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Preliminaries
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The results: thin strip

“Room-and-passage” perturbations
General remarks

Let Ω be a bounded domain in Rn. We perturb it to a family of
domains {Ωε ⊂ Rn}ε, here ε > 0 is a small parameter.

It is well-known (see [R. Courant, D. Hilbert, Methoden der
mathematischen Physik, 1924]) that under sufficiently regular
perturbations of Ω the eigenvalues of −∆ subject to Neumann or
Dirichlet boundary conditions vary continuously.

In general, however, this is not true – even if Ωε differs from Ω only
in a ball of the radius O(ε).

The example below demonstrates this.

3 / 29 A.Khrabustovskyi Spectral properties of domains with ”room-and-passage” boundary



Preliminaries
Results: bounded domain

The results: fixed width strip
The results: thin strip

“Room-and-passage” perturbations
General remarks

Let Ω be a bounded domain in Rn. We perturb it to a family of
domains {Ωε ⊂ Rn}ε, here ε > 0 is a small parameter.

It is well-known (see [R. Courant, D. Hilbert, Methoden der
mathematischen Physik, 1924]) that under sufficiently regular
perturbations of Ω the eigenvalues of −∆ subject to Neumann or
Dirichlet boundary conditions vary continuously.

In general, however, this is not true – even if Ωε differs from Ω only
in a ball of the radius O(ε).

The example below demonstrates this.

3 / 29 A.Khrabustovskyi Spectral properties of domains with ”room-and-passage” boundary



Preliminaries
Results: bounded domain

The results: fixed width strip
The results: thin strip

“Room-and-passage” perturbations
General remarks

Let Ω be a bounded domain in Rn. We perturb it to a family of
domains {Ωε ⊂ Rn}ε, here ε > 0 is a small parameter.

It is well-known (see [R. Courant, D. Hilbert, Methoden der
mathematischen Physik, 1924]) that under sufficiently regular
perturbations of Ω the eigenvalues of −∆ subject to Neumann or
Dirichlet boundary conditions vary continuously.

In general, however, this is not true – even if Ωε differs from Ω only
in a ball of the radius O(ε).

The example below demonstrates this.

3 / 29 A.Khrabustovskyi Spectral properties of domains with ”room-and-passage” boundary



Preliminaries
Results: bounded domain

The results: fixed width strip
The results: thin strip

“Room-and-passage” perturbations
General remarks

Example by R. Courant and D. Hilbert

Let ε > 0 be a small parameter. We set:

Ω ⊂ R2 – fixed bounded domain

Bε � εB, B is a fixed bounded domain – room

Tε � [0, hε] × (0, dε) – passage

Ωε = Ω ∪ (Tε ∪ Bε) – perturbed domain

Tε
B
BM

Bε

Ω

We denote by λk (Ω) and λk (Ωε) the k -th eigenvalue of the Neumann
Laplacians in Ω and Ωε. One has λ1(Ω) = λ1(Ωε) = 0, λ2(Ω) > 0, while

lim
ε→0

λ2(Ωε) = 0 provided hε = ε, dε = εα,α > 3
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“Room-and-passage” perturbations
General remarks

J.M. Arrieta, J.K. Hale, Q. Han, J. Differ. Equations 91 (1991)
- More general geometry (but the same “sizes”)

- Finitely many “room-and-passage”s

lim
ε→0

λk (Ωε) = 0, k = 2, . . . , M + 1,

lim
ε→0

λk (Ωε) = λk−M(Ω), k ≥ M + 2,

where M is the number of attached domains.

E. Sanchez-Palencia, Nonhomogeneous media and vibration theory,
Springer-Verlag, Berlin-New York, 1980
- The number of attached domains tends to infinity as ε→ 0

- “Sizes” of attached domains are the same as before

λ2(Ωε)→ 0 as ε→ 0,
for any λ ∈ σ(−∆Ω) there is λε ∈ σ(−∆Ωε) such that lim

ε→0
λε = λ

Our goal is to extend these results under weaker restrictions on sizes of
”rooms” and ”passages” and with an additional ”mass” inside the ”rooms”.
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Remark 1: General result for the Neumann Laplacian

M. Lobo-Hidalgo, E. Sanchez-Palencia, Comm. PDEs 4 (1979)

Let Ω ⊂ Rn be a fixed domain and let {Ωε ⊂ Rn}ε be a family of
domains satisfying some mild regularity assumptions and

Ω ⊂ Ωε, |Ωε \ Ω| → 0 as ε→ 0, (?)

where | · | stays for the Lebesque measure in Rn.

Then

∀λ ∈ σ(−∆Ω) ∃λε ∈ σ(−∆Ωε) : lim
ε→0

λε = λ.

However, it may happen that (?) holds, but

∃λε ∈ σ(−∆Ωε), λε → λ as ε→ 0 and λ < σ(−∆Ω). (??)
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General remarks

Examples of perturbations for which (??) occurs

Domains with attached ”room-and-passage”s

Dumbbell-shaped domains
Ω1

Ω2Tε

In a simplest case they are defined as follows: let Ω be a union of
two disjoint domains Ωj , j = 1, 2 and Ωε = Ω ∪ Tε, where Tε is a
narrow channel connecting Ω1 and Ω2 and approaching as ε→ 0
an 1-dimensional line segment of the length h.

One can prove that if σ(−∆Ωε) 3 λε → λ as ε→ 0 then either

λ ∈ σ(−∆Ω1 ) ∪ σ(−∆Ω2 ) or λ =
(
πk
h

)2
for some k ∈ N.

S. Jimbo, J. Differ. Equations 77 (1989)

R. Hempel, L. Seco, B. Simon, J. Funct. Anal. 102 (1991)

S. Jimbo, Y. Morita, Comm. Part. Differ. Equations 17 (1992)

C. Anné, Proc. Amer. Math. Soc. 123 (1995)

J.M. Arrieta, Trans. Amer. Math. Soc. 347 (1995)
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“Room-and-passage” perturbations
General remarks

Remark 2:

Domains with ”room-and-passage”-like geometry are widely used in
order to construct examples illustrating various phenomena in Sobolev
spaces theory and in spectral theory.

For example:

Construction of domains for which the embedding
iΩ : H1(Ω) ↪→ L2(Ω) is not compact.

[L.E. Fraenkel, Proc. London Math. Soc. 39 (1979)]

Construction of domains with predefined essential spectrum of the
corresponding Neumann Laplacian

[R. Hempel, L. Seco, B. Simon, J. Funct. Anal. 102 (1991)]

More details: [V. Maz’ya, Sobolev spaces with applications to elliptic
partial differential equations, Springer, 2011].
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“Room-and-passage” perturbations
General remarks

Remark 3: What about Dirichlet Laplacian?

One can also study the behaviour of the spectrum of the Dirichlet
Laplacian under a perturbation of the boundary of a domain. In this
case the continuity of eigenvalues holds for rather wide set of
perturbations.

For example, if Ωε converges metrically to Ω, i.e.

i. for every compact set F ⊂ Ω there is ε0 > 0 such that F ⊂ Ωε

provided ε < ε0,

ii. for every open set O ⊃ Ω there is ε0 > 0 such that Ωε ⊂ O
provided ε < ε0

(plus some mild regularity assumptions on Ωε and Ω), then the
k -th eigenvalue of the Dirichlet Laplacian in Ωε converges to the
k -th eigenvalue of the Dirichlet Laplacian in Ω.

I. Babuška, R. Vyborny, Czech. Math. J. 15 (1965)

J. Rauch, M. Taylor, J. Funct. Anal. 18 (1975)
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I. Babuška, R. Vyborny, Czech. Math. J. 15 (1965)

J. Rauch, M. Taylor, J. Funct. Anal. 18 (1975)

9 / 29 A.Khrabustovskyi Spectral properties of domains with ”room-and-passage” boundary



Preliminaries
Results: bounded domain

The results: fixed width strip
The results: thin strip

“Room-and-passage” perturbations
General remarks

Remark 3: What about Dirichlet Laplacian?

One can also study the behaviour of the spectrum of the Dirichlet
Laplacian under a perturbation of the boundary of a domain. In this
case the continuity of eigenvalues holds for rather wide set of
perturbations. For example, if Ωε converges metrically to Ω, i.e.

i. for every compact set F ⊂ Ω there is ε0 > 0 such that F ⊂ Ωε

provided ε < ε0,

ii. for every open set O ⊃ Ω there is ε0 > 0 such that Ωε ⊂ O
provided ε < ε0

(plus some mild regularity assumptions on Ωε and Ω), then the
k -th eigenvalue of the Dirichlet Laplacian in Ωε converges to the
k -th eigenvalue of the Dirichlet Laplacian in Ω.

I. Babuška, R. Vyborny, Czech. Math. J. 15 (1965)

J. Rauch, M. Taylor, J. Funct. Anal. 18 (1975)
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Domain Ωε

Operator Aε

Assumptions
Results: q < ∞
Results: q = ∞

Ω
�
��

Γ

��

Bε
i PPq

Tε
i
-

-� ε

Ω ⊂ Rn – bounded domain, Γ – flat part of ∂Ω

Bε
i � εB, where B ⊂ Rn – rooms

Tε
i � dεD × [0, hε], where D ⊂ Rn−1, dε, hε > 0 – passages

Ωε = Ω ∪

⋃
i

(Tε
i ∪ Bε

i )
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Domain Ωε

Operator Aε
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Results: q = ∞

The main object of our interest is the following operator:

Aε = −
1
ρε

∆Ωε

acting in L2(Ωε, ρεdx). Here −∆Ωε is the Neumann Laplacian in
Ωε, the function ρε (mass density) is defined as follows:

ρε(x) =


%ε, x ∈

⋃
i

Bε
i (the union of the rooms),

1, x ∈ Ω ∪

(⋃
i

Tε
i

)
.

Our goal

To describe the behaviour of σ(Aε) as ε→ 0.
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Domain Ωε

Operator Aε
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(i) hε → 0 as ε→ 0

(ii) lim
ε→0

ε ln dε = 0 (for n = 2) or lim
ε→0

εn−1/(dε)n−2 = 0 (for n > 2)

(iii) the following limits exist:

lim
ε→0

(dε)n−1|D |
%εhεεn |B |

=: q ∈ [0,∞], lim
ε→0

%εε|B | =: r ∈ [0,∞).

Remark 1

The finiteness of r implies the uniform (with respect to ε) boundedness of
the total mass mε

B of the ”rooms”:

mε
B :=

∫
⋃
i

Bε
i

ρεdx = %ε
∑

i

|Bε
i | = %εε|B |

∑
i

εn−1 ∼ r |Γ|

Remark 2

In the case %ε = 1 (i.e. Aε = −∆Ωε ) one has r = 0.
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Let r > 0. By H we denote the Hilbert space of functions from
L2(Ω) × L2(Γ) endowed with the scalar product

(U, V)H =

∫
Ω

u1(x)v1(x)dx + r
∫
Γ

u2(x)v2(x)ds

By a0 we denote the following sesquilinear form in H :

a
0[U, V ] :=

∫
Ω

∇u1 · ∇v1dx + qr
∫
Γ

(u1 − u2)(v1 − v2)ds

with dom(a0) = H1(Ω) × L2(Γ).

By A0 we denote the self-adjoint operator acting in H being
associated with this form.
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Formally, the eigenvalue problem

A0U = λU,

where U = (u1, u2), can be written as follows:

−∆u1 = λu1 in Ω,
∂u1

∂n
+ qr(u1 − u2) = 0 on Γ,

q(u2 − u1) = λu2 on Γ,
∂u1

∂n
= 0 on ∂Ω \ Γ,

where n is the outward-pointing unit normal to ∂Ω.

Equivalently,
−∆u1 = λu1 in Ω,
∂u1

∂n
=

qrλ
q − λ

u1 on Γ,

∂u1

∂n
= 0 on ∂Ω \ Γ,

u2 =
q

q − λ
u1.
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Lemma
One has

σdisc(A0) = {λ−k , k = 1, 2, 3. . . } ∪ {λ+
k , k = 1, 2, 3. . . },

σess(A
0) = {q},

where

0 = λ−1 ≤ λ
−
2 ≤. . .≤ λ−k ≤ . . . →k→∞

q < λ+
1 ≤ λ

+
2 ≤. . .≤ λ+

k ≤ . . . →k→∞
∞.
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Results: q < ∞
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Theorem 1
Let q < ∞, r > 0. Let l ⊂ R be an arbitrary compact interval.

Then the set σ(Aε) ∩ l converges in the Hausdorff sense as ε→ 0
to the set σ(A0) ∩ l, i.e.

distH
(
σ(Aε) ∩ l,σ(A0) ∩ l

)
→ 0 as ε→ 0.

where distH(X , Y) := max

sup
x∈X

inf
y∈Y
|x − y |; sup

y∈Y
inf
x∈X
|y − x |

 .

Remark
The claim of the theorem is equivalent to the fulfilment of the
conditions
(i) if λε ∈ σ(Aε) and lim

ε=εk→0
λε = λ then λ ∈ σ(A0),

(ii) for any λ ∈ σ(A0) there is λε ∈ σ(Aε) such that lim
ε→0

λε = λ.
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Theorem 2
Let q < ∞, r = 0. Let l ⊂ R be an arbitrary compact interval.

Then the set σ(Aε) ∩ l converges in the Hausdorff sense as ε→ 0
to the set (

σ(−∆Ω) ∪ {q}
)
∩ l.
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By ã0 we denote the following sesquilinear form in the space H
(recall: H = L2(Ω) × L2(Γ, rds)):

ã
0[U, V ] :=

∫
Ω

∇u1 · ∇v1dx

with ã0 =
{
U ∈ H1(Ω) × L2(Γ) : u1|Γ = u2

}
. By Ã0 we denote the

self-adjoint operator acting in H being associated with this form.

Formally, the eigenvalue problem Ã0U = λU, where U = (u1, u2),
can be written as follows:

−∆u = λu in Ω,
∂u
∂n = λru on Γ,
∂u
∂n = 0 on ∂Ω \ Γ.
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By ã0 we denote the following sesquilinear form in the space H
(recall: H = L2(Ω) × L2(Γ, rds)):

ã
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Results: q < ∞
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Theorem 3
Let q = ∞, r > 0. Let l ⊂ R be an arbitrary compact interval.

Then the set σ(Aε) ∩ l converges in the Hausdorff sense as ε→ 0
to the set

σ(Ã0) ∩ l.

Theorem 4
Let q = ∞, r = 0. Let l ⊂ R be an arbitrary compact interval.

Then the set σ(Aε) ∩ l converges in the Hausdorff sense as ε→ 0
to the set

σ(−∆Ω) ∩ l.
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Waveguide Ωε

Main result

Ω = R × (0, d), Γ = {x ∈ R2 : x2 = d}, d > 0

d
?

6

Ωε = Ω ∪

⋃
i∈Z

(Tε
i ∪ Bε

i )
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Main result

lim
ε→0

(dε)n−1|D |
hεεn |B |

=: q, lim
ε→0

%εε|B | =: r .

We focus on the case r , q > 0.

In the same way as in the case of
compact Ω we introduce the operators Aε and A0.

Theorem

Let l ⊂ R be an arbitrary compact interval. Then the set σ(Aε) ∩ l
converges in the Hausdorff sense as ε→ 0 to the set σ(A0) ∩ l.

The spectrum of the operator A0 has the following form:

σ(A0) =

[0, q] ∪ [̂q,∞), q <
(
π

2d

)2

[0,∞), q ≥
(
π

2d

)2
.

Here q̂ is some number satisfying q < q̂ <
(
π

2d

)2
.
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Waveguide Ωε

Assumptions
Limit operator A0

Main result
Many gaps and their controllability

Πε � R × (0, ε) ⊂ R2 – straight strip of the width ε

Bε
i � εB, B ⊂ R2 – rooms (i ∈ Z)

Tε
i � (0, dε) × [0, hε], dε, hε > 0 – passages (i ∈ Z)

εΠε

?

6

Ωε = Πε ∪

⋃
i∈Z

(Tε
i ∪ Bε

i )



We denote by Aε = −∆Ωε the Neumann Laplacian in Ωε.
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Waveguide Ωε

Assumptions
Limit operator A0

Main result
Many gaps and their controllability

We suppose that the following conditions hold as ε→ 0:

(i) dε = o(ε)

(ii) ε2 ln dε → 0

(iii) hε → 0

(iv) the following limit exists and is positive:

lim
ε→0

dε

hεε2|B |
=: q ∈ (0,∞).

Also, we denote r := |B |.
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By H we denote the Hilbert space of functions from L2(R) × L2(R)
endowed with the scalar product

(U, V)H =

∫
R

u1(x)v1(x)dx + r
∫
R

u2(x)v2(x)dx

By a0 we denote the following sesquilinear form in H :

a
0[U, V ] :=

∫
R

∇u1 · ∇v1dx + qr
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By A0 we denote the self-adjoint operator acting in H being
associated with this form.
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A0U = λU

m

−u′′1 + qr(u1 − u2) = λu1,

q(u2 − u1) = λu2.

m

−u′′1 = λ
(
1 + qr

q−λ

)
u1,

u2 = u1
q

q−λ .
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Theorem

Let l ⊂ R be an arbitrary compact interval. Then the set σ(Aε) ∩ l
converges in the Hausdorff sense as ε→ 0 to the set σ(A0) ∩ l.

The spectrum of the operator A0 has the following form:

σ(A0) = [0,∞) \ (q, q̂),

where q̂ = q + qr .
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Remark 4: Another examples of waveguides with gaps

K. Yoshitomi (1998)

P. Exner, O. Post (2005)

L. Friedlander, M. Solomyak (2008)

S. Nazarov (2009-...),

G. Cardone, V. Minutolo, S. Nazarov (2009)

S. Nazarov, G. Cardone, C. Perugia (2010)

S. Nazarov, K. Taskinen (2013)

F. Bakharev, S. Nazarov, S. Ruotsalainen (2013)

D. Borisov, K. Pankrashkin (2013)
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Let m ∈ N be arbitrary.

In order to open up m gaps we attach m families of RP domains:

Ωε = Πε ∪

⋃
i∈Z

m⋃
j=1

Tε
ij ∪ Bε

ij

,

where Tij � (0, dεj ) × [0, hεj ], Bε
ij � εBj . Here dεj > 0, hεj > 0, Bj ⊂ R

2.

Under the same assumptions as in the case m = 1 one has:

I the operator Aε has at least m gaps as ε is small enough,

I the first m gaps converge as ε→ 0 to certain intervals (aj , bj),
whose closures are pairwise disjoint; the next gaps (if any) go to
infinity,

I one can completely control the location of the intervals (aj , bj) via a
suitable choice of the numbers dεj , hεj and the domains Bj .
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