Spectral Theory, Differential Equations and Probability Johannes Gutenberg Universität Mainz, 4.09 - 15.09.2016

Homogenization in domains with traps. Part 2 Spectral properties of domains with "room-and-passage" boundary

Andrii Khrabustovskyi

Institute for Analysis, Karlsruhe Institute of Technology

Joint work with Giuseppe Cardone (University of Sannio, Benevento, Italy)

Outline of the talk:

- Preliminaries
- Results: bounded domain
- Results: fix width strip
- Results: thin strip

Preliminaries

Results: bounded domain The results: fixed width strip The results: thin strip "Room-and-passage" perturbations General remarks

Let Ω be a bounded domain in \mathbb{R}^n . We perturb it to a family of domains $\{\Omega^{\varepsilon} \subset \mathbb{R}^n\}_{\varepsilon}$, here $\varepsilon > 0$ is a small parameter.

"Room-and-passage" perturbations General remarks

Let Ω be a bounded domain in \mathbb{R}^n . We perturb it to a family of domains $\{\Omega^{\varepsilon} \subset \mathbb{R}^n\}_{\varepsilon}$, here $\varepsilon > 0$ is a small parameter.

It is well-known (see [R. COURANT, D. HILBERT, Methoden der mathematischen Physik, 1924]) that under sufficiently **regular** perturbations of Ω the eigenvalues of $-\Delta$ subject to Neumann or Dirichlet boundary conditions vary continuously.

"Room-and-passage" perturbations General remarks

Let Ω be a bounded domain in \mathbb{R}^n . We perturb it to a family of domains $\{\Omega^{\varepsilon} \subset \mathbb{R}^n\}_{\varepsilon}$, here $\varepsilon > 0$ is a small parameter.

It is well-known (see [R. COURANT, D. HILBERT, Methoden der mathematischen Physik, 1924]) that under sufficiently **regular** perturbations of Ω the eigenvalues of $-\Delta$ subject to Neumann or Dirichlet boundary conditions vary continuously.

In general, however, this is not true – even if Ω^{ε} differs from Ω only in a ball of the radius $O(\varepsilon)$.

The example below demonstrates this.

"Room-and-passage" perturbations General remarks

Example by R. Courant and D. Hilbert

Let $\varepsilon > 0$ be a small parameter. We set:

- $\Omega \subset \mathbb{R}^2$ fixed bounded domain
- $B^{\varepsilon} \cong \varepsilon B$, B is a fixed bounded domain room
- $T^{\varepsilon} \cong [0, h^{\varepsilon}] \times (0, d^{\varepsilon}) \text{passage}$
- $\Omega^{\varepsilon} = \Omega \cup (T^{\varepsilon} \cup B^{\varepsilon})$ perturbed domain

"Room-and-passage" perturbations General remarks

Example by R. Courant and D. Hilbert

Let $\varepsilon > 0$ be a small parameter. We set:

- $\Omega \subset \mathbb{R}^2$ fixed bounded domain
- $B^{\varepsilon} \cong \varepsilon B$, B is a fixed bounded domain room
- $T^{\varepsilon} \cong [0, h^{\varepsilon}] \times (0, d^{\varepsilon}) \text{passage}$
- $\Omega^{\varepsilon} = \Omega \cup (T^{\varepsilon} \cup B^{\varepsilon})$ perturbed domain

We denote by $\lambda_k(\Omega)$ and $\lambda_k(\Omega^{\varepsilon})$ the *k*-th eigenvalue of the Neumann Laplacians in Ω and Ω^{ε} .

"Room-and-passage" perturbations General remarks

Example by R. Courant and D. Hilbert

Let $\varepsilon > 0$ be a small parameter. We set:

- $\Omega \subset \mathbb{R}^2$ fixed bounded domain
- $B^{\varepsilon} \cong \varepsilon B$, B is a fixed bounded domain room
- $T^{\varepsilon} \cong [0, h^{\varepsilon}] \times (0, d^{\varepsilon}) \text{passage}$
- $\Omega^{\varepsilon} = \Omega \cup (T^{\varepsilon} \cup B^{\varepsilon})$ perturbed domain

We denote by $\lambda_k(\Omega)$ and $\lambda_k(\Omega^{\varepsilon})$ the *k*-th eigenvalue of the Neumann Laplacians in Ω and Ω^{ε} . One has $\lambda_1(\Omega) = \lambda_1(\Omega^{\varepsilon}) = 0$, $\lambda_2(\Omega) > 0$

"Room-and-passage" perturbations General remarks

Example by R. Courant and D. Hilbert

Let $\varepsilon > 0$ be a small parameter. We set:

- $\Omega \subset \mathbb{R}^2$ fixed bounded domain
- $B^{\varepsilon} \cong \varepsilon B$, B is a fixed bounded domain room
- $T^{\varepsilon} \cong [0, h^{\varepsilon}] \times (0, d^{\varepsilon}) \text{passage}$
- $\Omega^{\varepsilon} = \Omega \cup (T^{\varepsilon} \cup B^{\varepsilon})$ perturbed domain

We denote by $\lambda_k(\Omega)$ and $\lambda_k(\Omega^{\varepsilon})$ the *k*-th eigenvalue of the Neumann Laplacians in Ω and Ω^{ε} . One has $\lambda_1(\Omega) = \lambda_1(\Omega^{\varepsilon}) = 0$, $\lambda_2(\Omega) > 0$, while

$$\lim_{\varepsilon \to 0} \lambda_2(\Omega^{\varepsilon}) = 0 \text{ provided } h^{\varepsilon} = \varepsilon, \ d^{\varepsilon} = \varepsilon^{\alpha}, \alpha > 3$$

Preliminaries

Results: bounded domain The results: fixed width strip The results: thin strip "Room-and-passage" perturbations General remarks

- J.M. Arrieta, J.K. Hale, Q. Han, J. Differ. Equations 91 (1991)
 - More general geometry (but the same "sizes")
 - Finitely many "room-and-passage"s

Preliminaries

Results: bounded domain The results: fixed width strip The results: thin strip "Room-and-passage" perturbations General remarks

- J.M. Arrieta, J.K. Hale, Q. Han, J. Differ. Equations 91 (1991)
 - More general geometry (but the same "sizes")
 - Finitely many "room-and-passage"s
 - $\lim_{\varepsilon \to 0} \lambda_k(\Omega^{\varepsilon}) = 0, \ k = 2, \dots, M+1,$
 - $\lim_{\varepsilon \to 0} \lambda_k(\Omega^{\varepsilon}) = \lambda_{k-M}(\Omega), \ k \ge M + 2,$ where *M* is the number of attached domains.

"Room-and-passage" perturbations General remarks

- J.M. Arrieta, J.K. Hale, Q. Han, J. Differ. Equations 91 (1991)
 - More general geometry (but the same "sizes")
 - Finitely many "room-and-passage"s
 - $\lim_{\varepsilon \to 0} \lambda_k(\Omega^{\varepsilon}) = 0, \ k = 2, \dots, M+1,$
 - $\lim_{\varepsilon \to 0} \lambda_k(\Omega^{\varepsilon}) = \lambda_{k-M}(\Omega), \ k \ge M + 2,$ where *M* is the number of attached domains.
- E. SANCHEZ-PALENCIA, Nonhomogeneous media and vibration theory, Springer-Verlag, Berlin-New York, 1980
 - The number of attached domains tends to infinity as $\varepsilon \to 0$
 - "Sizes" of attached domains are the same as before

"Room-and-passage" perturbations General remarks

- J.M. Arrieta, J.K. Hale, Q. Han, J. Differ. Equations 91 (1991)
 - More general geometry (but the same "sizes")
 - Finitely many "room-and-passage"s
 - $\lim_{\varepsilon \to 0} \lambda_k(\Omega^{\varepsilon}) = 0, \ k = 2, \dots, M+1,$
 - $\lim_{\varepsilon \to 0} \lambda_k(\Omega^{\varepsilon}) = \lambda_{k-M}(\Omega), \ k \ge M + 2,$ where *M* is the number of attached domains.
- E. SANCHEZ-PALENCIA, Nonhomogeneous media and vibration theory, Springer-Verlag, Berlin-New York, 1980
 - The number of attached domains tends to infinity as $\varepsilon \to 0$
 - "Sizes" of attached domains are the same as before

•
$$\lambda_2(\Omega^{\varepsilon}) \to 0$$
 as $\varepsilon \to 0$,

• for any $\lambda \in \sigma(-\Delta_{\Omega})$ there is $\lambda^{\varepsilon} \in \sigma(-\Delta_{\Omega^{\varepsilon}})$ such that $\lim_{\varepsilon \to 0} \lambda^{\varepsilon} = \lambda$

"Room-and-passage" perturbations General remarks

- J.M. Arrieta, J.K. Hale, Q. Han, J. Differ. Equations 91 (1991)
 - More general geometry (but the same "sizes")
 - Finitely many "room-and-passage"s
 - $\lim_{\varepsilon \to 0} \lambda_k(\Omega^{\varepsilon}) = 0, \ k = 2, \dots, M+1,$
 - $\lim_{\varepsilon \to 0} \lambda_k(\Omega^{\varepsilon}) = \lambda_{k-M}(\Omega), \ k \ge M + 2,$ where *M* is the number of attached domains.
- E. SANCHEZ-PALENCIA, Nonhomogeneous media and vibration theory, Springer-Verlag, Berlin-New York, 1980
 - The number of attached domains tends to infinity as $\varepsilon \to 0$
 - "Sizes" of attached domains are the same as before

•
$$\lambda_2(\Omega^{\varepsilon}) \to 0$$
 as $\varepsilon \to 0$,
• for any $\lambda \in \sigma(-\Delta_{\Omega})$ there is $\lambda^{\varepsilon} \in \sigma(-\Delta_{\Omega^{\varepsilon}})$ such that $\lim_{\varepsilon \to 0} \lambda^{\varepsilon} =$

Our goal is to extend these results under weaker restrictions on sizes of "rooms" and "passages" and with an additional "mass" inside the "rooms".

λ

"Room-and-passage" perturbations General remarks

Remark 1: General result for the Neumann Laplacian

M. Lobo-Hidalgo, E. Sanchez-Palencia, Comm. PDEs 4 (1979)

Let $\Omega \subset \mathbb{R}^n$ be a fixed domain and let $\{\Omega^{\varepsilon} \subset \mathbb{R}^n\}_{\varepsilon}$ be a family of domains satisfying some mild regularity assumptions and

$$\Omega \subset \Omega^{\varepsilon}, \quad |\Omega^{\varepsilon} \setminus \Omega| \to 0 \text{ as } \varepsilon \to 0,$$
 (*)

where $|\cdot|$ stays for the Lebesque measure in \mathbb{R}^n .

"Room-and-passage" perturbations General remarks

Remark 1: General result for the Neumann Laplacian

M. Lobo-Hidalgo, E. Sanchez-Palencia, Comm. PDEs 4 (1979)

Let $\Omega \subset \mathbb{R}^n$ be a fixed domain and let $\{\Omega^{\varepsilon} \subset \mathbb{R}^n\}_{\varepsilon}$ be a family of domains satisfying some mild regularity assumptions and

$$\Omega \subset \Omega^{\varepsilon}, \quad |\Omega^{\varepsilon} \setminus \Omega| \to 0 \text{ as } \varepsilon \to 0, \tag{(\star)}$$

where $|\cdot|$ stays for the Lebesque measure in \mathbb{R}^n . Then

$$\forall \lambda \in \sigma(-\Delta_{\Omega}) \ \exists \lambda^{\varepsilon} \in \sigma(-\Delta_{\Omega^{\varepsilon}}) : \lim_{\varepsilon \to 0} \lambda^{\varepsilon} = \lambda.$$

"Room-and-passage" perturbations General remarks

Remark 1: General result for the Neumann Laplacian

M. Lobo-Hidalgo, E. Sanchez-Palencia, Comm. PDEs 4 (1979)

Let $\Omega \subset \mathbb{R}^n$ be a fixed domain and let $\{\Omega^{\varepsilon} \subset \mathbb{R}^n\}_{\varepsilon}$ be a family of domains satisfying some mild regularity assumptions and

$$\Omega \subset \Omega^{\varepsilon}, \quad |\Omega^{\varepsilon} \setminus \Omega| \to 0 \text{ as } \varepsilon \to 0,$$
 (*)

where $|\cdot|$ stays for the Lebesque measure in \mathbb{R}^n . Then

$$\forall \lambda \in \sigma(-\Delta_{\Omega}) \; \exists \lambda^{\varepsilon} \in \sigma(-\Delta_{\Omega^{\varepsilon}}) : \lim_{\varepsilon \to 0} \lambda^{\varepsilon} = \lambda.$$

However, it may happen that (\star) holds, but

$$\exists \lambda^{\varepsilon} \in \sigma(-\Delta_{\Omega^{\varepsilon}}), \ \lambda^{\varepsilon} \to \lambda \text{ as } \varepsilon \to 0 \text{ and } \lambda \notin \sigma(-\Delta_{\Omega}). \quad (\star \star)$$

Preliminaries

Results: bounded domain The results: fixed width strip The results: thin strip "Room-and-passage" perturbations General remarks

Examples of perturbations for which $(\star\star)$ occurs

• Domains with attached "room-and-passage"s

"Room-and-passage" perturbations General remarks

Examples of perturbations for which $(\star\star)$ occurs

Domains with attached "room-and-passage"s

 Ω_1

Dumbbell-shaped domains

In a simplest case they are defined as follows: let Ω be a union of two disjoint domains Ω_j , j = 1, 2 and $\Omega^{\varepsilon} = \Omega \cup T^{\varepsilon}$, where T^{ε} is a narrow channel connecting Ω_1 and Ω_2 and approaching as $\varepsilon \to 0$ an 1-dimensional line segment of the length *h*.

 Ω_2

"Room-and-passage" perturbations General remarks

Examples of perturbations for which $(\star\star)$ occurs

Domains with attached "room-and-passage"s

 Ω_1

Dumbbell-shaped domains

In a simplest case they are defined as follows: let Ω be a union of two disjoint domains Ω_j , j = 1, 2 and $\Omega^{\varepsilon} = \Omega \cup T^{\varepsilon}$, where T^{ε} is a narrow channel connecting Ω_1 and Ω_2 and approaching as $\varepsilon \to 0$ an 1-dimensional line segment of the length *h*.

 Ω_2

One can prove that if $\sigma(-\Delta_{\Omega^{\varepsilon}}) \ni \lambda^{\varepsilon} \to \lambda$ as $\varepsilon \to 0$ then either $\lambda \in \sigma(-\Delta_{\Omega_1}) \cup \sigma(-\Delta_{\Omega_2})$ or $\lambda = \left(\frac{\pi k}{h}\right)^2$ for some $k \in \mathbb{N}$.

"Room-and-passage" perturbations General remarks

Examples of perturbations for which $(\star\star)$ occurs

- Domains with attached "room-and-passage"s
- Dumbbell-shaped domains

In a simplest case they are defined as follows: let Ω be a union of two disjoint domains Ω_j , j = 1, 2 and $\Omega^{\varepsilon} = \Omega \cup T^{\varepsilon}$, where T^{ε} is a narrow channel connecting Ω_1 and Ω_2 and approaching as $\varepsilon \to 0$ an 1-dimensional line segment of the length *h*.

One can prove that if $\sigma(-\Delta_{\Omega^{\varepsilon}}) \ni \lambda^{\varepsilon} \to \lambda$ as $\varepsilon \to 0$ then either $\lambda \in \sigma(-\Delta_{\Omega_1}) \cup \sigma(-\Delta_{\Omega_2})$ or $\lambda = \left(\frac{\pi k}{h}\right)^2$ for some $k \in \mathbb{N}$.

- S. Jімво, J. Differ. Equations 77 (1989)
- R. HEMPEL, L. SECO, B. SIMON, J. FUNCT. Anal. 102 (1991)
- S. JIMBO, Y. MORITA, Comm. Part. Differ. Equations 17 (1992)

A.Khrabustovskyi

- C. ANNÉ, Proc. Amer. Math. Soc. 123 (1995)
- J.M. ARRIETA, Trans. Amer. Math. Soc. 347 (1995)

Preliminaries

Results: bounded domain The results: fixed width strip The results: thin strip "Room-and-passage" perturbations General remarks

Remark 2:

Domains with "room-and-passage"-like geometry are widely used in order to construct examples illustrating various phenomena in Sobolev spaces theory and in spectral theory.

"Room-and-passage" perturbations General remarks

Remark 2:

Domains with "room-and-passage"-like geometry are widely used in order to construct examples illustrating various phenomena in Sobolev spaces theory and in spectral theory. For example:

Construction of domains for which the embedding
 *i*_Ω : *H*¹(Ω) → *L*₂(Ω) is not compact.

[L.E. Fraenkel, Proc. London Math. Soc. 39 (1979)]

"Room-and-passage" perturbations General remarks

Remark 2:

Domains with "room-and-passage"-like geometry are widely used in order to construct examples illustrating various phenomena in Sobolev spaces theory and in spectral theory. For example:

• Construction of domains for which the embedding $i_{\Omega}: H^1(\Omega) \hookrightarrow L_2(\Omega)$ is not compact.

[L.E. Fraenkel, Proc. London Math. Soc. 39 (1979)]

• Construction of domains with predefined **essential** spectrum of the corresponding Neumann Laplacian

[R. Hempel, L. Seco, B. Simon, J. Funct. Anal. 102 (1991)]

"Room-and-passage" perturbations General remarks

Remark 2:

Domains with "room-and-passage"-like geometry are widely used in order to construct examples illustrating various phenomena in Sobolev spaces theory and in spectral theory. For example:

Construction of domains for which the embedding
 *i*_Ω : *H*¹(Ω) → *L*₂(Ω) is not compact.

[L.E. Fraenkel, Proc. London Math. Soc. 39 (1979)]

• Construction of domains with predefined **essential** spectrum of the corresponding Neumann Laplacian

[R. Hempel, L. Seco, B. Simon, J. Funct. Anal. 102 (1991)]

"Room-and-passage" perturbations General remarks

Remark 2:

Domains with "room-and-passage"-like geometry are widely used in order to construct examples illustrating various phenomena in Sobolev spaces theory and in spectral theory. For example:

Construction of domains for which the embedding
 *i*_Ω : *H*¹(Ω) → *L*₂(Ω) is not compact.

[L.E. Fraenkel, Proc. London Math. Soc. 39 (1979)]

• Construction of domains with predefined **essential** spectrum of the corresponding Neumann Laplacian

[R. Hempel, L. Seco, B. Simon, J. Funct. Anal. 102 (1991)]

More details: [V. Maz'ya, Sobolev spaces with applications to elliptic partial differential equations, Springer, 2011].

"Room-and-passage" perturbations General remarks

Remark 3: What about Dirichlet Laplacian?

One can also study the behaviour of the spectrum of the Dirichlet Laplacian under a perturbation of the boundary of a domain. In this case the continuity of eigenvalues holds for rather wide set of perturbations.

"Room-and-passage" perturbations General remarks

Remark 3: What about Dirichlet Laplacian?

One can also study the behaviour of the spectrum of the Dirichlet Laplacian under a perturbation of the boundary of a domain. In this case the continuity of eigenvalues holds for rather wide set of perturbations. For example, if Ω^{ε} converges metrically to Ω , i.e.

- i. for every compact set $F \subset \Omega$ there is $\varepsilon_0 > 0$ such that $F \subset \Omega^{\varepsilon}$ provided $\varepsilon < \varepsilon_0$,
- ii. for every open set $O \supset \overline{\Omega}$ there is $\varepsilon_0 > 0$ such that $\Omega^{\varepsilon} \subset O$ provided $\varepsilon < \varepsilon_0$

(plus some mild regularity assumptions on Ω^{ε} and Ω), then the *k*-th eigenvalue of the Dirichlet Laplacian in Ω^{ε} converges to the *k*-th eigenvalue of the Dirichlet Laplacian in Ω .

"Room-and-passage" perturbations General remarks

Remark 3: What about Dirichlet Laplacian?

One can also study the behaviour of the spectrum of the Dirichlet Laplacian under a perturbation of the boundary of a domain. In this case the continuity of eigenvalues holds for rather wide set of perturbations. For example, if Ω^{ε} converges metrically to Ω , i.e.

- i. for every compact set $F \subset \Omega$ there is $\varepsilon_0 > 0$ such that $F \subset \Omega^{\varepsilon}$ provided $\varepsilon < \varepsilon_0$,
- ii. for every open set $O \supset \overline{\Omega}$ there is $\varepsilon_0 > 0$ such that $\Omega^{\varepsilon} \subset O$ provided $\varepsilon < \varepsilon_0$

(plus some mild regularity assumptions on Ω^{ε} and Ω), then the *k*-th eigenvalue of the Dirichlet Laplacian in Ω^{ε} converges to the *k*-th eigenvalue of the Dirichlet Laplacian in Ω .

- I. Вавиšка, R. Vувоплу, Czech. Math. J. 15 (1965)
- J. Rauch, M. Taylor, J. Funct. Anal. 18 (1975)

Domain Ω^{ε} Operator $\mathcal{A}^{\varepsilon}$ Assumptions Results: $q < \infty$ Results: $q = \infty$

- $\Omega \subset \mathbb{R}^n$ bounded domain, Γ flat part of $\partial \Omega$
- $B_i^{\varepsilon} \cong \varepsilon B$, where $B \subset \mathbb{R}^n$ rooms
- $T_i^{\varepsilon} \cong d^{\varepsilon}D \times [0, h^{\varepsilon}]$, where $D \subset \mathbb{R}^{n-1}$, d^{ε} , $h^{\varepsilon} > 0$ passages

$$\Omega^{\varepsilon} = \Omega \cup \left(\bigcup_{i} (T_{i}^{\varepsilon} \cup B_{i}^{\varepsilon}) \right)$$

Domain Ω^{ε} Operator $\mathcal{A}^{\varepsilon}$ Assumptions Results: $q < \infty$ Results: $q = \infty$

The main object of our interest is the following operator:

$$\mathcal{R}^{\varepsilon} = -\frac{1}{
ho^{arepsilon}} \Delta_{\Omega^{arepsilon}}$$

acting in $L_2(\Omega^{\varepsilon}, \rho^{\varepsilon} dx)$. Here $-\Delta_{\Omega^{\varepsilon}}$ is the Neumann Laplacian in Ω^{ε} , the function ρ^{ε} (mass density) is defined as follows:

$$\rho^{\varepsilon}(x) = \begin{cases} \varrho^{\varepsilon}, & x \in \bigcup_{i} B_{i}^{\varepsilon} & \text{(the union of the rooms),} \\ 1, & x \in \Omega \cup \left(\bigcup_{i} T_{i}^{\varepsilon}\right). \end{cases}$$

Domain Ω^{ε} Operator $\mathcal{A}^{\varepsilon}$ Assumptions Results: $q < \infty$ Results: $q = \infty$

The main object of our interest is the following operator:

$$\mathcal{A}^{\varepsilon} = -\frac{1}{
ho^{\varepsilon}} \Delta_{\Omega^{\varepsilon}}$$

acting in $L_2(\Omega^{\varepsilon}, \rho^{\varepsilon} dx)$. Here $-\Delta_{\Omega^{\varepsilon}}$ is the Neumann Laplacian in Ω^{ε} , the function ρ^{ε} (mass density) is defined as follows:

$$\rho^{\varepsilon}(x) = \begin{cases} \varrho^{\varepsilon}, & x \in \bigcup_{i} B_{i}^{\varepsilon} & \text{(the union of the rooms),} \\ 1, & x \in \Omega \cup \left(\bigcup_{i} T_{i}^{\varepsilon}\right). \end{cases}$$

Our goal

To describe the behaviour of $\sigma(\mathcal{A}^{\varepsilon})$ as $\varepsilon \to 0$.

(i)
$$h^{\varepsilon} \to 0 \text{ as } \varepsilon \to 0$$

(ii)
$$\lim_{\varepsilon \to 0} \varepsilon \ln d^{\varepsilon} = 0$$
 (for $n = 2$) or $\lim_{\varepsilon \to 0} \varepsilon^{n-1}/(d^{\varepsilon})^{n-2} = 0$ (for $n > 2$)

(iii) the following limits exist:

$$\lim_{\varepsilon \to 0} \frac{(d^{\varepsilon})^{n-1}|D|}{\varrho^{\varepsilon}h^{\varepsilon}\varepsilon^{n}|B|} =: q \in [0, \infty], \quad \lim_{\varepsilon \to 0} \varrho^{\varepsilon}\varepsilon|B| =: r \in [0, \infty).$$

(i)
$$h^{\varepsilon} \to 0 \text{ as } \varepsilon \to 0$$

- (ii) $\lim_{\varepsilon \to 0} \varepsilon \ln d^{\varepsilon} = 0$ (for n = 2) or $\lim_{\varepsilon \to 0} \varepsilon^{n-1} / (d^{\varepsilon})^{n-2} = 0$ (for n > 2)
- (iii) the following limits exist:

$$\lim_{\varepsilon \to 0} \frac{(d^{\varepsilon})^{n-1}|D|}{\varrho^{\varepsilon}h^{\varepsilon}\varepsilon^{n}|B|} =: q \in [0, \infty], \quad \lim_{\varepsilon \to 0} \varrho^{\varepsilon}\varepsilon|B| =: r \in [0, \infty).$$

Remark 1

The finiteness of *r* implies the uniform (with respect to ε) boundedness of the total mass m_B^{ε} of the "rooms":

$$m_{B}^{\varepsilon} := \int_{\bigcup_{i} B_{i}^{\varepsilon}} \rho^{\varepsilon} dx = \varrho^{\varepsilon} \sum_{i} |B_{i}^{\varepsilon}| = \varrho^{\varepsilon} \varepsilon |B| \sum_{i} \varepsilon^{n-1} \sim r |\Gamma|$$

(i)
$$h^{\varepsilon} \to 0$$
 as $\varepsilon \to 0$

- (ii) $\lim_{\varepsilon \to 0} \varepsilon \ln d^{\varepsilon} = 0$ (for n = 2) or $\lim_{\varepsilon \to 0} \varepsilon^{n-1}/(d^{\varepsilon})^{n-2} = 0$ (for n > 2)
- (iii) the following limits exist:

$$\lim_{\varepsilon \to 0} \frac{(d^{\varepsilon})^{n-1}|D|}{\varrho^{\varepsilon}h^{\varepsilon}\varepsilon^{n}|B|} =: q \in [0, \infty], \quad \lim_{\varepsilon \to 0} \varrho^{\varepsilon}\varepsilon|B| =: r \in [0, \infty).$$

Remark 1

The finiteness of *r* implies the uniform (with respect to ε) boundedness of the total mass m_B^{ε} of the "rooms":

$$m_{\mathsf{B}}^{\varepsilon} := \int_{\bigcup_{i} B_{i}^{\varepsilon}} \rho^{\varepsilon} dx = \varrho^{\varepsilon} \sum_{i} |B_{i}^{\varepsilon}| = \varrho^{\varepsilon} \varepsilon |B| \sum_{i} \varepsilon^{n-1} \sim r |\Gamma|$$

Remark 2

In the case
$$\varrho^{\varepsilon} = 1$$
 (i.e. $\mathcal{A}^{\varepsilon} = -\Delta_{\Omega^{\varepsilon}}$) one has $r = 0$.

Domain Ω^{ε} Operator $\mathcal{A}^{\varepsilon}$ Assumptions **Results:** $q < \infty$ Results: $q = \infty$

Let r > 0. By \mathcal{H} we denote the Hilbert space of functions from $L_2(\Omega) \times L_2(\Gamma)$ endowed with the scalar product

$$(U, V)_{\mathcal{H}} = \int_{\Omega} u_1(x) \overline{v_1(x)} dx + r \int_{\Gamma} u_2(x) \overline{v_2(x)} ds$$

Domain Ω^{ε} Operator $\mathcal{R}^{\varepsilon}$ Assumptions **Results:** $q < \infty$ Results: $q = \infty$

Let r > 0. By \mathcal{H} we denote the Hilbert space of functions from $L_2(\Omega) \times L_2(\Gamma)$ endowed with the scalar product

$$(U, V)_{\mathcal{H}} = \int_{\Omega} u_1(x) \overline{v_1(x)} dx + r \int_{\Gamma} u_2(x) \overline{v_2(x)} ds$$

By \mathfrak{a}^0 we denote the following sesquilinear form in \mathcal{H} :

$$\mathfrak{a}^{0}[U, V] := \int_{\Omega} \nabla u_{1} \cdot \nabla \overline{v_{1}} dx + qr \int_{\Gamma} (u_{1} - u_{2})(\overline{v_{1} - v_{2}}) ds$$

ith dom(\mathfrak{a}^{0}) = $H^{1}(\Omega) \times L_{2}(\Gamma)$.

w

Domain Ω^{ε} Operator $\mathcal{A}^{\varepsilon}$ Assumptions **Results:** $q < \infty$ Results: $q = \infty$

Let r > 0. By \mathcal{H} we denote the Hilbert space of functions from $L_2(\Omega) \times L_2(\Gamma)$ endowed with the scalar product

$$(U, V)_{\mathcal{H}} = \int_{\Omega} u_1(x) \overline{v_1(x)} dx + r \int_{\Gamma} u_2(x) \overline{v_2(x)} ds$$

By \mathfrak{a}^0 we denote the following sesquilinear form in \mathcal{H} :

$$\mathfrak{a}^{0}[U, V] := \int_{\Omega} \nabla u_{1} \cdot \nabla \overline{v_{1}} \mathrm{d}x + qr \int_{\Gamma} (u_{1} - u_{2})(\overline{v_{1} - v_{2}}) \mathrm{d}s$$

with dom $(\mathfrak{a}^0) = H^1(\Omega) \times L_2(\Gamma)$.

By \mathcal{R}^0 we denote the self-adjoint operator acting in \mathcal{H} being associated with this form.

Domain Ω^{ε} Operator $\mathcal{A}^{\varepsilon}$ Assumptions **Results:** $q < \infty$ Results: $q = \infty$

Formally, the eigenvalue problem

 $\mathcal{A}^0 U = \lambda U,$

where $U = (u_1, u_2)$, can be written as follows:

 $\begin{cases} -\Delta u_1 = \lambda u_1 & \text{in } \Omega, \\ \frac{\partial u_1}{\partial n} + qr(u_1 - u_2) = 0 & \text{on } \Gamma, \\ q(u_2 - u_1) = \lambda u_2 & \text{on } \Gamma, \\ \frac{\partial u_1}{\partial n} = 0 & \text{on } \partial \Omega \setminus \Gamma, \end{cases}$

where *n* is the outward-pointing unit normal to $\partial \Omega$.

Domain Ω^{ε} Operator $\mathcal{A}^{\varepsilon}$ Assumptions **Results:** $q < \infty$ Results: $q = \infty$

Formally, the eigenvalue problem

 $\mathcal{A}^0 U = \lambda U,$

where $U = (u_1, u_2)$, can be written as follows:

$$\begin{cases} -\Delta u_1 = \lambda u_1 & \text{in } \Omega, \\ \frac{\partial u_1}{\partial n} + qr(u_1 - u_2) = 0 & \text{on } \Gamma, \\ q(u_2 - u_1) = \lambda u_2 & \text{on } \Gamma, \\ \frac{\partial u_1}{\partial n} = 0 & \text{on } \partial\Omega \setminus \Gamma, \end{cases}$$

where *n* is the outward-pointing unit normal to $\partial \Omega$.

Equivalently,

$$\begin{cases} -\Delta u_1 = \lambda u_1 & \text{in } \Omega, \\ \frac{\partial u_1}{\partial n} = \frac{q r \lambda}{q - \lambda} u_1 & \text{on } \Gamma, \\ \frac{\partial u_1}{\partial n} = 0 & \text{on } \partial \Omega \setminus \Gamma, \end{cases} \qquad u_2 = \frac{q}{q - \lambda} u_1.$$

Domain Ω^{ε} Operator $\mathcal{A}^{\varepsilon}$ Assumptions **Results:** $q < \infty$ Results: $q = \infty$

Lemma

One has

$$\sigma_{\text{disc}}(\mathcal{A}^0) = \{\lambda_k^-, k = 1, 2, 3...\} \cup \{\lambda_k^+, k = 1, 2, 3...\},$$
$$\sigma_{\text{ess}}(\mathcal{A}^0) = \{q\},$$

where

$$0 = \lambda_1^- \leq \lambda_2^- \leq \ldots \leq \lambda_k^- \leq \ldots \xrightarrow{k \to \infty} q < \lambda_1^+ \leq \lambda_2^+ \leq \ldots \leq \lambda_k^+ \leq \ldots \xrightarrow{k \to \infty} \infty.$$

Domain Ω^{ε} Operator $\mathcal{A}^{\varepsilon}$ Assumptions **Results:** $q < \infty$ Results: $q = \infty$

Theorem 1

Let $q < \infty$, r > 0. Let $l \subset \mathbb{R}$ be an arbitrary compact interval.

Then the set $\sigma(\mathcal{R}^{\varepsilon}) \cap I$ converges in the Hausdorff sense as $\varepsilon \to 0$ to the set $\sigma(\mathcal{R}^{0}) \cap I$, i.e.

$$\operatorname{dist}_{H}\left(\sigma(\mathcal{A}^{\varepsilon}) \cap I, \, \sigma(\mathcal{A}^{0}) \cap I\right) \to 0 \text{ as } \varepsilon \to 0.$$

here $\operatorname{dist}_{H}(X, Y) := \max\left\{\sup_{x \in X} \inf_{y \in Y} |x - y|; \sup_{y \in Y} \inf_{x \in X} |y - x|\right\}.$

w

Domain Ω^{ε} Operator $\mathcal{A}^{\varepsilon}$ Assumptions **Results:** $q < \infty$ Results: $q = \infty$

Theorem 1

Let $q < \infty$, r > 0. Let $l \subset \mathbb{R}$ be an arbitrary compact interval.

Then the set $\sigma(\mathcal{R}^{\varepsilon}) \cap I$ converges in the Hausdorff sense as $\varepsilon \to 0$ to the set $\sigma(\mathcal{R}^{0}) \cap I$, i.e.

$$\operatorname{dist}_{H}(\sigma(\mathcal{A}^{\varepsilon}) \cap I, \sigma(\mathcal{A}^{0}) \cap I) \to 0 \text{ as } \varepsilon \to 0.$$

where dist_H(X, Y) := max
$$\left\{ \sup_{x \in X} \inf_{y \in Y} |x - y|; \sup_{y \in Y} \inf_{x \in X} |y - x| \right\}$$

Remark

The claim of the theorem is equivalent to the fulfilment of the conditions

(*i*) if
$$\lambda^{\varepsilon} \in \sigma(\mathcal{A}^{\varepsilon})$$
 and $\lim_{\varepsilon = \varepsilon_k \to 0} \lambda^{\varepsilon} = \lambda$ then $\lambda \in \sigma(\mathcal{A}^0)$,
(*ii*) for any $\lambda \in \sigma(\mathcal{A}^0)$ there is $\lambda^{\varepsilon} \in \sigma(\mathcal{A}^{\varepsilon})$ such that $\lim_{\varepsilon \to 0} \lambda^{\varepsilon} = \lambda$.

Domain Ω^{ε} Operator $\mathcal{A}^{\varepsilon}$ Assumptions **Results:** $q < \infty$ Results: $q = \infty$

Theorem 2

Let $q < \infty$, r = 0. Let $l \subset \mathbb{R}$ be an arbitrary compact interval.

Then the set $\sigma(\mathcal{R}^{\varepsilon}) \cap I$ converges in the Hausdorff sense as $\varepsilon \to 0$ to the set

$$\left(\sigma(-\Delta_{\Omega})\cup\{q\}
ight)\cap I.$$

 Preliminaries
 Domain Ω^{ε}

 Results: bounded domain
 Operator $\mathcal{A}^{\varepsilon}$

 The results: fixed width strip
 Assumptions

 The results: thin strip
 Results: $q < \infty$

By $\tilde{\mathfrak{a}}^0$ we denote the following sesquilinear form in the space \mathcal{H} (recall: $\mathcal{H} = L_2(\Omega) \times L_2(\Gamma, rds)$):

$$\widetilde{\mathfrak{a}}^{0}[U, V] := \int_{\Omega} \nabla u_{1} \cdot \nabla \overline{v_{1}} \mathrm{d}x$$

with $\widetilde{\mathfrak{a}}^0 = \{ U \in H^1(\Omega) \times L_2(\Gamma) : u_1|_{\Gamma} = u_2 \}$. By $\widetilde{\mathcal{R}}^0$ we denote the self-adjoint operator acting in \mathcal{H} being associated with this form.

Preliminaries Results: bounded domain The results: fixed width strip The results: thin strip The results: $q = \infty$ Results: $q = \infty$

By $\tilde{\mathfrak{a}}^0$ we denote the following sesquilinear form in the space \mathcal{H} (recall: $\mathcal{H} = L_2(\Omega) \times L_2(\Gamma, rds)$):

$$\widetilde{\mathfrak{a}}^{0}[U, V] := \int_{\Omega} \nabla u_{1} \cdot \nabla \overline{v_{1}} \mathrm{d}x$$

with $\widetilde{\mathfrak{a}}^0 = \{ U \in H^1(\Omega) \times L_2(\Gamma) : u_1|_{\Gamma} = u_2 \}$. By $\widetilde{\mathcal{R}}^0$ we denote the self-adjoint operator acting in \mathcal{H} being associated with this form.

Formally, the eigenvalue problem $\widetilde{\mathcal{A}}^0 U = \lambda U$, where $U = (u_1, u_2)$, can be written as follows:

$$\begin{cases} -\Delta u = \lambda u & \text{ in } \Omega, \\ \frac{\partial u}{\partial n} = \lambda r u & \text{ on } \Gamma, \\ \frac{\partial u}{\partial n} = 0 & \text{ on } \partial \Omega \setminus \Gamma \end{cases}$$

A.Khrabustovskyi

Spectral properties of domains with "room-and-passage" boundary

Domain Ω^{ε} Operator $\mathcal{A}^{\varepsilon}$ Assumptions Results: $q < \infty$ Results: $q = \infty$

Theorem 3

Let $q = \infty$, r > 0. Let $l \subset \mathbb{R}$ be an arbitrary compact interval.

Then the set $\sigma(\mathcal{R}^{\varepsilon}) \cap I$ converges in the Hausdorff sense as $\varepsilon \to 0$ to the set

 $\sigma(\widetilde{\mathcal{A}}^0) \cap I.$

Domain Ω^{ε} Operator $\mathcal{R}^{\varepsilon}$ Assumptions Results: $q < \infty$ Results: $q = \infty$

Theorem 3

Let $q = \infty$, r > 0. Let $l \subset \mathbb{R}$ be an arbitrary compact interval.

Then the set $\sigma(\mathcal{R}^{\varepsilon}) \cap I$ converges in the Hausdorff sense as $\varepsilon \to 0$ to the set

 $\sigma(\widetilde{\mathcal{A}}^0) \cap I.$

Theorem 4

Let $q = \infty$, r = 0. Let $l \subset \mathbb{R}$ be an arbitrary compact interval.

Then the set $\sigma(\mathcal{R}^{\varepsilon}) \cap I$ converges in the Hausdorff sense as $\varepsilon \to 0$ to the set

$$\sigma(-\Delta_{\Omega}) \cap I.$$

Waveguide Ω^{ε} Main result

$$\Omega^{\varepsilon} = \Omega \cup \left(\bigcup_{i \in \mathbb{Z}} (T^{\varepsilon}_i \cup B^{\varepsilon}_i) \right)$$

Waveguide Ω^{ε} Main result

$$\lim_{\varepsilon \to 0} \frac{(d^{\varepsilon})^{n-1}|D|}{h^{\varepsilon}\varepsilon^{n}|B|} =: q, \quad \lim_{\varepsilon \to 0} \varrho^{\varepsilon}\varepsilon|B| =: r.$$

We focus on the case r, q > 0.

Waveguide Ω^{ε} Main result

$$\lim_{\varepsilon \to 0} \frac{(d^{\varepsilon})^{n-1}|D|}{h^{\varepsilon} \varepsilon^{n}|B|} =: q, \quad \lim_{\varepsilon \to 0} \varrho^{\varepsilon} \varepsilon |B| =: r.$$

We focus on the case r, q > 0. In the same way as in the case of compact Ω we introduce the operators $\mathcal{R}^{\varepsilon}$ and \mathcal{R}^{0} .

Waveguide Ω^{ε} Main result

$$\lim_{\varepsilon \to 0} \frac{(d^{\varepsilon})^{n-1}|D|}{h^{\varepsilon} \varepsilon^{n}|B|} =: q, \quad \lim_{\varepsilon \to 0} \varrho^{\varepsilon} \varepsilon |B| =: r.$$

We focus on the case r, q > 0. In the same way as in the case of compact Ω we introduce the operators $\mathcal{R}^{\varepsilon}$ and \mathcal{R}^{0} .

Theorem

Let $I \subset \mathbb{R}$ be an arbitrary compact interval. Then the set $\sigma(\mathcal{A}^{\varepsilon}) \cap I$ converges in the Hausdorff sense as $\varepsilon \to 0$ to the set $\sigma(\mathcal{A}^{0}) \cap I$.

Waveguide Ω^{ε} Main result

$$\lim_{\varepsilon \to 0} \frac{(d^{\varepsilon})^{n-1}|D|}{h^{\varepsilon} \varepsilon^{n}|B|} =: q, \quad \lim_{\varepsilon \to 0} \varrho^{\varepsilon} \varepsilon |B| =: r.$$

We focus on the case r, q > 0. In the same way as in the case of compact Ω we introduce the operators $\mathcal{R}^{\varepsilon}$ and \mathcal{R}^{0} .

Theorem

Let $I \subset \mathbb{R}$ be an arbitrary compact interval. Then the set $\sigma(\mathcal{A}^{\varepsilon}) \cap I$ converges in the Hausdorff sense as $\varepsilon \to 0$ to the set $\sigma(\mathcal{A}^{0}) \cap I$.

The spectrum of the operator \mathcal{R}^0 has the following form:

$$\sigma(\mathcal{A}^{0}) = \begin{cases} [0, q] \cup [\widehat{q}, \infty), & q < \left(\frac{\pi}{2d}\right)^{2} \\ [0, \infty), & q \ge \left(\frac{\pi}{2d}\right)^{2}. \end{cases}$$

Here \widehat{q} is some number satisfying $q < \widehat{q} < \left(\frac{\pi}{2d}\right)^2$.

Waveguide Ω^e Assumptions Limit operator \mathcal{R}^0 Main result Many gaps and their controllability

- $\Pi^{\varepsilon} \cong \mathbb{R} \times (0, \varepsilon) \subset \mathbb{R}^2$ straight strip of the width ε
- $B_i^{\varepsilon} \cong \varepsilon B, B \subset \mathbb{R}^2 \text{rooms} (i \in \mathbb{Z})$
- $T_i^{\varepsilon} \cong (0, d^{\varepsilon}) \times [0, h^{\varepsilon}], d^{\varepsilon}, h^{\varepsilon} > 0 \text{passages} (i \in \mathbb{Z})$

$$\Omega^arepsilon = \Pi^arepsilon \cup \left(igcup_{i\in\mathbb{Z}}^arepsilon(T_i^arepsilon\cup B_i^arepsilon)
ight)$$

Waveguide Ω^e Assumptions Limit operator \mathcal{R}^0 Main result Many gaps and their controllability

• $\Pi^{\varepsilon} \cong \mathbb{R} \times (0, \varepsilon) \subset \mathbb{R}^2$ – straight strip of the width ε

•
$$B_i^{\varepsilon} \cong \varepsilon B, B \subset \mathbb{R}^2$$
 – rooms $(i \in \mathbb{Z})$

• $T_i^{\varepsilon} \cong (0, d^{\varepsilon}) \times [0, h^{\varepsilon}], d^{\varepsilon}, h^{\varepsilon} > 0 - \text{passages} (i \in \mathbb{Z})$

$$\Omega^{\varepsilon} = \Pi^{\varepsilon} \cup \left(\bigcup_{i \in \mathbb{Z}} (T^{\varepsilon}_i \cup B^{\varepsilon}_i) \right)$$

We denote by $\mathcal{R}^{\varepsilon} = -\Delta_{\Omega^{\varepsilon}}$ the Neumann Laplacian in Ω^{ε} .

Waveguide Ω^e Assumptions Limit operator \mathcal{A}^0 Main result Many gaps and their controllability

We suppose that the following conditions hold as $\varepsilon \to 0$:

- (i) $d^{\varepsilon} = o(\varepsilon)$
- (ii) $\varepsilon^2 \ln d^{\varepsilon} \to 0$
- (iii) $h^{\varepsilon} \rightarrow 0$

(iv) the following limit exists and is positive:

$$\lim_{\varepsilon \to 0} \frac{d^{\varepsilon}}{h^{\varepsilon} \varepsilon^2 |B|} =: \mathbf{q} \in (0, \infty).$$

Waveguide Ω^{e} Assumptions Limit operator \mathcal{A}^{0} Main result Many gaps and their controllability

We suppose that the following conditions hold as $\varepsilon \to 0$:

- (i) $d^{\varepsilon} = o(\varepsilon)$
- (ii) $\varepsilon^2 \ln d^{\varepsilon} \to 0$
- (iii) $h^{\varepsilon} \rightarrow 0$

(iv) the following limit exists and is positive:

$$\lim_{\varepsilon\to 0}\frac{d^{\varepsilon}}{h^{\varepsilon}\varepsilon^{2}|B|}=: q\in (0,\infty).$$

Also, we denote r := |B|.

Waveguide Ω^e Assumptions Limit operator **A⁰** Main result Many gaps and their controllability

By \mathcal{H} we denote the Hilbert space of functions from $L_2(\mathbb{R}) \times L_2(\mathbb{R})$ endowed with the scalar product

$$(U, V)_{\mathcal{H}} = \int_{\mathbb{R}} u_1(x) \overline{v_1(x)} dx + r \int_{\mathbb{R}} u_2(x) \overline{v_2(x)} dx$$

Waveguide Ω^c Assumptions Limit operator **A⁰** Main result Many gaps and their controllability

By \mathcal{H} we denote the Hilbert space of functions from $L_2(\mathbb{R}) \times L_2(\mathbb{R})$ endowed with the scalar product

$$(U, V)_{\mathcal{H}} = \int_{\mathbb{R}} u_1(x) \overline{v_1(x)} dx + r \int_{\mathbb{R}} u_2(x) \overline{v_2(x)} dx$$

By \mathfrak{a}^0 we denote the following sesquilinear form in \mathcal{H} :

$$\mathfrak{a}^{0}[U, V] := \int_{\mathbb{R}} \nabla u_{1} \cdot \nabla \overline{v_{1}} dx + qr \int_{\mathbb{R}} (u_{1} - u_{2})(\overline{v_{1} - v_{2}}) dx$$

with $\operatorname{dom}(\mathfrak{a}^{0}) = H^{1}(\mathbb{R}) \times L_{2}(\mathbb{R}).$

w

Waveguide Ω^{e} Assumptions Limit operator \mathcal{A}^{0} Main result Many gaps and their controllability

By \mathcal{H} we denote the Hilbert space of functions from $L_2(\mathbb{R}) \times L_2(\mathbb{R})$ endowed with the scalar product

$$(U, V)_{\mathcal{H}} = \int_{\mathbb{R}} u_1(x) \overline{v_1(x)} dx + r \int_{\mathbb{R}} u_2(x) \overline{v_2(x)} dx$$

By \mathfrak{a}^0 we denote the following sesquilinear form in \mathcal{H} :

$$\mathfrak{a}^{0}[U, V] := \int_{\mathbb{R}} \nabla u_{1} \cdot \nabla \overline{v_{1}} dx + qr \int_{\mathbb{R}} (u_{1} - u_{2})(\overline{v_{1} - v_{2}}) dx$$

h dom(\mathfrak{a}^{0}) = $H^{1}(\mathbb{R}) \times L_{2}(\mathbb{R})$.

By \mathcal{R}^0 we denote the self-adjoint operator acting in \mathcal{H} being associated with this form.

wit

Waveguide Ω^e Assumptions Limit operator **A⁰** Main result Many gaps and their controllability

 $\mathcal{A}^0 U = \lambda U$

$\mathbf{\hat{l}}$

$$\begin{cases} -u_1'' + qr(u_1 - u_2) = \lambda u_1, \\ q(u_2 - u_1) = \lambda u_2. \end{cases}$$

Waveguide Ω^e Assumptions Limit operator **A⁰** Main result Many gaps and their controllability

 $\mathcal{A}^0 U = \lambda U$

 $\mathbf{\hat{l}}$

$$\begin{cases} -u_1'' + qr(u_1 - u_2) = \lambda u_1, \\ q(u_2 - u_1) = \lambda u_2. \end{cases}$$

 $\mathbf{\hat{l}}$

$$\begin{cases} -u_1'' = \lambda \left(1 + \frac{qr}{q-\lambda}\right) u_1, \\ u_2 = u_1 \frac{q}{q-\lambda}. \end{cases}$$

Waveguide Ω^{e} Assumptions Limit operator \mathcal{R}^{0} Main result Many gaps and their controllability

Theorem

Let $I \subset \mathbb{R}$ be an arbitrary compact interval. Then the set $\sigma(\mathcal{R}^{\varepsilon}) \cap I$ converges in the Hausdorff sense as $\varepsilon \to 0$ to the set $\sigma(\mathcal{R}^0) \cap I$.

Waveguide Ω^{ε} Assumptions Limit operator \mathcal{R}^0 Main result Many gaps and their controllability

Theorem

Let $I \subset \mathbb{R}$ be an arbitrary compact interval. Then the set $\sigma(\mathcal{R}^{\varepsilon}) \cap I$ converges in the Hausdorff sense as $\varepsilon \to 0$ to the set $\sigma(\mathcal{R}^{0}) \cap I$.

The spectrum of the operator \mathcal{R}^0 has the following form:

 $\sigma(\mathcal{A}^0) = [0,\infty) \setminus (q,\widehat{q}),$

where $\widehat{q} = q + qr$.

Waveguide Ω^{ε} Assumptions Limit operator \mathcal{A}^0 Main result Many gaps and their controllability

Remark 4: Another examples of waveguides with gaps

- K. Yoshitomi (1998)
- P. Exner, O. Post (2005)
- L. Friedlander, M. Solomyak (2008)
- S. Nazarov (2009-...),
- G. Cardone, V. Minutolo, S. Nazarov (2009)
- S. Nazarov, G. Cardone, C. Perugia (2010)
- S. Nazarov, K. Taskinen (2013)
- F. Bakharev, S. Nazarov, S. Ruotsalainen (2013)
- D. Borisov, K. Pankrashkin (2013)

Waveguide Ω^{e} Assumptions Limit operator \mathcal{A}^{0} Main result Many gaps and their controllability

Let $m \in \mathbb{N}$ be arbitrary.

In order to open up *m* gaps we attach *m* families of RP domains:

$$\Omega^{\varepsilon} = \Pi^{\varepsilon} \cup \left(\bigcup_{i \in \mathbb{Z}} \bigcup_{j=1}^{m} T^{\varepsilon}_{ij} \cup B^{\varepsilon}_{ij} \right),$$

where $T_{ij} \cong (0, d^{\varepsilon}_{j}) \times [0, h^{\varepsilon}_{j}], B^{\varepsilon}_{ij} \cong \varepsilon B_{j}$. Here $d^{\varepsilon}_{j} > 0, h^{\varepsilon}_{j} > 0, B_{j} \subset \mathbb{R}^{2}$.

Waveguide Ω^{e} Assumptions Limit operator \mathcal{R}^{0} Main result Many gaps and their controllability

Let $m \in \mathbb{N}$ be arbitrary.

In order to open up *m* gaps we attach *m* families of RP domains:

$$\Omega^{\varepsilon} = \Pi^{\varepsilon} \cup \left(\bigcup_{i \in \mathbb{Z}} \bigcup_{j=1}^{m} T^{\varepsilon}_{ij} \cup B^{\varepsilon}_{ij} \right),$$

where $T_{ij} \cong (0, d_j^{\varepsilon}) \times [0, h_j^{\varepsilon}], B_{ij}^{\varepsilon} \cong \varepsilon B_j$. Here $d_j^{\varepsilon} > 0, \ h_j^{\varepsilon} > 0, \ B_j \subset \mathbb{R}^2$.

Under the same assumptions as in the case m = 1 one has:

• the operator $\mathcal{R}^{\varepsilon}$ has at least *m* gaps as ε is small enough,

Waveguide Ω^{e} Assumptions Limit operator \mathcal{R}^{0} Main result Many gaps and their controllability

Let $m \in \mathbb{N}$ be arbitrary.

In order to open up *m* gaps we attach *m* families of RP domains:

$$\Omega^{\varepsilon} = \Pi^{\varepsilon} \cup \left(\bigcup_{i \in \mathbb{Z}} \bigcup_{j=1}^{m} T^{\varepsilon}_{ij} \cup B^{\varepsilon}_{ij} \right),$$

where $T_{ij} \cong (0, d_j^{\varepsilon}) \times [0, h_j^{\varepsilon}], B_{ij}^{\varepsilon} \cong \varepsilon B_j$. Here $d_j^{\varepsilon} > 0, \ h_j^{\varepsilon} > 0, \ B_j \subset \mathbb{R}^2$.

Under the same assumptions as in the case m = 1 one has:

- the operator $\mathcal{R}^{\varepsilon}$ has at least *m* gaps as ε is small enough,
- the first *m* gaps converge as ε → 0 to certain intervals (*a_j*, *b_j*), whose closures are pairwise disjoint; the next gaps (if any) go to infinity,

Waveguide Ω^{e} Assumptions Limit operator \mathcal{R}^{0} Main result Many gaps and their controllability

Let $m \in \mathbb{N}$ be arbitrary.

In order to open up *m* gaps we attach *m* families of RP domains:

$$\Omega^{\varepsilon} = \Pi^{\varepsilon} \cup \left(\bigcup_{i \in \mathbb{Z}} \bigcup_{j=1}^{m} T^{\varepsilon}_{ij} \cup B^{\varepsilon}_{ij} \right),$$

where $T_{ij} \cong (0, d_j^{\varepsilon}) \times [0, h_j^{\varepsilon}], B_{ij}^{\varepsilon} \cong \varepsilon B_j$. Here $d_j^{\varepsilon} > 0, \ h_j^{\varepsilon} > 0, \ B_j \subset \mathbb{R}^2$.

Under the same assumptions as in the case m = 1 one has:

- the operator $\mathcal{R}^{\varepsilon}$ has at least *m* gaps as ε is small enough,
- the first *m* gaps converge as ε → 0 to certain intervals (*a_j*, *b_j*), whose closures are pairwise disjoint; the next gaps (if any) go to infinity,
- ► one can completely control the location of the intervals (a_i, b_j) via a suitable choice of the numbers d^ε_i, h^ε_i and the domains B_j.

Waveguide Ω^{e} Assumptions Limit operator \mathcal{R}^{0} Main result Many gaps and their controllability

References

- G.CARDONE, A.K., J. Differ. Equations 259(6) (2015)
- G.CARDONE, A.K., to appear; arXiv:1605.07812 (2016)
- G.CARDONE, A.K., submitted; arXiv:1608.00440 (2016)

Waveguide Ω^{e} Assumptions Limit operator \mathcal{R}^{0} Main result Many gaps and their controllability

References

- G.CARDONE, A.K., J. Differ. Equations 259(6) (2015)
- G.CARDONE, A.K., to appear; arXiv:1605.07812 (2016)
- G.CARDONE, A.K., submitted; arXiv:1608.00440 (2016)

Thank you for the attention!