^{\varepsilon}\right)=\lambda_{k-M}(\Omega), k \geq M+2$,
where M is the number of attached domains.
- E. Sanchez-Palencia, Nonhomogeneous media and vibration theory, Springer-Verlag, Berlin-New York, 1980
- The number of attached domains tends to infinity as $\varepsilon \rightarrow 0$
- "Sizes" of attached domains are the same as before
- $\lambda_{2}\left(\Omega^{\varepsilon}\right) \rightarrow 0$ as $\varepsilon \rightarrow 0$,
- for any $\lambda \in \sigma\left(-\Delta_{\Omega}\right)$ there is $\lambda^{\varepsilon} \in \sigma\left(-\Delta_{\Omega^{\varepsilon}}\right)$ such that $\lim _{\varepsilon \rightarrow 0} \lambda^{\varepsilon}=\lambda$

Our goal is to extend these results under weaker restrictions on sizes of "rooms" and "passages" and with an additional "mass" inside the "rooms".

Remark 1: General result for the Neumann Laplacian

M. Lobo-Hidalgo, E. Sanchez-Palencia, Comm. PDEs 4 (1979)

Let $\Omega \subset \mathbb{R}^{n}$ be a fixed domain and let $\left\{\Omega^{\varepsilon} \subset \mathbb{R}^{n}\right\}_{\varepsilon}$ be a family of domains satisfying some mild regularity assumptions and

$$
\Omega \subset \Omega^{\varepsilon}, \quad\left|\Omega^{\varepsilon} \backslash \Omega\right| \rightarrow 0 \text { as } \varepsilon \rightarrow 0,
$$

where $|\cdot|$ stays for the Lebesque measure in \mathbb{R}^{n}.

Remark 1: General result for the Neumann Laplacian

M. Lobo-Hidalgo, E. Sanchez-Palencia, Comm. PDEs 4 (1979)

Let $\Omega \subset \mathbb{R}^{n}$ be a fixed domain and let $\left\{\Omega^{\varepsilon} \subset \mathbb{R}^{n}\right\}_{\varepsilon}$ be a family of domains satisfying some mild regularity assumptions and

$$
\Omega \subset \Omega^{\varepsilon}, \quad\left|\Omega^{\varepsilon} \backslash \Omega\right| \rightarrow 0 \text { as } \varepsilon \rightarrow 0,
$$

where $|\cdot|$ stays for the Lebesque measure in \mathbb{R}^{n}. Then

$$
\forall \lambda \in \sigma\left(-\Delta_{\Omega}\right) \exists \lambda^{\varepsilon} \in \sigma\left(-\Delta_{\Omega^{\varepsilon}}\right): \lim _{\varepsilon \rightarrow 0} \lambda^{\varepsilon}=\lambda .
$$

Remark 1: General result for the Neumann Laplacian

M. Lobo-Hidalgo, E. Sanchez-Palencia, Comm. PDEs 4 (1979)

Let $\Omega \subset \mathbb{R}^{n}$ be a fixed domain and let $\left\{\Omega^{\varepsilon} \subset \mathbb{R}^{n}\right\}_{\varepsilon}$ be a family of domains satisfying some mild regularity assumptions and

$$
\Omega \subset \Omega^{\varepsilon}, \quad\left|\Omega^{\varepsilon} \backslash \Omega\right| \rightarrow 0 \text { as } \varepsilon \rightarrow 0,
$$

where $|\cdot|$ stays for the Lebesque measure in \mathbb{R}^{n}. Then

$$
\forall \lambda \in \sigma\left(-\Delta_{\Omega}\right) \exists \lambda^{\varepsilon} \in \sigma\left(-\Delta_{\Omega^{\varepsilon}}\right): \lim _{\varepsilon \rightarrow 0} \lambda^{\varepsilon}=\lambda .
$$

However, it may happen that (\star) holds, but

$$
\exists \lambda^{\varepsilon} \in \sigma\left(-\Delta_{\Omega^{\varepsilon}}\right), \lambda^{\varepsilon} \rightarrow \lambda \text { as } \varepsilon \rightarrow 0 \text { and } \lambda \notin \sigma\left(-\Delta_{\Omega}\right)
$$

Examples of perturbations for which ($\star \star$) occurs

- Domains with attached "room-and-passage"s

Examples of perturbations for which ($\star \star$) occurs

- Domains with attached "room-and-passage"s
- Dumbbell-shaped domains

In a simplest case they are defined as follows: let Ω be a union of two disjoint domains $\Omega_{j}, j=1,2$ and $\Omega^{\varepsilon}=\Omega \cup T^{\varepsilon}$, where T^{ε} is a narrow channel connecting Ω_{1} and Ω_{2} and approaching as $\varepsilon \rightarrow 0$ an 1 -dimensional line segment of the length h.

Examples of perturbations for which ($\star \star$) occurs

- Domains with attached "room-and-passage"s
- Dumbbell-shaped domains

In a simplest case they are defined as follows: let Ω be a union of two disjoint domains $\Omega_{j}, j=1,2$ and $\Omega^{\varepsilon}=\Omega \cup T^{\varepsilon}$, where T^{ε} is a narrow channel connecting Ω_{1} and Ω_{2} and approaching as $\varepsilon \rightarrow 0$ an 1 -dimensional line segment of the length h.
One can prove that if $\sigma\left(-\Delta_{\Omega^{\varepsilon}}\right) \ni \lambda^{\varepsilon} \rightarrow \lambda$ as $\varepsilon \rightarrow 0$ then either $\lambda \in \sigma\left(-\Delta_{\Omega_{1}}\right) \cup \sigma\left(-\Delta_{\Omega_{2}}\right)$ or $\lambda=\left(\frac{\pi k}{h}\right)^{2}$ for some $k \in \mathbb{N}$.

Examples of perturbations for which ($\star \star$) occurs

- Domains with attached "room-and-passage"s
- Dumbbell-shaped domains

In a simplest case they are defined as follows: let Ω be a union of two disjoint domains $\Omega_{j}, j=1,2$ and $\Omega^{\varepsilon}=\Omega \cup T^{\varepsilon}$, where T^{ε} is a narrow channel connecting Ω_{1} and Ω_{2} and approaching as $\varepsilon \rightarrow 0$ an 1 -dimensional line segment of the length h.
One can prove that if $\sigma\left(-\Delta_{\Omega^{\varepsilon}}\right) \ni \lambda^{\varepsilon} \rightarrow \lambda$ as $\varepsilon \rightarrow 0$ then either $\lambda \in \sigma\left(-\Delta_{\Omega_{1}}\right) \cup \sigma\left(-\Delta_{\Omega_{2}}\right)$ or $\lambda=\left(\frac{\pi k}{h}\right)^{2}$ for some $k \in \mathbb{N}$.

- S. Jimвo, J. Differ. Equations 77 (1989)
- R. Hempel, L. Seco, B. Simon, J. Funct. Anal. 102 (1991)
- S. Jimbo, Y. Morita, Comm. Part. Differ. Equations 17 (1992)
- C. Anné, Proc. Amer. Math. Soc. 123 (1995)
- J.M. Arrieta, Trans. Amer. Math. Soc. 347 (1995)

Remark 2:

Domains with "room-and-passage"-like geometry are widely used in order to construct examples illustrating various phenomena in Sobolev spaces theory and in spectral theory.

Remark 2:

Domains with "room-and-passage"-like geometry are widely used in order to construct examples illustrating various phenomena in Sobolev spaces theory and in spectral theory. For example:

- Construction of domains for which the embedding $i_{\Omega}: H^{1}(\Omega) \hookrightarrow L_{2}(\Omega)$ is not compact. [L.E. Fraenkel, Proc. London Math. Soc. 39 (1979)]

Remark 2:

Domains with "room-and-passage"-like geometry are widely used in order to construct examples illustrating various phenomena in Sobolev spaces theory and in spectral theory. For example:

- Construction of domains for which the embedding $i_{\Omega}: H^{1}(\Omega) \hookrightarrow L_{2}(\Omega)$ is not compact. [L.E. Fraenkel, Proc. London Math. Soc. 39 (1979)]
- Construction of domains with predefined essential spectrum of the corresponding Neumann Laplacian
[R. Hempel, L. Seco, B. Simon, J. Funct. Anal. 102 (1991)]

Remark 2:

Domains with "room-and-passage"-like geometry are widely used in order to construct examples illustrating various phenomena in Sobolev spaces theory and in spectral theory. For example:

- Construction of domains for which the embedding $i_{\Omega}: H^{1}(\Omega) \hookrightarrow L_{2}(\Omega)$ is not compact. [L.E. Fraenkel, Proc. London Math. Soc. 39 (1979)]
- Construction of domains with predefined essential spectrum of the corresponding Neumann Laplacian
[R. Hempel, L. Seco, B. Simon, J. Funct. Anal. 102 (1991)]

Remark 2:

Domains with "room-and-passage"-like geometry are widely used in order to construct examples illustrating various phenomena in Sobolev spaces theory and in spectral theory. For example:

- Construction of domains for which the embedding $i_{\Omega}: H^{1}(\Omega) \hookrightarrow L_{2}(\Omega)$ is not compact.
[L.E. Fraenkel, Proc. London Math. Soc. 39 (1979)]
- Construction of domains with predefined essential spectrum of the corresponding Neumann Laplacian
[R. Hempel, L. Seco, B. Simon, J. Funct. Anal. 102 (1991)]

More details: [V. Maz'ya, Sobolev spaces with applications to elliptic partial differential equations, Springer, 2011].

Remark 3: What about Dirichlet Laplacian?

One can also study the behaviour of the spectrum of the Dirichlet Laplacian under a perturbation of the boundary of a domain. In this case the continuity of eigenvalues holds for rather wide set of perturbations.

Remark 3: What about Dirichlet Laplacian?

One can also study the behaviour of the spectrum of the Dirichlet Laplacian under a perturbation of the boundary of a domain. In this case the continuity of eigenvalues holds for rather wide set of perturbations. For example, if Ω^{ε} converges metrically to Ω, i.e.
i. for every compact set $F \subset \Omega$ there is $\varepsilon_{0}>0$ such that $F \subset \Omega^{\varepsilon}$ provided $\varepsilon<\varepsilon_{0}$,
ii. for every open set $O \supset \bar{\Omega}$ there is $\varepsilon_{0}>0$ such that $\Omega^{\varepsilon} \subset O$ provided $\varepsilon<\varepsilon_{0}$
(plus some mild regularity assumptions on Ω^{ε} and Ω), then the k-th eigenvalue of the Dirichlet Laplacian in Ω^{ε} converges to the k-th eigenvalue of the Dirichlet Laplacian in Ω.

Remark 3: What about Dirichlet Laplacian?

One can also study the behaviour of the spectrum of the Dirichlet Laplacian under a perturbation of the boundary of a domain. In this case the continuity of eigenvalues holds for rather wide set of perturbations. For example, if Ω^{ε} converges metrically to Ω, i.e.
i. for every compact set $F \subset \Omega$ there is $\varepsilon_{0}>0$ such that $F \subset \Omega^{\varepsilon}$ provided $\varepsilon<\varepsilon_{0}$,
ii. for every open set $O \supset \bar{\Omega}$ there is $\varepsilon_{0}>0$ such that $\Omega^{\varepsilon} \subset O$ provided $\varepsilon<\varepsilon_{0}$
(plus some mild regularity assumptions on Ω^{ε} and Ω), then the k-th eigenvalue of the Dirichlet Laplacian in Ω^{ε} converges to the k-th eigenvalue of the Dirichlet Laplacian in Ω.

- I. Babuška, R. Vyborny, Czech. Math. J. 15 (1965)
- J. Rauch, M. Taylor, J. Funct. Anal. 18 (1975)

- $\Omega \subset \mathbb{R}^{n}$ - bounded domain, Γ - flat part of $\partial \Omega$
- $B_{i}^{\varepsilon} \cong \varepsilon B$, where $B \subset \mathbb{R}^{n}$ - rooms
- $T_{i}^{\varepsilon} \cong d^{\varepsilon} D \times\left[0, h^{\varepsilon}\right]$, where $D \subset \mathbb{R}^{n-1}, d^{\varepsilon}, h^{\varepsilon}>0$ - passages

$$
\Omega^{\varepsilon}=\Omega \cup\left(\bigcup_{i}\left(T_{i}^{\varepsilon} \cup B_{i}^{\varepsilon}\right)\right)
$$

The main object of our interest is the following operator:

$$
\mathcal{A}^{\varepsilon}=-\frac{1}{\rho^{\varepsilon}} \Delta_{\Omega^{\varepsilon}}
$$

acting in $L_{2}\left(\Omega^{\varepsilon}, \rho^{\varepsilon} d x\right)$. Here $-\Delta_{\Omega^{\varepsilon}}$ is the Neumann Laplacian in Ω^{ε}, the function ρ^{ε} (mass density) is defined as follows:

$$
\rho^{\varepsilon}(x)= \begin{cases}\varrho^{\varepsilon}, & x \in \bigcup_{i} B_{i}^{\varepsilon} \quad \text { (the union of the rooms) }, \\ 1, & x \in \Omega \cup\left(\bigcup_{i} T_{i}^{\varepsilon}\right) .\end{cases}
$$

The main object of our interest is the following operator:

$$
\mathcal{A}^{\varepsilon}=-\frac{1}{\rho^{\varepsilon}} \Delta_{\Omega^{\varepsilon}}
$$

acting in $L_{2}\left(\Omega^{\varepsilon}, \rho^{\varepsilon} d x\right)$. Here $-\Delta_{\Omega^{\varepsilon}}$ is the Neumann Laplacian in Ω^{ε}, the function ρ^{ε} (mass density) is defined as follows:

$$
\rho^{\varepsilon}(x)= \begin{cases}\varrho^{\varepsilon}, & x \in \bigcup_{i} B_{i}^{\varepsilon} \quad \text { (the union of the rooms), } \\ 1, & x \in \Omega \cup\left(\bigcup_{i} T_{i}^{\varepsilon}\right) .\end{cases}
$$

Our goal

To describe the behaviour of $\sigma\left(\mathcal{A}^{\varepsilon}\right)$ as $\varepsilon \rightarrow 0$.
(i) $h^{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$
(ii) $\lim _{\varepsilon \rightarrow 0} \varepsilon \ln d^{\varepsilon}=0($ for $n=2)$ or $\lim _{\varepsilon \rightarrow 0} \varepsilon^{n-1} /\left(d^{\varepsilon}\right)^{n-2}=0($ for $n>2)$
(iii) the following limits exist:

$$
\lim _{\varepsilon \rightarrow 0} \frac{\left(d^{\varepsilon}\right)^{n-1}|D|}{\varrho^{\varepsilon} h^{\varepsilon} \varepsilon^{n}|B|}=: q \in[0, \infty], \quad \lim _{\varepsilon \rightarrow 0} \varrho^{\varepsilon} \varepsilon|B|=: r \in[0, \infty) .
$$

(i) $h^{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$
(ii) $\lim _{\varepsilon \rightarrow 0} \varepsilon \ln d^{\varepsilon}=0($ for $n=2)$ or $\lim _{\varepsilon \rightarrow 0} \varepsilon^{n-1} /\left(d^{\varepsilon}\right)^{n-2}=0($ for $n>2)$
(iii) the following limits exist:

$$
\lim _{\varepsilon \rightarrow 0} \frac{\left(d^{\varepsilon}\right)^{n-1}|D|}{\varrho^{\varepsilon} h^{\varepsilon} \varepsilon^{n}|B|}=: q \in[0, \infty], \quad \lim _{\varepsilon \rightarrow 0} \varrho^{\varepsilon} \varepsilon|B|=: r \in[0, \infty)
$$

Remark 1

The finiteness of r implies the uniform (with respect to ε) boundedness of the total mass m_{B}^{ε} of the "rooms":

$$
m_{B}^{\varepsilon}:=\int_{\bigcup_{i}^{\varepsilon}} \rho^{\varepsilon} d x=\varrho^{\varepsilon} \sum_{i}\left|B_{i}^{\varepsilon}\right|=\varrho^{\varepsilon} \varepsilon|B| \sum_{i} \varepsilon^{n-1} \sim r|\Gamma|
$$

(i) $h^{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$
(ii) $\lim _{\varepsilon \rightarrow 0} \varepsilon \ln d^{\varepsilon}=0($ for $n=2)$ or $\lim _{\varepsilon \rightarrow 0} \varepsilon^{n-1} /\left(d^{\varepsilon}\right)^{n-2}=0($ for $n>2)$
(iii) the following limits exist:

$$
\lim _{\varepsilon \rightarrow 0} \frac{\left(d^{\varepsilon}\right)^{n-1}|D|}{\varrho^{\varepsilon} h^{\varepsilon} \varepsilon^{n}|B|}=: q \in[0, \infty], \quad \lim _{\varepsilon \rightarrow 0} \varrho^{\varepsilon} \varepsilon|B|=: r \in[0, \infty) .
$$

Remark 1

The finiteness of r implies the uniform (with respect to ε) boundedness of the total mass m_{B}^{ε} of the "rooms":

$$
m_{B}^{\varepsilon}:=\int_{\bigcup_{i}^{\varepsilon}} \rho^{\varepsilon} d x=\varrho^{\varepsilon} \sum_{i}\left|B_{i}^{\varepsilon}\right|=\varrho^{\varepsilon} \varepsilon|B| \sum_{i} \varepsilon^{n-1} \sim r|\Gamma|
$$

Remark 2

In the case $\varrho^{\varepsilon}=1$ (i.e. $\mathcal{A}^{\varepsilon}=-\Delta_{\Omega^{\varepsilon}}$) one has $r=0$.

Let $r>0$. By \mathcal{H} we denote the Hilbert space of functions from $L_{2}(\Omega) \times L_{2}(\Gamma)$ endowed with the scalar product

$$
(U, V)_{\mathcal{H}}=\int_{\Omega} u_{1}(x) \overline{v_{1}(x)} \mathrm{d} x+r \int_{\Gamma} u_{2}(x) \overline{v_{2}(x)} \mathrm{d} s
$$

Let $r>0$. By \mathcal{H} we denote the Hilbert space of functions from $L_{2}(\Omega) \times L_{2}(\Gamma)$ endowed with the scalar product

$$
(U, V)_{\mathcal{H}}=\int_{\Omega} u_{1}(x) \overline{v_{1}(x)} \mathrm{d} x+r \int_{\Gamma} u_{2}(x) \overline{v_{2}(x)} \mathrm{d} s
$$

By \mathfrak{a}^{0} we denote the following sesquilinear form in \mathcal{H} :

$$
\mathfrak{a}^{0}[U, V]:=\int_{\Omega} \nabla u_{1} \cdot \nabla \overline{v_{1}} \mathrm{~d} x+\operatorname{qr} \int_{\Gamma}\left(u_{1}-u_{2}\right)\left(\overline{v_{1}-v_{2}}\right) \mathrm{d} s
$$

with $\operatorname{dom}\left(\mathfrak{a}^{0}\right)=H^{1}(\Omega) \times L_{2}(\Gamma)$.

Let $r>0$. By \mathcal{H} we denote the Hilbert space of functions from $L_{2}(\Omega) \times L_{2}(\Gamma)$ endowed with the scalar product

$$
(U, V)_{\mathcal{H}}=\int_{\Omega} u_{1}(x) \overline{v_{1}(x)} \mathrm{d} x+r \int_{\Gamma} u_{2}(x) \overline{v_{2}(x)} \mathrm{d} s
$$

By a^{0} we denote the following sesquilinear form in \mathcal{H} :

$$
\mathfrak{a}^{0}[U, V]:=\int_{\Omega} \nabla u_{1} \cdot \nabla \overline{v_{1}} \mathrm{~d} x+\operatorname{qr} \int_{\Gamma}\left(u_{1}-u_{2}\right)\left(\overline{v_{1}-v_{2}}\right) \mathrm{d} s
$$

with $\operatorname{dom}\left(\mathfrak{a}^{0}\right)=H^{1}(\Omega) \times L_{2}(\Gamma)$.
By \mathcal{A}^{0} we denote the self-adjoint operator acting in \mathcal{H} being associated with this form.

Formally, the eigenvalue problem

$$
\mathcal{A}^{0} U=\lambda U,
$$

where $U=\left(u_{1}, u_{2}\right)$, can be written as follows:

$$
\begin{cases}-\Delta u_{1}=\lambda u_{1} & \text { in } \Omega, \\ \frac{\partial u_{1}}{\partial n}+\operatorname{qr}\left(u_{1}-u_{2}\right)=0 & \text { on } \Gamma, \\ q\left(u_{2}-u_{1}\right)=\lambda u_{2} & \text { on } \Gamma, \\ \frac{\partial u_{1}}{\partial n}=0 & \text { on } \partial \Omega \backslash \Gamma,\end{cases}
$$

where n is the outward-pointing unit normal to $\partial \Omega$.

Formally, the eigenvalue problem

$$
\mathcal{A}^{0} U=\lambda U,
$$

where $U=\left(u_{1}, u_{2}\right)$, can be written as follows:

$$
\begin{cases}-\Delta u_{1}=\lambda u_{1} & \text { in } \Omega, \\ \frac{\partial u_{1}}{\partial n}+\operatorname{qr}\left(u_{1}-u_{2}\right)=0 & \text { on } \Gamma, \\ q\left(u_{2}-u_{1}\right)=\lambda u_{2} & \text { on } \Gamma, \\ \frac{\partial u_{1}}{\partial n}=0 & \text { on } \partial \Omega \backslash \Gamma,\end{cases}
$$

where n is the outward-pointing unit normal to $\partial \Omega$.
Equivalently,

$$
\left\{\begin{array}{ll}
-\Delta u_{1}=\lambda u_{1} & \text { in } \Omega, \\
\frac{\partial u_{1}}{\partial n}=\frac{q r \lambda}{q-\lambda} u_{1} & \text { on } \Gamma, \\
\frac{\partial u_{1}}{\partial n}=0 & \text { on } \partial \Omega \backslash \Gamma,
\end{array} \quad u_{2}=\frac{q}{q-\lambda} u_{1}\right.
$$

Lemma

One has

$$
\begin{gathered}
\sigma_{\mathrm{disc}}\left(\mathcal{A}^{0}\right)=\left\{\lambda_{k}^{-}, k=1,2,3 \ldots\right\} \cup\left\{\lambda_{k}^{+}, k=1,2,3 \ldots\right\}, \\
\sigma_{\text {ess }}\left(\mathcal{A}^{0}\right)=\{q\},
\end{gathered}
$$

where

$0=\lambda_{1}^{-} \leq \lambda_{2}^{-} \leq \ldots \leq \lambda_{k}^{-} \leq \ldots \underset{k \rightarrow \infty}{\rightarrow} q<\lambda_{1}^{+} \leq \lambda_{2}^{+} \leq \ldots \leq \lambda_{k}^{+} \leq \ldots \underset{k \rightarrow \infty}{\rightarrow} \infty$.

Theorem 1

Let $q<\infty, r>0$. Let $/ \subset \mathbb{R}$ be an arbitrary compact interval.
Then the set $\sigma\left(\mathcal{A}^{\varepsilon}\right) \cap /$ converges in the Hausdorff sense as $\varepsilon \rightarrow 0$ to the set $\sigma\left(\mathcal{A}^{0}\right) \cap I$, i.e.

$$
\operatorname{dist}_{H}\left(\sigma\left(\mathcal{A}^{\varepsilon}\right) \cap I, \sigma\left(\mathcal{A}^{0}\right) \cap I\right) \rightarrow 0 \text { as } \varepsilon \rightarrow 0 .
$$

where $\operatorname{dist}_{H}(X, Y):=\max \left\{\sup _{x \in X} \inf _{y \in Y}|x-y| ; \sup _{y \in Y} \inf _{x \in X}|y-x|\right\}$.

Theorem 1

Let $q<\infty, r>0$. Let $/ \subset \mathbb{R}$ be an arbitrary compact interval.
Then the set $\sigma\left(\mathcal{A}^{\varepsilon}\right) \cap /$ converges in the Hausdorff sense as $\varepsilon \rightarrow 0$ to the set $\sigma\left(\mathcal{A}^{0}\right) \cap I$, i.e.

$$
\operatorname{dist}_{H}\left(\sigma\left(\mathcal{A}^{\varepsilon}\right) \cap I, \sigma\left(\mathcal{A}^{0}\right) \cap I\right) \rightarrow 0 \text { as } \varepsilon \rightarrow 0 .
$$

where $\operatorname{dist}_{H}(X, Y):=\max \left\{\sup _{x \in X} \inf _{y \in Y}|x-y| ; \sup _{y \in Y} \inf _{x \in X}|y-x|\right\}$.

Remark

The claim of the theorem is equivalent to the fulfilment of the conditions
(i) if $\lambda^{\varepsilon} \in \sigma\left(\mathcal{H}^{\varepsilon}\right)$ and $\lim _{\varepsilon=\varepsilon_{k} \rightarrow 0} \lambda^{\varepsilon}=\lambda$ then $\lambda \in \sigma\left(\mathcal{A}^{0}\right)$,
(ii) for any $\lambda \in \sigma\left(\mathcal{A}^{0}\right)$ there is $\lambda^{\varepsilon} \in \sigma\left(\mathcal{A}^{\varepsilon}\right)$ such that $\lim _{\varepsilon \rightarrow 0} \lambda^{\varepsilon}=\lambda$.

Theorem 2

Let $q<\infty, r=0$. Let $I \subset \mathbb{R}$ be an arbitrary compact interval.
Then the set $\sigma\left(\mathcal{A}^{\varepsilon}\right) \cap /$ converges in the Hausdorff sense as $\varepsilon \rightarrow 0$ to the set

$$
\left(\sigma\left(-\Delta_{\Omega}\right) \cup\{q\}\right) \cap I
$$

By $\widetilde{\mathfrak{a}}^{0}$ we denote the following sesquilinear form in the space \mathcal{H} (recall: $\mathcal{H}=L_{2}(\Omega) \times L_{2}(\Gamma, r d s)$):

$$
\overline{\mathfrak{a}}^{0}[U, V]:=\int_{\Omega} \nabla u_{1} \cdot \nabla \overline{V_{1}} \mathrm{~d} x
$$

with $\widetilde{\mathfrak{a}}^{0}=\left\{U \in H^{1}(\Omega) \times L_{2}(\Gamma): u_{1} \mid \Gamma=u_{2}\right\}$. By $\widetilde{\mathcal{A}}^{0}$ we denote the self-adjoint operator acting in \mathcal{H} being associated with this form.

By $\widetilde{\mathfrak{a}}^{0}$ we denote the following sesquilinear form in the space \mathcal{H} (recall: $\mathcal{H}=L_{2}(\Omega) \times L_{2}(\Gamma, r d s)$):

$$
\widetilde{\mathfrak{a}}^{0}[U, V]:=\int_{\Omega} \nabla u_{1} \cdot \nabla \overline{V_{1}} \mathrm{~d} x
$$

with $\widetilde{\mathfrak{a}}^{0}=\left\{U \in H^{1}(\Omega) \times L_{2}(\Gamma): u_{1} \mid \Gamma=u_{2}\right\}$. By $\widetilde{\mathcal{A}}^{0}$ we denote the self-adjoint operator acting in \mathcal{H} being associated with this form.

Formally, the eigenvalue problem $\widetilde{\mathcal{A}}^{0} U=\lambda U$, where $U=\left(u_{1}, u_{2}\right)$, can be written as follows:

$$
\begin{cases}-\Delta u=\lambda u & \text { in } \Omega, \\ \frac{\partial u}{\partial n}=\lambda r u & \text { on } \Gamma, \\ \frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega \backslash \Gamma .\end{cases}
$$

Theorem 3

Let $q=\infty, r>0$. Let $l \subset \mathbb{R}$ be an arbitrary compact interval.
Then the set $\sigma\left(\mathcal{A}^{\varepsilon}\right) \cap /$ converges in the Hausdorff sense as $\varepsilon \rightarrow 0$ to the set

$$
\sigma\left(\widetilde{\mathcal{A}}^{0}\right) \cap I .
$$

Theorem 3

Let $q=\infty, r>0$. Let $I \subset \mathbb{R}$ be an arbitrary compact interval.
Then the set $\sigma\left(\mathcal{A}^{\varepsilon}\right) \cap /$ converges in the Hausdorff sense as $\varepsilon \rightarrow 0$ to the set

$$
\sigma\left(\widetilde{\mathcal{A}}^{0}\right) \cap I .
$$

Theorem 4

Let $q=\infty, r=0$. Let $I \subset \mathbb{R}$ be an arbitrary compact interval.
Then the set $\sigma\left(\mathcal{A}^{\varepsilon}\right) \cap /$ converges in the Hausdorff sense as $\varepsilon \rightarrow 0$ to the set

$$
\sigma\left(-\Delta_{\Omega}\right) \cap I .
$$

$$
\Omega=\mathbb{R} \times(0, d), \quad \Gamma=\left\{x \in \mathbb{R}^{2}: x_{2}=d\right\}, \quad d>0
$$

d

$$
\Omega^{\varepsilon}=\Omega \cup\left(\bigcup_{i \in \mathbb{Z}}\left(T_{i}^{\varepsilon} \cup B_{i}^{\varepsilon}\right)\right)
$$

$$
\lim _{\varepsilon \rightarrow 0} \frac{\left(d^{\varepsilon}\right)^{n-1}|D|}{h^{\varepsilon} \varepsilon^{n}|B|}=: q, \quad \lim _{\varepsilon \rightarrow 0} \varrho^{\varepsilon} \varepsilon|B|=: r .
$$

We focus on the case $r, q>0$.

$$
\lim _{\varepsilon \rightarrow 0} \frac{\left(d^{\varepsilon}\right)^{n-1}|D|}{h^{\varepsilon} \varepsilon^{n}|B|}=: q, \quad \lim _{\varepsilon \rightarrow 0} \varrho^{\varepsilon} \varepsilon|B|=: r .
$$

We focus on the case $r, q>0$. In the same way as in the case of compact Ω we introduce the operators $\mathcal{A}^{\varepsilon}$ and \mathcal{H}^{0}.

$$
\lim _{\varepsilon \rightarrow 0} \frac{\left(d^{\varepsilon}\right)^{n-1}|D|}{h^{\varepsilon} \varepsilon^{n}|B|}=: q, \quad \lim _{\varepsilon \rightarrow 0} \varrho^{\varepsilon} \varepsilon|B|=: r
$$

We focus on the case $r, q>0$. In the same way as in the case of compact Ω we introduce the operators $\mathcal{A}^{\varepsilon}$ and \mathcal{H}^{0}.

Theorem

Let $I \subset \mathbb{R}$ be an arbitrary compact interval. Then the set $\sigma\left(\mathcal{A}^{\varepsilon}\right) \cap I$ converges in the Hausdorff sense as $\varepsilon \rightarrow 0$ to the set $\sigma\left(\mathcal{H}^{0}\right) \cap I$.

$$
\lim _{\varepsilon \rightarrow 0} \frac{\left(d^{\varepsilon}\right)^{n-1}|D|}{h^{\varepsilon} \varepsilon^{n}|B|}=: q, \quad \lim _{\varepsilon \rightarrow 0} \varrho^{\varepsilon} \varepsilon|B|=: r
$$

We focus on the case $r, q>0$. In the same way as in the case of compact Ω we introduce the operators $\mathcal{A}^{\varepsilon}$ and \mathcal{H}^{0}.

Theorem

Let $I \subset \mathbb{R}$ be an arbitrary compact interval. Then the set $\sigma\left(\mathcal{A}^{\varepsilon}\right) \cap I$ converges in the Hausdorff sense as $\varepsilon \rightarrow 0$ to the set $\sigma\left(\mathcal{A}^{0}\right) \cap I$.
The spectrum of the operator \mathcal{A}^{0} has the following form:

$$
\sigma\left(\mathcal{A}^{0}\right)= \begin{cases}{[0, q] \cup[\widehat{q}, \infty),} & q<\left(\frac{\pi}{2 d}\right)^{2} \\ {[0, \infty),} & q \geq\left(\frac{\pi}{2 d}\right)^{2} .\end{cases}
$$

Here \widehat{q} is some number satisfying $q<\widehat{q}<\left(\frac{\pi}{2 d}\right)^{2}$.

- $\Pi^{\varepsilon} \cong \mathbb{R} \times(0, \varepsilon) \subset \mathbb{R}^{2}$ - straight strip of the width ε
- $B_{i}^{\varepsilon} \cong \varepsilon B, B \subset \mathbb{R}^{2}$ - rooms $(i \in \mathbb{Z})$
- $T_{i}^{\varepsilon} \cong\left(0, d^{\varepsilon}\right) \times\left[0, h^{\varepsilon}\right], d^{\varepsilon}, h^{\varepsilon}>0$ - passages $(i \in \mathbb{Z})$

$$
\Omega^{\varepsilon}=\Pi^{\varepsilon} \cup\left(\bigcup_{i \in \mathbb{Z}}\left(T_{i}^{\varepsilon} \cup B_{i}^{\varepsilon}\right)\right)
$$

- $\Pi^{\varepsilon} \cong \mathbb{R} \times(0, \varepsilon) \subset \mathbb{R}^{2}$ - straight strip of the width ε
- $B_{i}^{\varepsilon} \cong \varepsilon B, B \subset \mathbb{R}^{2}$ - rooms $(i \in \mathbb{Z})$
- $T_{i}^{\varepsilon} \cong\left(0, d^{\varepsilon}\right) \times\left[0, h^{\varepsilon}\right], d^{\varepsilon}, h^{\varepsilon}>0$ - passages $(i \in \mathbb{Z})$

$$
\Omega^{\varepsilon}=\Pi^{\varepsilon} \cup\left(\bigcup_{i \in \mathbb{Z}}\left(T_{i}^{\varepsilon} \cup B_{i}^{\varepsilon}\right)\right)
$$

We denote by $\mathcal{A}^{\varepsilon}=-\Delta_{\Omega^{\varepsilon}}$ the Neumann Laplacian in Ω^{ε}.

We suppose that the following conditions hold as $\varepsilon \rightarrow 0$:
(i) $d^{\varepsilon}=o(\varepsilon)$
(ii) $\varepsilon^{2} \ln d^{\varepsilon} \rightarrow 0$
(iii) $h^{\varepsilon} \rightarrow 0$
(iv) the following limit exists and is positive:

$$
\lim _{\varepsilon \rightarrow 0} \frac{d^{\varepsilon}}{h^{\varepsilon} \varepsilon^{2}|B|}=: q \in(0, \infty)
$$

We suppose that the following conditions hold as $\varepsilon \rightarrow 0$:
(i) $d^{\varepsilon}=o(\varepsilon)$
(ii) $\varepsilon^{2} \ln d^{\varepsilon} \rightarrow 0$
(iii) $h^{\varepsilon} \rightarrow 0$
(iv) the following limit exists and is positive:

$$
\lim _{\varepsilon \rightarrow 0} \frac{d^{\varepsilon}}{h^{\varepsilon} \varepsilon^{2}|B|}=: q \in(0, \infty) .
$$

Also, we denote $r:=|B|$.

By \mathcal{H} we denote the Hilbert space of functions from $L_{2}(\mathbb{R}) \times L_{2}(\mathbb{R})$ endowed with the scalar product

$$
(U, V)_{\mathcal{H}}=\int_{\mathbb{R}} u_{1}(x) \overline{v_{1}(x)} \mathrm{d} x+r \int_{\mathbb{R}} u_{2}(x) \overline{v_{2}(x)} \mathrm{d} x
$$

By \mathcal{H} we denote the Hilbert space of functions from $L_{2}(\mathbb{R}) \times L_{2}(\mathbb{R})$ endowed with the scalar product

$$
(U, V)_{\mathcal{H}}=\int_{\mathbb{R}} u_{1}(x) \overline{v_{1}(x)} \mathrm{d} x+r \int_{\mathbb{R}} u_{2}(x) \overline{v_{2}(x)} \mathrm{d} x
$$

By \mathfrak{a}^{0} we denote the following sesquilinear form in \mathcal{H} :

$$
\mathfrak{a}^{0}[U, V]:=\int_{\mathbb{R}} \nabla u_{1} \cdot \nabla \overline{v_{1}} \mathrm{~d} x+\operatorname{qr} \int_{\mathbb{R}}\left(u_{1}-u_{2}\right)\left(\overline{v_{1}-v_{2}}\right) \mathrm{d} x
$$

with $\operatorname{dom}\left(\mathfrak{a}^{0}\right)=H^{1}(\mathbb{R}) \times L_{2}(\mathbb{R})$.

By \mathcal{H} we denote the Hilbert space of functions from $L_{2}(\mathbb{R}) \times L_{2}(\mathbb{R})$ endowed with the scalar product

$$
(U, V)_{\mathcal{H}}=\int_{\mathbb{R}} u_{1}(x) \overline{v_{1}(x)} \mathrm{d} x+r \int_{\mathbb{R}} u_{2}(x) \overline{v_{2}(x)} \mathrm{d} x
$$

By \mathfrak{a}^{0} we denote the following sesquilinear form in \mathcal{H} :

$$
\mathfrak{a}^{0}[U, V]:=\int_{\mathbb{R}} \nabla u_{1} \cdot \nabla \overline{v_{1}} \mathrm{~d} x+\operatorname{qr} \int_{\mathbb{R}}\left(u_{1}-u_{2}\right)\left(\overline{v_{1}-v_{2}}\right) \mathrm{d} x
$$

with $\operatorname{dom}\left(\mathfrak{a}^{0}\right)=H^{1}(\mathbb{R}) \times L_{2}(\mathbb{R})$.
By \mathcal{A}^{0} we denote the self-adjoint operator acting in \mathcal{H} being associated with this form.

$$
\mathcal{A}^{0} U=\lambda U
$$

$$
\begin{gathered}
\mathbb{V} \\
\left\{\begin{array}{l}
-u_{1}^{\prime \prime}+\operatorname{qr}\left(u_{1}-u_{2}\right)=\lambda u_{1}, \\
q\left(u_{2}-u_{1}\right)=\lambda u_{2} .
\end{array}\right.
\end{gathered}
$$

$$
\mathcal{F}^{0} U=\lambda U
$$

$$
\begin{gathered}
\mathbb{1} \\
\left\{\begin{array}{l}
-u_{1}^{\prime \prime}+\operatorname{qr}\left(u_{1}-u_{2}\right)=\lambda u_{1}, \\
q\left(u_{2}-u_{1}\right)=\lambda u_{2} .
\end{array}\right.
\end{gathered}
$$

$$
\begin{gathered}
\mathfrak{\imath} \\
\left\{\begin{array}{l}
-u_{1}^{\prime \prime}=\lambda\left(1+\frac{q r}{q-\lambda}\right) u_{1}, \\
u_{2}=u_{1} \frac{q}{q-\lambda} .
\end{array}\right.
\end{gathered}
$$

Theorem

Let $I \subset \mathbb{R}$ be an arbitrary compact interval. Then the set $\sigma\left(\mathcal{A}^{\varepsilon}\right) \cap I$ converges in the Hausdorff sense as $\varepsilon \rightarrow 0$ to the set $\sigma\left(\mathcal{A}^{0}\right) \cap I$.

Theorem

Let $I \subset \mathbb{R}$ be an arbitrary compact interval. Then the set $\sigma\left(\mathcal{H}^{\varepsilon}\right) \cap I$ converges in the Hausdorff sense as $\varepsilon \rightarrow 0$ to the set $\sigma\left(\mathcal{A}^{0}\right) \cap I$.

The spectrum of the operator \mathcal{A}^{0} has the following form:

$$
\sigma\left(\mathcal{A}^{0}\right)=[0, \infty) \backslash(q, \widehat{q}),
$$

where $\widehat{q}=q+q$.

Remark 4: Another examples of waveguides with gaps

- K. Yoshitomi (1998)
- P. Exner, O. Post (2005)
- L. Friedlander, M. Solomyak (2008)
- S. Nazarov (2009-...),
- G. Cardone, V. Minutolo, S. Nazarov (2009)
- S. Nazarov, G. Cardone, C. Perugia (2010)
- S. Nazarov, K. Taskinen (2013)
- F. Bakharev, S. Nazarov, S. Ruotsalainen (2013)
- D. Borisov, K. Pankrashkin (2013)

Let $m \in \mathbb{N}$ be arbitrary.

In order to open up m gaps we attach m families of RP domains:

$$
\begin{gathered}
\Omega^{\varepsilon}=\Pi^{\varepsilon} \cup\left(\bigcup_{i \in \mathbb{Z}} \bigcup_{j=1}^{m} T_{i j}^{\varepsilon} \cup B_{i j}^{\varepsilon}\right), \\
\text { where } T_{i j} \cong\left(0, d_{j}^{\varepsilon}\right) \times\left[0, h_{j}^{\varepsilon}\right], B_{i j}^{\varepsilon} \cong \varepsilon B_{j} . \text { Here } d_{j}^{\varepsilon}>0, h_{j}^{\varepsilon}>0, B_{j} \subset \mathbb{R}^{2} .
\end{gathered}
$$

Let $m \in \mathbb{N}$ be arbitrary.
In order to open up m gaps we attach m families of RP domains:

$$
\Omega^{\varepsilon}=\Pi^{\varepsilon} \cup\left(\bigcup_{i \in \mathbb{Z}} \bigcup_{j=1}^{m} T_{i j}^{\varepsilon} \cup B_{i j}^{\varepsilon}\right),
$$

where $T_{i j} \cong\left(0, d_{j}^{\varepsilon}\right) \times\left[0, h_{j}^{\varepsilon}\right], B_{i j}^{\varepsilon} \cong \varepsilon B_{j}$. Here $d_{j}^{\varepsilon}>0, h_{j}^{\varepsilon}>0, B_{j} \subset \mathbb{R}^{2}$.

Under the same assumptions as in the case $m=1$ one has:

- the operator $\mathcal{A}^{\varepsilon}$ has at least m gaps as ε is small enough,

Let $m \in \mathbb{N}$ be arbitrary.
In order to open up m gaps we attach m families of RP domains:

$$
\Omega^{\varepsilon}=\Pi^{\varepsilon} \cup\left(\bigcup_{i \in \mathbb{Z}} \bigcup_{j=1}^{m} T_{i j}^{\varepsilon} \cup B_{i j}^{\varepsilon}\right)
$$

where $T_{i j} \cong\left(0, d_{j}^{\varepsilon}\right) \times\left[0, h_{j}^{\varepsilon}\right], B_{i j}^{\varepsilon} \cong \varepsilon B_{j}$. Here $d_{j}^{\varepsilon}>0, h_{j}^{\varepsilon}>0, B_{j} \subset \mathbb{R}^{2}$.

Under the same assumptions as in the case $m=1$ one has:

- the operator $\mathcal{A}^{\varepsilon}$ has at least m gaps as ε is small enough,
- the first m gaps converge as $\varepsilon \rightarrow 0$ to certain intervals $\left(a_{j}, b_{j}\right)$, whose closures are pairwise disjoint; the next gaps (if any) go to infinity,

Let $m \in \mathbb{N}$ be arbitrary.
In order to open up m gaps we attach m families of RP domains:

$$
\Omega^{\varepsilon}=\Pi^{\varepsilon} \cup\left(\bigcup_{i \in \mathbb{Z}} \bigcup_{j=1}^{m} T_{i j}^{\varepsilon} \cup B_{i j}^{\varepsilon}\right)
$$

where $T_{i j} \cong\left(0, d_{j}^{\varepsilon}\right) \times\left[0, h_{j}^{\varepsilon}\right], B_{i j}^{\varepsilon} \cong \varepsilon B_{j}$. Here $d_{j}^{\varepsilon}>0, h_{j}^{\varepsilon}>0, B_{j} \subset \mathbb{R}^{2}$.
Under the same assumptions as in the case $m=1$ one has:

- the operator $\mathcal{A}^{\varepsilon}$ has at least m gaps as ε is small enough,
- the first m gaps converge as $\varepsilon \rightarrow 0$ to certain intervals $\left(a_{j}, b_{j}\right)$, whose closures are pairwise disjoint; the next gaps (if any) go to infinity,
- one can completely control the location of the intervals $\left(a_{j}, b_{j}\right)$ via a suitable choice of the numbers $d_{j}^{\varepsilon}, h_{j}^{\varepsilon}$ and the domains B_{j}.

References

- G.Cardone, A.K., J. Differ. Equations 259(6) (2015)
- G.Cardone, A.K., to appear; arXiv:1605.07812 (2016)
- G.Cardone, A.K., submitted; arXiv:1608.00440 (2016)

References

- G.Cardone, A.K., J. Differ. Equations 259(6) (2015)
- G.Cardone, A.K., to appear; arXiv:1605.07812 (2016)
- G.Cardone, A.K., submitted; arXiv:1608.00440 (2016)

Thank you for the attention!

